ΕΚ ΟΣΗ ΚΑΙ ΠΑΡΑ ΟΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΚ ΟΣΗ ΚΑΙ ΠΑΡΑ ΟΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ"

Transcript

1 Κωδικός:.540 Αρ. Έκδοσης: 3 Ηµ/νία: Σελ 1 από 5 1. ΕΙΣΑΓΩΓΗ Η παρούσα ιαδικασία περιγράφει τον τρόπο µε τον οποίο το ΕΣΕΑΠ εκδίδει και παραδίδει τα αποτελέσµατα του εξωτερικού ελέγχου ποιότητας στα συµµετέχοντα εργαστήρια. 2. ΑΡΜΟ ΙΟΙ 2.1 ιαχειριστής ΕΣΕΑΠ 2.2 Γραµµατεία ΕΣΕΑΠ 2.3 Προσωπικό ΕΣΕΑΠ 3. ΠΕΡΙΓΡΑΦΗ 3.1. Έκδοση αποτελεσµάτων Στο τέλος κάθε αποστολής και µετά την ολοκλήρωση της στατιστικής επεξεργασίας των αποτελεσµάτων (βλ. ιαδικασία.530), κάθε συµµετέχον εργαστήριο µπορεί να δει τα αποτελέσµατα που το αφορούν µέσω του διαδικτυακού τόπου του ΕΣΕΑΠ, χρησιµοποιώντας ένα προσωπικό κωδικό πρόσβασης. Το προσωπικό του ΕΣΕΑΠ λαµβάνει µέριµνα για την έκδοση των αποτελεσµάτων στον διαδικτυακό τόπο του ΕΣΕΑΠ στο χρονικό διάστηµα το οποίο έχει καθοριστεί από το σχέδιο υλοποίησης του εξωτερικού ελέγχου ποιότητας. Ειδικά για το πρόγραµµα κλασικής κλινικής χηµείας, πέραν αυτού, το προσωπικό του ΕΣΕΑΠ εκτυπώνει τις εκθέσεις αποτελεσµάτων των εργαστηρίων που συµµετέχουν στο πρόγραµµα µε έντυπες εκθέσεις αποτελεσµάτων. Η κάθε έκθεση αποτελεσµάτων αποτελείται από 23 διαφορετικές σελίδες, όσες είναι και οι παράµετροι που αναλύονται. Στη συνέχεια σε κάθε εργαστήριο αποστέλλεται η έκθεση αποτελεσµάτων που το αφορά µέσω ταχυδροµείου, ηλεκτρονικού ταχυδροµείου ή εταιρείας ταχυµεταφοράς. Επιπρόσθετα, µετά την ολοκλήρωση κάθε κύκλου, το ΕΣΕΑΠ αποστέλλει σε κάθε εργαστήριο συγκεντρωτική κατάσταση της επίδοσής του (scoring) στην οποία εµφανίζεται η βαθµολογία του εργαστηρίου τόσο ανά αποστολή και ανά παράµετρο όσο και στο σύνολο των παραµέτρων σε όλη τη διάρκεια του εν λόγω κύκλου καθώς επίσης και η κατάταξή του σε σχέση µε τα υπόλοιπα συµµετέχοντα εργαστήρια ανά παράµετρο και στο σύνολο των παραµέτρων. Σύνταξη: Έγκριση: Υπεύθυνος Ποιότητας ιαχειριστής ΕΣΕΑΠ

2 Κωδικός:.540 Αρ. Έκδοσης: 3 Ηµ/νία: Σελ 2 από Περιεχόµενο αποτελεσµάτων Τα αποτελέσµατα τα οποία είτε αποστέλλονται στα εργαστήρια (έντυπο Ε.540-1, «Έκθεση Αποτελεσµάτων»), είτε εκδίδονται στον διαδικτυακό τόπο του ΕΣΕΑΠ περιλαµβάνουν τα παρακάτω στοιχεία: την επωνυµία, τη διεύθυνση και τα τηλέφωνα επικοινωνίας του ΕΣΕΑΠ το ονοµατεπώνυµο και τα στοιχεία επικοινωνίας του ιαχειριστή του ΕΣΕΑΠ το ονοµατεπώνυµο του εξουσιοδοτηµένου ατόµου για την έκδοση των αποτελεσµάτων την ηµεροµηνία και ώρα έκδοσης των αποτελεσµάτων µία ένδειξη σχετικά µε την κατάσταση της έκθεσης αποτελεσµάτων (αρχική, ενδιάµεση ή τελική έκθεση), την αρίθµηση των σελίδων και τον συνολικό αριθµό σελίδων (σελ από ) µία δήλωση σχετικά µε τη διασφάλιση της εµπιστευτικότητας των αποτελεσµάτων τον αριθµό του κύκλου, τον αριθµό αποστολής καθώς και την καταληκτική ηµεροµηνία αποστολής των αποτελεσµάτων στο ΕΣΕΑΠ και τον µοναδικό αριθµό αναγνώρισης της έκθεσης αποτελεσµάτων το όνοµα της παραµέτρου και την κωδική της ονοµασία τον κωδικό του συµµετέχοντος εργαστηρίου αναφορά στο είδος του δείγµατος που αναλύθηκε (ορός Α, ορός Β), συµπεριλαµβανοµένων τυχόν απαραίτητων πληροφοριών σχετικά µε την προετοιµασία, οµοιογένεια και σταθερότητα των ορών ελέγχου τα αριθµητικά αποτελέσµατα για τους ορούς Α και Β που έστειλε το εργαστήριο στο ΕΣΕΑΠ την επίδοση του εργαστηρίου η οποία εµφανίζεται µε τη µορφή συγκεντρωτικού πίνακα, ιστογράµµατος κατανοµής, διαγράµµατος Levey Jennings και διαγράµµατος Youden (βλ Σηµείωση Σ1) αναφορά στις διαδικασίες οι οποίες χρησιµοποιήθηκαν για τον σχεδιασµό και εφαρµογή του σχήµατος καθώς και τη στατιστική ανάλυση των δεδοµένων τυχόν σχόλια του αρµόδιου προσωπικού του ΕΣΕΑΠ σχετικά µε την επίδοση του εργαστηρίου όπου κρίνεται σκόπιµο, τυχόν συστάσεις σχετικά µε την κατανόηση της στατιστικής ανάλυσης

3 Κωδικός:.540 Αρ. Έκδοσης: 3 Ηµ/νία: Σελ 3 από 5 Σηµείωση Σ1: Στους 2 πίνακες που περιλαµβάνονται στην έκθεση αποτελεσµάτων καταγράφονται οι γενικές στατιστικές πληροφορίες για τους ορούς Α και Β. Στην πρώτη οριζόντια σειρά εµφανίζεται µε κόκκινο χρώµα το αποτέλεσµα που έχει στείλει το υπό αξιολόγηση εργαστήριο για τον ορό Α ή Β, ενώ στις τρεις τελευταίες η στατιστική (α) στο σύνολο των εργαστηρίων, (β) στη µέθοδο και (γ) στον αναλυτή που έχει δηλώσει. Ο Ν αντιστοιχεί στον αριθµό των εργαστηρίων που έστειλαν αποτέλεσµα, ενώ ο Ν 1 στον αριθµό των εργαστηρίων που διαµορφώνουν τη στατιστική, δηλαδή όσων τα αποτελέσµατα βρίσκονται στο διάστηµα των ±3 SD γύρω από την consensus µέση τιµή (x) η οποία αποτελεί και την τιµή-στόχο. Υπολογίζονται επίσης η τυπική απόκλιση (SD) και ο συντελεστής µεταβλητότητας (CV%) όπως επίσης και η απόκλιση του εργαστηρίου από το στόχο η οποία καταγράφεται µε δύο τρόπους, ως εκατοστιαία απόκλιση ( %) και ως αριθµός τυπικών αποκλίσεων (SDI, Standard Deviation Index, δείκτης τυπικής απόκλισης, ή Ζ score). Κάτω από τους πίνακες εµφανίζονται 5 διαγράµµατα: δύο ιστογράµµατα κατανοµής, δύο Levey-Jennings και ένα Youden plot. Σε όλα τα διαγράµµατα, τα τρία βασικά χρώµατα (πράσινο, κίτρινο και σκούρο πορτοκαλί) καλύπτουν το ίδιο πάντα διάστηµα περί τη µέση τιµή (x). Το πράσινο καλύπτει την περιοχή των ±2 SD, το κίτρινο την περιοχή µεταξύ 2 και 3 SD και το σκούρο πορτοκαλί την περιοχή µεταξύ 3 και 4 SD. Ειδικότερα: Το Ιστόγραµµα κατανοµής απεικονίζει την κατανοµή του συνόλου των αποτελεσµάτων γύρω από την τιµή-στόχο. Το πλάτος κάθε στήλης αντιστοιχεί σε 0,5 SD. Οι αριθµοί πάνω από τις στήλες αντιστοιχούν στα εργαστήρια των οποίων τα αποτελέσµατα περιλαµβάνονται στο διάστηµα που οριοθετεί η αντίστοιχη στήλη. Το κόκκινο βέλος δείχνει τη σχετική θέση του εργαστηρίου στο οποίο απευθύνεται η έκθεση. Οι πράσινες στήλες καλύπτουν την περιοχή των ±2 SD, οι κίτρινες την περιοχή των 2 έως 3 SD και οι πορτοκαλί την περιοχή των 3 έως 4 SD. Οι καφέ καλύπτουν την ακραία περιοχή πέραν των ±4 SD. Στο εσωτερικό του ιστογράµµατος, το γαλάζιο ιστόγραµµα απεικονίζει την κατανοµή των εργαστηρίων που χρησιµοποιούν την ίδια µέθοδο µε αυτή του εργαστηρίου στο οποίο απευθύνεται η έκθεση και το µπλε σκούρο των εργαστηρίων που χρησιµοποιούν τον ίδιο αναλυτή. Το διάγραµµα Levey-Jennings εµφανίζει τις αποκλίσεις του υπό αξιολόγηση εργαστηρίου στο διάστηµα των 12 τελευταίων αποστολών. Κάτω από το διάγραµµα, οι αριθµοί της α σειράς µέσα στην αγκύλη παραπέµπουν στον αντίστοιχο κύκλο ενώ αυτοί της β στην αντίστοιχη αποστολή. Το διάγραµµα περιλαµβάνει κάθε αποτέλεσµα που βρίσκεται µέσα στις ±4 SD περί τη µέση τιµή (x). Το διάγραµµα Youden είναι ένα ιστόγραµµα δύο διαστάσεων που περιλαµβάνει σηµαντικές πληροφορίες για το είδος των αναλυτικών σφαλµάτων. Οι µαύρες κουκίδες αντιστοιχούν στα ζεύγη των αποτελεσµάτων που στέλνουν τα εργαστήρια ενώ η κόκκινη στο υπό αξιολόγηση εργαστήριο. Το ιδανικό αποτέλεσµα βρίσκεται στο κέντρο του διαγράµµατος, δηλ. στο σηµείο τοµής των συντεταγµένων που διέρχονται από τους στόχους για τους ορούς Α και Β. Τα περισσότερα σηµεία κατανέµονται κατά µήκος της διαγωνίου που σχηµατίζει γωνία 45 ο µε τους άξονες. Ενα σηµείο που βρίσκεται ακριβώς πάνω στη διαγώνιο σηµαίνει ότι υπάρχει αναλογικό συστηµατικό σφάλµα που µπορεί να οφείλεται σε πρόβληµα βαθµονόµησης. Ένα σηµείο που

4 Κωδικός:.540 Αρ. Έκδοσης: 3 Ηµ/νία: Σελ 4 από 5 βρίσκεται µακράν του κέντρου αλλά και εκτός διαγωνίου, υποδηλώνει την ύπαρξη είτε σταθερού συστηµατικού σφάλµατος και στα δύο αποτελέσµατα, είτε τυχαίου στο ένα από τα δύο. Η συνολική επίδοση κάθε εργαστηρίου, στο τέλος κάθε κύκλου, καταγράφεται επί του Εντύπου Ε.540-2, «Τελική Αξιολόγηση». Εξαίρεση αποτελεί το πρόγραµµα της Γλυκοζυλιωµένης Αιµοσφαιρίνης (HbA1c) το οποίο είναι κυλιόµενο και δεν αποτελείται από κύκλους. Το Έντυπο Ε περιλαµβάνει τα παρακάτω στοιχεία: την επωνυµία, τη διεύθυνση και τα τηλέφωνα επικοινωνίας του ΕΣΕΑΠ το ονοµατεπώνυµο και τα στοιχεία επικοινωνίας του ιαχειριστή του ΕΣΕΑΠ το ονοµατεπώνυµο του εξουσιοδοτηµένου ατόµου για την έκδοση των αποτελεσµάτων την ηµεροµηνία και ώρα έκδοσης των αποτελεσµάτων µία ένδειξη σχετικά µε την κατάσταση της έκθεσης αποτελεσµάτων (αρχική, ενδιάµεση ή τελική έκθεση), την αρίθµηση των σελίδων και τον συνολικό αριθµό σελίδων (σελ από ) µία δήλωση σχετικά µε τη διασφάλιση της εµπιστευτικότητας των αποτελεσµάτων τον κωδικό του συµµετέχοντος εργαστηρίου τον αριθµό του κύκλου και τη χρονική διάρκεια αυτού και τον µοναδικό αριθµό αναγνώρισης της έκθεσης αποτελεσµάτων τη βαθµολογία του εργαστηρίου τόσο ανά αποστολή και ανά παράµετρο όσο και στο σύνολο των παραµέτρων σε όλη τη διάρκεια του εν λόγω κύκλου το µέσο όρο της βαθµολογίας του εργαστηρίου ανά παράµετρο την κατάταξη του εργαστηρίου τόσο ανά παράµετρο, όσο και στο σύνολο των παραµέτρων αναφορά στις διαδικασίες οι οποίες χρησιµοποιήθηκαν για τον προσδιορισµό της βαθµολογίας του εργαστηρίου τυχόν σχόλια του αρµόδιου προσωπικού του ΕΣΕΑΠ σχετικά µε την επίδοση του εργαστηρίου, εφόσον κρίνεται απαραίτητο Εξαίρεση στα ανωτέρω αποτελούν οι αναφορές αποτελεσµάτων που αφορούν στη Γλυκοζυλιωµένη Αιµοσφαιρίνη (HbA1c) τα οποία περιγράφονται στον διαδικτυακό τόπο του κατασκευαστή των ορών ελέγχου. Σε περίπτωση που για κάποιο λόγο κριθεί απαραίτητη η εκ νέου έκδοση κάποια έκθεσης αποτελεσµάτων, αυτό γίνεται µέσω ενός αντίστοιχου εγγράφου µε την αρχική έκθεση στο οποίο αναφέρονται τα ακόλουθα:

5 Κωδικός:.540 Αρ. Έκδοσης: 3 Ηµ/νία: Σελ 5 από 5 ο µοναδικός αριθµός της νέας έκθεσης αποτελεσµάτων µία παραποµπή στον κωδικό αριθµό της αρχικής έκθεσης µία αναφορά σχετικά µε τους λόγους επανέκδοσης της έκθεσης 4. ΣΧΕΤΙΚΑ ΕΝΤΥΠΑ 4.1 Ε.540-1, Έκθεση Αποτελεσµάτων 4.2 Ε.540-2, Τελική Αξιολόγηση 5. ΑΡΧΕΙΑ Τα αποτελέσµατα συµµετοχής κάθε εργαστηρίου τηρούνται σε ηλεκτρονικό αρχείο στο πληροφοριακό σύστηµα του ΕΣΕΑΠ επ αόριστον. Τα αποτελέσµατα της Γλυκοζυλιωµένης Αιµοσφαιρίνης (HbA1c) διατηρούνται επ αόριστον στον διαδικτυακό τόπο του Ευρωπαϊκού Συστήµατος Εξωτερικού Ελέγχου Ποιότητας στην Γλυκοζυλιωµένη Αιµοσφαιρίνη (HbA1c) Euroreflab. 6. ΑΛΛΑΓΕΣ ΤΟΥ ΕΓΓΡΑΦΟΥ Έκδοση / Ηµεροµηνία Περιγραφή τροποποίησης 1 / Αρχική έκδοση 2 / / Αναφορά στο σύνολο των προγραµµάτων που διοργανώνει το ΕΣΕΑΠ Αλλαγή επωνυµίας ΕΣΕΑΠ. Τροποποίηση περιεχοµένου εκθέσεων αποτελεσµάτων. Αναφορά σε θέµατα εκ νέου έκδοσης αποτελεσµάτων.

O έλεγχος ποιότητας του αναλυτή Cobas Mira

O έλεγχος ποιότητας του αναλυτή Cobas Mira O έλεγχος ποιότητας του αναλυτή Cobas Mira Επιμέλεια: Πέτρος Καρκαλούσος Εισαγωγή Ο αναλυτής Cobas Mira είναι βιοχημικός αναλυτής που εκτελεί φωτομετρικές αναλύσεις (σάκχαρο, ουρία κτλ), μετρήσεις φαρμάκων

Διαβάστε περισσότερα

ΕΙΣΟΔΟΣ ΣΤΗΝ ΕΦΑΡΜΟΓΗ... 1 ΕΙΣΑΓΩΓΗ PASSWORD... 3 ΕΙΣΟΔΟΣ ΣΤΗΝ ΣΕΛΙΔΑ ΤΟΥ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ... 4 ΤΑΥΤΌΤΗΤΑ ΕΡΓΑΣΤΗΡΊΟΥ... 5

ΕΙΣΟΔΟΣ ΣΤΗΝ ΕΦΑΡΜΟΓΗ... 1 ΕΙΣΑΓΩΓΗ PASSWORD... 3 ΕΙΣΟΔΟΣ ΣΤΗΝ ΣΕΛΙΔΑ ΤΟΥ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ... 4 ΤΑΥΤΌΤΗΤΑ ΕΡΓΑΣΤΗΡΊΟΥ... 5 Οδηγός χρήσης για την οnline σύνδεση για τα ΠΡΟΓΡΑΜΜΑΤΑ ΕΞΩΤΕΡΙΚΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ Σκοπός του οδηγού αυτού είναι να απεικονίσει τον τρόπο χρήσης του λογισμικού "Quark" on-line EQA καθώς και των

Διαβάστε περισσότερα

ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΜΟΝΟ ΚΛΙΝΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΠΗΞΗΣ

ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΜΟΝΟ ΚΛΙΝΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΠΗΞΗΣ ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΜΟΝΟ ΚΛΙΝΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΠΗΞΗΣ Σκοπός του οδηγού αυτού είναι να απεικονίσει τον τρόπο χρήσης του λογισμικού "MQS" on-line καθώς και των λειτουργιών που είναι διαθέσιμες στους χρήστες προκειμένου

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ELQA. Διεργαστηρικά Σχήματα Ελέγχου Ικανότητας Διαγνωστικών & Βιοαναλυτικών Εργαστηρίων ΗΜΕΡΙΔΑ ELQA

ΠΡΟΓΡΑΜΜΑΤΑ ELQA. Διεργαστηρικά Σχήματα Ελέγχου Ικανότητας Διαγνωστικών & Βιοαναλυτικών Εργαστηρίων ΗΜΕΡΙΔΑ ELQA ΠΡΟΓΡΑΜΜΑΤΑ ELQA Διεργαστηρικά Σχήματα Ελέγχου Ικανότητας Διαγνωστικών & Βιοαναλυτικών Εργαστηρίων ΔΙΑΣΦΑΛΙΣΗ ΠΟΙΟΤΗΤΑΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Εσωτερικός Έλεγχος Ποιότητας Εξωτερικός Έλεγχος Ποιότητας Εσωτερικός

Διαβάστε περισσότερα

O στατιστικός έλεγχος ποιότητας του αναλυτή ILAB 600

O στατιστικός έλεγχος ποιότητας του αναλυτή ILAB 600 O στατιστικός έλεγχος ποιότητας του αναλυτή ILAB 600 Επιμέλεια: Πέτρος Καρκαλούσος O ILAB 600 είναι ένας βιοχημικός αναλυτής 67 παραμέτρων με ταχύτητα 400 τεστ/ώρα. Κατασκευάστηκε από την ιαπωνική εταιρεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΠΟΣΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΕΦΑΛΑΙΟ 3 ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΠΟΣΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΕΦΑΛΑΙΟ 3 ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΠΟΣΟΤΙΚΩΝ ΜΕΤΑΒΛΗΤΩΝ Εισαγωγή Στο Κεφάλαιο 3 υπολογίζονται και συγκρίνονται οι µέσες τιµές όλων των αριθµητικών µεταβλητών που είναι ο γραπτός µέσος όρος όλων των µαθηµάτων,

Διαβάστε περισσότερα

P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 20 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΕΣΕΑΠ 1994 2014: Οθων Παναγιωτάκης, Κλινικός Χηµικός, PhD http://www.eseap.gr info@eseap.gr

ΕΣΕΑΠ 1994 2014: Οθων Παναγιωτάκης, Κλινικός Χηµικός, PhD http://www.eseap.gr info@eseap.gr Ηµερίδα του τµήµατος εργαστηριακής διάγνωσης και ελέγχου ποιότητας της Ε.Α.Ε. ΒΟΛΟΣ 2014 ΕΣΕΑΠ 1994 2014: Η ΣΥΜΒΟΛΗ ΤΟΥ ΣΤΗ ΒΕΛΤΙΩΣΗ ΤΗΣ ΑΞΙΟΠΙΣΤΙΑΣ ΤΩΝ ΙΑΓΝΩΣΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ. ΝΕΕΣ ΠΡΟΚΛΗΣΕΙΣ & ΜΕΛΛΟΝΤΙΚΕΣ

Διαβάστε περισσότερα

Εισαγωγή. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΠΟΛΙΤΗ ΦΩΤΕΙΝΗ ΕΞΑΜΗΝΟ: ΠΤΥΧΙΟ ΕΡΓΑΣΙΑ ΠΡΑΚΤΙΚΗΣ Νο 1

Εισαγωγή. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΠΟΛΙΤΗ ΦΩΤΕΙΝΗ ΕΞΑΜΗΝΟ: ΠΤΥΧΙΟ ΕΡΓΑΣΙΑ ΠΡΑΚΤΙΚΗΣ Νο 1 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΠΟΛΙΤΗ ΦΩΤΕΙΝΗ ΕΞΑΜΗΝΟ: ΠΤΥΧΙΟ ΕΡΓΑΣΙΑ ΠΡΑΚΤΙΚΗΣ Νο 1 ΘΕΜΑ : Γράψτε αναλυτικά τις διαδικασίες ελέγχου ποιότητας ενός αναλυτή. Μέσα στην εργασία εκτός από κείμενο να συμπεριλάβετε διαγράμματα,

Διαβάστε περισσότερα

Διασφάλιση Ποιότητας στο Εργαστήριο Κλινικής Βιοχημείας

Διασφάλιση Ποιότητας στο Εργαστήριο Κλινικής Βιοχημείας Διασφάλιση Ποιότητας στο Εργαστήριο Κλινικής Βιοχημείας Χρήστος Κρούπης, MSc, PhD Επίκουρος Καθηγητής Κλινικής Βιοχημείας και Μοριακής Διαγνωστικής, Εργαστήριο Κλινικής Βιοχημείας, Αττικόν Πανεπιστημιακό

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

δεδομένων με συντελεστές στάθμισης (βαρύτητας) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική ΙI (εργαστήριο) Ακαδημαϊκό έτος 2013-2014 εαρινό εξάμηνο ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΑΡΙΘΜΟΣ

Διαβάστε περισσότερα

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών

ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ. 4.1 Κατανοµή γραπτού µέσου όρου ετήσιων πληθυσµών ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΝΟΜΕΣ & ΟΜΑ ΟΠΟΙΗΣΗ ΒΑΘΜΟΛΟΓΙΩΝ Εισαγωγή Στο κεφάλαιο 4 υπολογίζονται τα κυριότερα στατιστικά µέτρα θέσης και µεταβλητότητας, κατασκευάζονται ιστογράµµατα συχνοτήτων και θηκογράµµατα για

Διαβάστε περισσότερα

Πολύμετρο Βασικές Μετρήσεις

Πολύμετρο Βασικές Μετρήσεις Πολύμετρο Βασικές Μετρήσεις 1. Σκοπός Σκοπός της εισαγωγικής άσκησης είναι η εξοικείωση του σπουδαστή με τη χρήση του πολύμετρου για τη μέτρηση βασικών μεγεθών ηλεκτρικού κυκλώματος, όπως μέτρηση της έντασης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ

ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ ΚΕΦΑΛΑΙΟ 6 ΚΟΙΝΟΙ ΥΠΟΨΗΦΙΟΙ Εισαγωγή Όπως αναφέρθηκε στο Κεφάλαιο 1 υπάρχουν 154 υποψήφιοι που έχουν συµµετάσχει στις εξετάσεις των ετών 01 και 02. Για αυτούς γίνεται στο Κεφάλαιο 6 ξεχωριστή συγκριτική

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη

Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές. Διάλεξη Εισαγωγή στη Στατιστική- Κοινωνικές Στατιστικές Διάλεξη 13-3-2015 Υπολογισμός Σταθμικού Μέσου Αριθμητικού X weighted n 1 n 1 w i w X i i Παράδειγμα Υποψήφιος της Δ' Δέσμης πήρε στις εξετάσεις τους εξής

Διαβάστε περισσότερα

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 23 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 8 ΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Εισαγωγή Στο Κεφάλαιο 8 υπολογίζονται και συγκρίνονται τα ποσοστά επιλογής του µαθήµατος στους ετήσιους πληθυσµούς, ανά φύλο και κατεύθυνση. Υπολογίζεται

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 04 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις Ασφάλεια Πληροφοριακών Συστηµάτων Επαναληπτικές Ασκήσεις ιάγραµµα Pareto Τα προβλήματα ασφάλειας σε δύο εξυπηρετητές μίας εταιρείας απεικονίζονται στο παρακάτω πίνακα: α/α Κωδικός Προβλήματος Συχνότητα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α.1. Να αποδείξετε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Μάθηµα 3 ο. Περιγραφική Στατιστική

Μάθηµα 3 ο. Περιγραφική Στατιστική Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΑΝΤΙΣΤΑΣΕΙΣ, ΝΟΜΟΣ ΤΟΥ OHM, ΚΑΝΟΝΕΣ ΤΟΥ KIRCHOFF

ΑΝΤΙΣΤΑΣΕΙΣ, ΝΟΜΟΣ ΤΟΥ OHM, ΚΑΝΟΝΕΣ ΤΟΥ KIRCHOFF ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ ΟΧΗΜΑΤΩΝ ΗΜΕΡΟΜΗΝΙΑ. ΗΜΕΡΑ. ΩΡΑ. ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΦΥΛΟ ΕΡΓΟΥ ΑΣΚΗΣΗ 11 ΑΝΤΙΣΤΑΣΕΙΣ, ΝΟΜΟΣ ΤΟΥ OHM, ΚΑΝΟΝΕΣ ΤΟΥ KICHOFF 1 I. Συνεχές ρεύμα Αντιστάσεις, Νόμος του Ohm, κανόνες

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 7 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ 1ο Α. Να αποδείξετε

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς

Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Στατιστική ανάλυση του γεωχηµικού δείγµατος µας δίνει πληροφορίες για τον γεωχηµικό πληθυσµό που µελετάµε. Συνυπολογισµός σφαλµάτων Πειραµατικά

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

Ο ΡΟΛΟΣ ΤΩΝ ΙΕΡΓΑΣΤΗΡΙΑΚΩΝ ΣΧΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΙΚΑΝΟΤΗΤΑΣ ΣΤΗ ΙΑΠΙΣΤΕΥΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΩΝ

Ο ΡΟΛΟΣ ΤΩΝ ΙΕΡΓΑΣΤΗΡΙΑΚΩΝ ΣΧΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΙΚΑΝΟΤΗΤΑΣ ΣΤΗ ΙΑΠΙΣΤΕΥΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΩΝ 11 ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕ ΡΙΟ ΚΛΙΝΙΚΗΣ ΧΗΜΕΙΑΣ Πανεπιστήµιο Θεσσαλίας, Βόλος 11-12 Οκτωβρίου 2013 Ο ΡΟΛΟΣ ΤΩΝ ΙΕΡΓΑΣΤΗΡΙΑΚΩΝ ΣΧΗΜΑΤΩΝ ΕΛΕΓΧΟΥ ΙΚΑΝΟΤΗΤΑΣ ΣΤΗ ΙΑΠΙΣΤΕΥΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΩΝ Οθων Παναγιωτάκης, ρ.

Διαβάστε περισσότερα

Ηχρήση του χρώµατος στους χάρτες

Ηχρήση του χρώµατος στους χάρτες Ηχρήση του χρώµατος στους χάρτες Συµβατική χρήση χρωµάτων σε θεµατικούς χάρτες και «ασυµβατότητες» Γεωλογικοί χάρτες: Χάρτες γήινου ανάγλυφου: Χάρτες χρήσεων γης: Χάρτες πυκνότητας πληθυσµού: Χάρτες βροχόπτωσης:

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 8 ΜΑΪΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

Διαβάστε περισσότερα

Τηλ. : 210-2124538 FAX : 210-5244135

Τηλ. : 210-2124538 FAX : 210-5244135 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΝΕΡΓΕΙΑΣ & ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ ΕΙ ΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΑΣΩΝ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗΣ & ΠΡΟΣΤΑΣΙΑΣ ΑΣΩΝ & ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ /ΝΣΗ ΠΡΟΣΤΑΣΙΑΣ ΑΣΩΝ & ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ELQA

ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ELQA ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 1 http:elqa.teilar.gr 2 Τηλ. : (+30) 2410684448 Fax : (+30) 2410684650 1o Email : elqa@teilar.gr 2o Email : papaioannou@teilar.gr Website : http://elqa.teilar.gr Πνευματικά Δικαιώματα

Διαβάστε περισσότερα

(f(x) + g(x)) = f (x) + g (x).

(f(x) + g(x)) = f (x) + g (x). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική 1 ΕΞΑΜΗΝΙΑΙΑ Β ΤΟ ΦΩΤΟΒΟΛΤΑΙΚΟ ΠΑΡΚΟ ΑΣΠΑΙΤΕ Τμήμα Εκπαιδευτικών Ηλεκτρολογίας Εργαστήριο Συλλογής και Επεξεργασίας Δεδομένων Διδάσκοντες: Σπύρος Αδάμ, Λουκάς Μιχάλης, Παναγιώτης Καράμπελας Εξαμηνιαία

Διαβάστε περισσότερα

Διαδικασία Εξαγωγής Συγκεντρωτικών Καταστάσεων & Αυτόματης Υποβολής μέσω Internet

Διαδικασία Εξαγωγής Συγκεντρωτικών Καταστάσεων & Αυτόματης Υποβολής μέσω Internet Διαδικασία Εξαγωγής Συγκεντρωτικών Καταστάσεων & Αυτόματης Υποβολής μέσω 1 Περίληψη Το συγκεκριμένο εγχειρίδιο δημιουργήθηκε για να βοηθήσει την κατανόηση της διαδικασίας εξαγωγής & Υποβολής Συγκεντρωτικών

Διαβάστε περισσότερα

ΕΓΚΥΚΛΙΟΣ. Θέµα: Κατάρτιση Προσωρινού Πίνακα Κατάταξης - Συγκερασµός Αποτελεσµάτων Αξιολόγησης

ΕΓΚΥΚΛΙΟΣ. Θέµα: Κατάρτιση Προσωρινού Πίνακα Κατάταξης - Συγκερασµός Αποτελεσµάτων Αξιολόγησης ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΠΕΝ ΥΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ Ι ΙΩΤΙΚΩΝ ΕΠΕΝ ΥΣΕΩΝ /ΝΣΗ ΕΓΚΡΙΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ Ι ΙΩΤΙΚΩΝ ΕΠΕΝ ΥΣΕΩΝ Ταχ. /νση : Νίκης 5, Αθήνα Ταχ. Κώδικας : 10563 Αθήνα 26-09 - 2011 Αριθµ.

Διαβάστε περισσότερα

Κεφάλαιο VII : Εργαστηριακές ασκήσεις που αφορούν τη χρήση. τη χρήση γραµµατοσειρών και χρωµάτων καθώς και τη δηµιουργία γραφικών στη Java.

Κεφάλαιο VII : Εργαστηριακές ασκήσεις που αφορούν τη χρήση. τη χρήση γραµµατοσειρών και χρωµάτων καθώς και τη δηµιουργία γραφικών στη Java. Κεφάλαιο VII : Εργαστηριακές ασκήσεις που αφορούν τη χρήση γραµµατοσειρών και χρωµάτων καθώς και τη δηµιουργία γραφικών στη Java. Στο παρόν κεφάλαιο παρουσιάζονται εργαστηριακές ασκήσεις οι οποίες αφορούν

Διαβάστε περισσότερα

Εγχειρίδιο Χρήσης (MIS) για τη Σχολική Μονάδα

Εγχειρίδιο Χρήσης (MIS) για τη Σχολική Μονάδα Γ ΚΟΙΝΟΤΙΚΟ ΠΛΑΙΣΙΟ ΣΤΗΡΙΞΗΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΚΟΙΝΩΝΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΑΞΟΝΑΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ 1: Παιδεία & Πολιτισµός Μέτρο 1.2:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση

Διαβάστε περισσότερα

Εικονικό Εργαστήριο Χωρικής Ανάλυσης. Εγχειρίδιο Χρήστη ΤΕΙ ΑΘΗΝΑΣ

Εικονικό Εργαστήριο Χωρικής Ανάλυσης. Εγχειρίδιο Χρήστη ΤΕΙ ΑΘΗΝΑΣ Εικονικό Εργαστήριο Χωρικής Ανάλυσης Εγχειρίδιο Χρήστη ΤΕΙ ΑΘΗΝΑΣ Περιεχόμενα Εισαγωγή... 3 Είσοδος στο Σύστημα... 3 Εγγραφή Χρήστη... 4 Σύνδεση Χρήστη... 6 Επαναφορά Κωδικού Πρόσβασης... 7 Βασικά Χαρακτηριστικά...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Κεφάλαιο 3 Σχετική & Αθροιστική Συχνότητα Πίνακες και Ιστογράµµατα

Κεφάλαιο 3 Σχετική & Αθροιστική Συχνότητα Πίνακες και Ιστογράµµατα Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου Κεφάλαιο 3 Σχετική &

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕ ΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕ ΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕ ΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Σε πολλές από τις εργαστηριακές ασκήσεις θα ζητηθεί στην έκθεσή σας να περιλάβετε µια ή περισσότερες γραφικές παραστάσεις. Αυτές οι γραφικές παραστάσεις µπορεί

Διαβάστε περισσότερα

Κεφάλαιο 5 Δείκτες Διασποράς

Κεφάλαιο 5 Δείκτες Διασποράς Πανεπιστήµιο Κρήτης Σχολή Επιστηµών Αγωγής Παιδαγωγικό Τµήµα Δηµοτικής Εκπαίδευσης Β06 03. Στατιστική περιγραφική εφαρµοσµένη στην Ψυχοπαιδαγωγική Διδάσκων: Κωνσταντίνος Π. Χρήστου Κεφάλαιο 5 Δείκτες Διασποράς

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

Επεξεργασία Χαρτογραφικής Εικόνας

Επεξεργασία Χαρτογραφικής Εικόνας Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ

ΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ ΚΕΦΑΛΑΙΟ 2 ΔΙΕΥΘΥΝΣΗ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΝΟΜΟΥ ΧΑΝΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 21-22 ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΥΣ Το τμήμα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Δημοσίων

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Μαθηματικός Περιηγητής σχ. έτος

Μαθηματικός Περιηγητής σχ. έτος =================================================================== ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 06 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Κανονισµός Μορφοποίησης Πτυχιακών Εργασιών

Κανονισµός Μορφοποίησης Πτυχιακών Εργασιών Κανονισµός Λειτουργίας του Συστήµατος Ποιότητας Κωδικός ΚΛ-2 Έκδοση 1 Η Σελίδα 1 από 7 ΣΚΟΠΟΣ Η προδιαγραφή από εκδοτική άποψη των τεχνικών χαρακτηριστικών των πτυχιακών εργασιών που εκπονούνται στο Τµήµα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΛΕΓΚΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΛΕΓΚΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΛΕΓΚΤΩΝ ΤΕΙ ΠΕΙΡΑΙΑ Τμήμα ΑΥΤΟΜΑΤΙΣΜΟΥ ΠΡΟΓΡΑΜΜΑ ΕΡΓΑΣΤΗΡΙΟΥ Οι εργαστηριακές ασκήσεις Βιομηχανικών Ελεγκτών διεξάγονται τις ημέρες Δευτέρα και Τετάρτη (ώρες 16:00 19:00 και 19:00

Διαβάστε περισσότερα

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5.1 Καταστατική Εξίσωση, συντελεστές σ t, και σ θ Η πυκνότητα του νερού αποτελεί καθοριστικό παράγοντα για την κίνηση των θαλασσίων µαζών και την κατακόρυφη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ

ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΓΕΩΧΗΜΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ 1. Ορολογία αβεβαιότητας 2. Εκτίµηση επαναληψιµότητας 3. Εκτίµηση αναλυτικής ακρίβειας 4. Περιληπτικά στατιστικά µετρήσεων ΟΡΟΛΟΓΙΑ ΑΒΕΒΑΙΟΤΗΤΑΣ Αβεβαιότητα

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ (ΟΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΠΕΡΙΟΔΟ ΣΕΣ

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ (ΟΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΠΕΡΙΟΔΟ ΣΕΣ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ (ΟΠΣ) ΓΙΑ ΤΗΝ ΠΡΟΓΡΑΜΜΑΤΙΚΗ ΠΕΡΙΟΔΟ ΣΕΣ 2014-2020 ΕΝΟΤΗΤΑ «ΒΕΒΑΙΩΣΕΙΣ ΔΑΠΑΝΩΝ ΕΝΔΙΑΜΕΣΩΝ ΦΟΡΕΩΝ (ΦΕΔ, ΕΦ ΔΣ, ΕΦ ΣΧ)» 1η Έκδοση: 2016 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο 3.1 ΑΝΑΛΥΣΗ ΒΑΘΜΟΛΟΓΙΑΣ Μαθήµατα γενικής παιδείας Ιστορία. Α. Σύνολο νοµού Αργολίδας

ΚΕΦΑΛΑΙΟ 3 ο 3.1 ΑΝΑΛΥΣΗ ΒΑΘΜΟΛΟΓΙΑΣ Μαθήµατα γενικής παιδείας Ιστορία. Α. Σύνολο νοµού Αργολίδας ΚΕΦΑΛΑΙΟ 3 ο 3.1 ΑΝΑΛΥΣΗ ΒΑΘΜΟΛΟΓΙΑΣ 3.1.1 Μαθήµατα γενικής παιδείας. 3.1.1.1 Ιστορία Α. Σύνολο νοµού Αργολίδας Στο µάθηµα της ιστορίας εξετάσθηκαν 862 µαθητές. Από τα αποτελέσµατα για το σύνολο του νοµού

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 2. Το σφάλµα προσέγγισης είναι πάντοτε θετικό. Μονάδες 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 2. Το σφάλµα προσέγγισης είναι πάντοτε θετικό. Μονάδες 1 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 28 ΙΟΥΝΙΟΥ 1999 ΚΑΤΕΥΘΥΝΣΗ: ΤΕΧΝΟΛΟΓΙΚΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1ο Α. Να χαρακτηρίσετε στο τετράδιό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΠΙΣΤΟΠΟΙΗΜΕΝΑ ΥΛΙΚΑ ΑΝΑΦΟΡΑΣ ΕΞΩΤΕΡΙΚΟΣ ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ

ΠΙΣΤΟΠΟΙΗΜΕΝΑ ΥΛΙΚΑ ΑΝΑΦΟΡΑΣ ΕΞΩΤΕΡΙΚΟΣ ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΠΙΣΤΟΠΟΙΗΜΕΝΑ ΥΛΙΚΑ ΑΝΑΦΟΡΑΣ ΕΞΩΤΕΡΙΚΟΣ ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ Νικ. Σ. Θωμαΐδης Eργ. Αναλυτικής Χημείας Τμ. Χημείας, Παν. Αθηνών Ορθότητα: Υλικά αναφοράς: Σύγκριση της πειραματικής τιμής με την «αληθή» τιμή

Διαβάστε περισσότερα

Κατανομές κυτταρικού φθορισμού Cell Fluorescence Distributions

Κατανομές κυτταρικού φθορισμού Cell Fluorescence Distributions Κατανομές κυτταρικού φθορισμού Cell Fluorescence Distributions Κατερίνα Ψαρρά Βασική κυτταρομετρία (μέρος 2 ο ) Σκοπός της απεικόνισης δεδομένων στην Κ.Ρ Προσδιορισμός της πραγματικής συχνότητας της παραμέτρου

Διαβάστε περισσότερα

Γιατί μετράμε την διασπορά;

Γιατί μετράμε την διασπορά; Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.

Διαβάστε περισσότερα

Διαδικασία Συγκεντρωτικές Καταστάσεις ΚΕΠΥΟ

Διαδικασία Συγκεντρωτικές Καταστάσεις ΚΕΠΥΟ 1 Διαδικασία Συγκεντρωτικές Καταστάσεις ΚΕΠΥΟ Περίληψη Το συγκεκριμένο εγχειρίδιο δημιουργήθηκε για να βοηθήσει την κατανόηση της Διαδικασίας Συγκεντρωτικές Καταστάσεις ΚΕΠΥΟ. Παρακάτω προτείνεται μια

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 008 ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015

Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες. Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Ποσοτική & Ποιοτική Ανάλυση εδοµένων Βασικές Έννοιες Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη 2014-2015 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΕΙΚΤΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΛΥΚΕΙΩΝ

ΚΕΦΑΛΑΙΟ 7 ΕΙΚΤΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΛΥΚΕΙΩΝ ΚΕΦΑΛΑΙΟ 7 ΕΙΚΤΕΣ ΑΞΙΟΛΟΓΗΣΗΣ ΛΥΚΕΙΩΝ Εισαγωγή Στο Κεφάλαιο 7 παρουσιάζονται δύο δείκτες αξιολόγησης που βασίζονται στα αποτελέσµατα των εισαγωγικών εξετάσεων, ο πρώτος δείκτης 1 λαµβάνει υπ όψη του µόνο

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΕΠΙΚΟΙΝΩΝΙΑ

ΕΣΩΤΕΡΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΕΠΙΚΟΙΝΩΝΙΑ ΕΣΩΤΕΡΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΕΠΙΚΟΙΝΩΝΙΑ Κεφ. 1 ο Επικοινωνία- Συνεργασία Κεφ. 2 ο Εντυπα - Σφραγίδες 1 Κεφ. 1ο : Επικοινωνία Συνεργασία 1) Συνεργασία µε Αρχές και Κοινωνικούς Φορείς Η δηµιουργία, διατήρηση και

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ

ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ ΚΕΦΑΛΑΙΟ 2 Γ ΙΕΥΘΥΝΣΗ ΑΘΗΝΑΣ - 5 Ο ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2000-2001 ΠΕΡΙΓΡΑΦΗ ΤΩΝ Ε ΟΜΕΝΩΝ ΜΕ ΑΡΙΘΜΗΤΙΚΕΣ ΚΑΙ ΓΡΑΦΙΚΕΣ ΜΕΘΟ ΟΥΣ Το τµήµα αυτό της έρευνας αναφέρεται στην Γ τάξη όλων των Ενιαίων Λυκείων του

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Φεβρουάριος 2010 Περιγραφική Στατιστική 1. εδοµένα Θεωρούµε το ακόλουθο σύνολο δεδοµένων (data set): NUM1

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 0 ΜΑΪΟΥ 0 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα