1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x"

Transcript

1 ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 6 Θ. Τομαράς 1. Πρωτόνια στις κοσμικές ακτίνες φτάνουν ακόμα και ενέργειες της τάξης των ev. Να συγκρίνετε την ενέργεια αυτή με την ενέργεια που έχει μια πέτρα που πετάτε με τα χέρια σας. Λύση: Η ενέργεια πέτρας βάρους 200 γραμμαρίων που εκτοξεύουμε με ταχύτητα 1m/sec είναι E = 0.2Joules (0.2/1.6) ev ev, ήτοι το ένα εκατοστό της ενέργειας των πιό ενεργειακών κοσμικών ακτίνων. 2. Μια πηγή και ένας ανιχνευτής βρίσκονται στην περιφέρεια ενός περιστρεφόμενου δίσκου σε γωνιακή απόσταση φ. Η πηγή εκπέμπει φώς συχνότητας ω 0 στο σύστημα ηρεμίας της. Τί συχνότητα έχει το σήμα που λαμβάνει ο ανιχνευτής; Λύση: Οι δύο παρατηρητές βρίσκονται σε ισες αποστάσεις από το κέντρο περιστροφής. Αρα έχουν την ίδια επιτάχυνση ως προς το αδρανειακό σύστημα συντεταγμένων. Επομένως, η τιμή του ισοδύναμου πεδίου βαρύτητας Φ(r) = ω 2 Rr 2 /2 (όπου ω R η γωνιακή ταχύτητα περιστροφής) είναι οι ίδιες. Οπότε ω r ω e = 1 + Φ e/c Φ r /c 2 = 1 (1) δηλαδή, το σήμα που λαμβάνει ο ανιχνευτής θα έχει συχνότητα ω r = ω e = ω Φωτόνιο εκπέμπεται από σώμα σε γωνία α ως προς τον άξονα x του συστήματος ηρεμίας του (xyz). Παρατηρητής Σ κινείται ως προς το σώμα αυτό με ταχύτητα V στην κατεύθυνση του κοινού τους άξονα x x. Να δείξετε οτι η γωνία α που βλέπει ο Σ να σχηματίζει το φωτόνιο ως προς τον άξονα x δίνεται απο τη σχέση (β = V/c) cos α = cos α + β 1 + β cos α (2) Λύση: Εστω (ω, k x, k y, 0) και (ω, k x, k y, 0) με ω 2 = c 2 (k 2 x + k 2 y) και αντίστοιχα για τα τονούμενα, οι τετραορμές του φωτονίου στα δύο συστήματα Σ και Σ αντίστοιχα. Αυτές συνδέονται με τις σχέσεις: k x = γ(v )(k x + (V/c 2 )ω) και k y = k y, όπου γ(v ) = 1/ 1 β 2. Οπότε, tan α = k y k x = c 2 k y γ(c 2 k x + V ω) = 1 γ Από αυτήν έπεται η ζητούμενη σχέση. tan α 1 + (V/c) 1 + tan 2 α = sin α γ(β + cos α) (3) 4. Η ηλικία της Γης είναι περίπου 5 δισεκατομμύρια χρόνια. Πόσο νεώτερη είναι η ύλη της στο κέντρο από αυτήν στην επιφάνεια; Αν στην αρχή υπήρχαν ίσες ποσότητες κάποιου ραδιενεργού στοιχείου με μέσο χρόνο ζωής τ έτη, πόσο περισσότερο από το στοιχείο αυτό θα υπάρχει σήμερα στο κέντρο 1

2 από ό,τι στην επιφάνεια της Γης; (Υπόδειξη: Υποθέστε οτι η πυκνότητα μάζας της Γης είναι σταθερή.) Λύση: Στην πρώτη σειρά ασκήσεων υπολογίσατε το πεδίο βαρύτητας της Γης συναρτήσει της απόστασης από το κέντρο. Βρήκατε οτι, αν υποθέσετε οτι η πυκνότητα μάζας είναι σταθερή, το βαρυτικό δυναμικό στο εσωτερικό της είναι Φ(r) = 1 ( ) G N M r 2 2 R R 3 (4) 2 Επομένως, αν τ C και τ S είναι οι χρόνοι ζωής ενός ραδιενεργού υλικού στο κέντρο και στην επιφάνεια αντίστοιχα, θα ισχύει τ C τ S = 1 + Φ(R)/c2 1 + Φ(r = 0)/c 2 = 1 G NM/Rc 2 1 3G N M/2Rc G NM 2Rc 2. (5) Εστω οτι αρχικά είχαμε N 0 άτομα του ραδιενεργού στοιχείου στην επιφάνεια και άλλα τόσα στο κέντρο. Μετά από χρόνο t θα έχουν μείνει στο κέντρο N C (t) = N 0 e t/τ C (6) και στην επιφάνεια Οπότε το πηλίκον N S (t) = N 0 e t/τ S. (7) N C (t) N S (t) = et/τ S t/τ C = e (t/τ C)(1 τ C /τ S ) = e (G N M/2Rc2 )(t/τ C ) (8) και για την περίπτωση της Γης έχουμε N C (t) N S (t) = e (t/τ C ) (9) Για t = yr και τ = yr παίρνουμε τελικά N C (t) N S (t) = e / (10) περισσότερα στο κέντρο αφού, όπως έχουμε πεί, εκεί που το βαρυτικό πεδίο είναι μικρότερο ασταθή όντα ζουν περισσότερο. 5. (α) Βρείτε την έκφραση για το στοιχειώδες μήκος στο χωρόχρονο M inkowski από τη συνήθη μορφή στο σύστημα (txyz) καρτεσιανών συντεταγμένων στο (t x y z ), που δίνεται απο τις σχέσεις ( ) ( ) c t = g + x gt sinh c c ( ) ( ) c x = c g + x gt cosh c2 c c g y = y, z = z (11) (β) Να δείξετε οτι για gt /c 1 αυτό αντιστοιχεί σε ομοιόμορφα επιταχυνόμενο σύστημα της Νευτώνειας μηχανικής. 2

3 (γ) Να δείξετε οτι ένα ρολόϊ ακίνητο στη θέση x = h τρέχει γρηγορότερα (δείχνει μεγαλύτερο χρόνο) από άλλο, ακίνητο στη θέση x = 0, κατά ένα παράγοντα (1 + gh/c 2 ). Πώς σχετίζεται αυτό με την Αρχή της Ισοδυναμίας; Λύση: (α) Υπολογίζετε τα διαφορικά dt και dx και αντικαθιστάτε στην έκφραση ds 2 = c 2 dt 2 dx 2 dy 2 dz 2. Παίρνετε ( ) 2 ds 2 = c gx dt 2 dx 2 dy 2 dz 2 (12) c 2 (β) Η παραπάνω έκφραση αντιστοιχεί στη Νευτώνεια προσέγγιση με το βαρυτικό δυναμικό Φ = gx (13) από το οποίο προκύπτει σταθερή επιτάχυνση dφ/dx = g. Και πράγματι, υπό τη σταθερή αυτή επιτάχυνση η ταχύτητα σώματος που κινείται επί χρονικό διάστημα t είναι gt και για gt c σωστά εφαρμόζουμε τη Νευτώνεια προσέγγιση. (γ) Από τον τύπο της Νευτώνειας προσέγγισης της βαρυτικής ερυθρόπησης έχουμε για το πηλίκο των χρονικών διαστημάτων στις θέσεις x = h και x = 0 ακριβώς ό,τι περιμέναμε από την αρχή της ισοδυναμίας. t h = 1 + gh (14) t 0 c 2 6. Αν και ΔΕΝ ενδείκνυται να αναμιγνύετε σχετικιστικές με μή σχετικιστικές έννοιες, φανταστείτε οτι ένα φωτόνιο με συχνότητα ω είναι σαν ένα σωμάτιο με βαρυτική μάζα hω/c 2 και κινητική ενέργεια K = hω. Χρησιμοποιώντας Νευτώνεια επιχειρήματα, υπολογίστε την κινητική ενέργεια που χάνει ένα φωτόνιο που εκπέμπεται από την επιφάνεια ενός αστέρα ακτίνας R και μάζας M και φεύγει στο άπειρο. Υπολογίστε στη συνέχεια τη συχνότητά του στο άπειρο. Πώς σχετίζεται αυτό που βρίσκετε με τον προσεγγιστικό τύπο της βαρυτικής ερυθρόπησης που είπαμε στο μάθημα; ( ω = 1 G NM Rc 2 ) ω 0 (15) Λύση: Εστω ω η κυκλική συχνότητα του φωτονίου στο άπειρο και ω 0 αυτή στην επιφάνεια του αστέρα. Από διατήρηση ενέργειας έχουμε, εξισώνοντας την ολική ενέργεια στην επιφάνεια του αστέρα με αυτήν στο άπειρο (κινητική μόνο, αφου η δυναμική στο άπειρο μηδενίζεται), παίρνουμε K = hω = K 0 + V 0 = hω 0 mφ(r) = hω 0 hω 0 c G M 2 N R. (16) Οπότε, ( ω = 1 G ) NM ω Rc 2 0 (17) που συμπίπτει με την έκφραση της βαρυτικής ερυθρόπησης που έχουμε αποδείξει με καλύτερο τρόπο στο μάθημα. 3

4 7. Δίδεται ο χωρόχρονος με στοιχειώδες μήκος ds 2 = c 2 dt 2 2 dt dx dy 2 dz 2 (18) (α) Να δείξετε οτι η καμπυλότητά του είναι μηδέν. (β) Να βρείτε ένα άλλο σύστημα συντεταγμένων (καρτεσιανό) στο οποίο το στοιχειώδες μήκος παίρνει τη συνήθη μορφή στο χωρόχρονο M inkowski. (γ) Υπάρχουν και άλλα τέτοια συστήματα συντεταγμένων ή μόνο αυτό που ήδη βρήκατε; Πολλά; Λύση: (α) Η μετρική είναι σταθερά. Επομένως, οι συντελεστές Christof f el μηδενίζονται και μαζί με αυτούς όλες οι συνιστώσες της καμπυλότητας του Riemann. (β) Γράφω: ds 2 = (cdt dx) 2 dx 2 dy 2 dz 2 = c 2 d t 2 dx 2 dy 2 dz 2 (19) όπου c t ct x. (γ) Υπάρχουν άπειρα τέτοια συστήματα συντεταγμένων. Αυτό που βρήκα παραπάνω και κάθε άλλο που συνδέεται με αυτό με μετασχηματισμό Lorentz. 8. Θεωρείστε ένα μέσον με δείκτη διάθλασης n(x i ) που εξαρτάται από τη θέση στο χώρο. Η ταχύτητα του φωτός στο μέσον αυτό είναι c/n(x i ). Σύμφωνα με την αρχή του F ermat οι φωτεινές ακτίνες ακολουθούν εκείνη τη τροχιά ανάμεσα σε δύο σημεία του χώρου, η οποία αντιστοιχεί στον ελάχιστο χρόνο. (α) Να δείξετε οτι οι διαδρομές ελάχιστου χρόνου είναι γεωδεσιακές του τριδιάστατου χώρου με στοιχειώδες μήκος ds 2 = n 2 (x i )(dx 2 + dy 2 + dz 2 ) (20) (β) Να γράψετε την εξίσωση της γεωδεσιακής σε αυτό το χώρο στις συντεταγμένες (xyz). Λύση: (α) Ο χρόνος που κάνει μια φωτεινή ακτίνα ανάμεσα στα σημεία Α και Β του χώρου, κατά τη διαδρομή της πάνω σε τροχιά y = y(x), z = z(x) είναι (dl 2 E = dx 2 + dy 2 + dz 2 ) T AB = B A dt = B A dl E c(x i ) = 1 B dl E n(x i ) = 1 c A c B A dx n(x, y, z) 1 + y 2 + z 2. (21) Η παραπάνω μορφή του T AB γράφεται και T AB = (1/c) B A ds, και επομένως, ελαχιστοποίηση του T AB είναι ισοδύναμη με την εξίσωση της γεωδεσιακής σε χώρο με μετρική (20), ό.έ.δ. (β) Οποιεσδήποτε τρείς από τις εξισώσεις d ds L n 2 (x, y, z) (ẋ 2 + ẏ 2 + ż 2 ) = 1 (ẋi n 2 (x, y, z) ) n n (ẋ 2 + ẏ 2 + ż 2 ) x i = 0 (22) i = 1, 2, 3 x, y, z αποτελούν ένα πλήρες σύστημα εξισώσεων για τη γενική γεωδεσιακή (x(s), y(s), z(s)) με παράμετρο το μήκος της s. 4

5 9. Ο Φακός του Lunenberg είναι μιά σφαίρα με δείκτη διάθλασης που εξαρτάται από την απόσταση από το κέντρο σύμφωνα με τη σχέση n(r) = ( ) 1/2 2 r2 (23) R 2 Να δείξετε, χρησιμοποιώντας την προηγούμενη άσκηση οτι κάθε δέσμη παράλληλων ακτίνων που πέφτει πάνω στο φακό αυτό εστιάζει σε ένα σημείο στην επιφάνειά του. Λύση: Λόγω της σφαιρικής συμμετρίας, μπορώ να περιοριστώ στη μελέτη της κίνησης της φωτεινής ακτίνας στο επίπεδο (x, y) ή ισοδύναμα (r, θ). Οι εξισώσεις της γεωδεσιακής είναι όπου F (r)(ṙ 2 + r 2 θ2 ) = 1, (24) F (r)r 2 θ = l, (25) F (r) = n 2 (r) = 2 r2 (26) R 2 Αντικαθιστώ την (25) στην (24) και παίρνω ṙ 2 = 1 ( ) 1 l2 (27) F F r 2 που, συνδυασμένη με την προηγούμενη, γράφεται ισοδύναμα ή, ορίζοντας w r 2 ( ) 2 dr = r2 dθ l (F 2 r2 l 2 ) (28) dw dθ = ±2 l w 1 R 2 w2 + 2w l 2 (29) Επιλογή προσήμων: Η τροχιά χωρίζεται σε δύο περιοχές με θ θ c και θ θ c αντίστοιχα. Στην πρώτη η ακτίνα r μειώνεται ενώ στη δεύτερη αυξάνει. Αρα, οι εξισώσεις είναι dw dθ = 2 l w 1 R 2 w2 + 2w l 2, θ θ c (30) dw dθ = +2 l w 1 R 2 w2 + 2w l 2, θ θ c (31) με το (r c, θ c ) να καθορίζεται από τη σχέση dr = 0, (32) dθ θc που κάνοντας χρήση της (30) γράφεται ) rc 2 = R (1 2 1 l 2 /R 2 (33) 5

6 και την απαίτηση η τροχιά να είναι συνεχής. Από τους πίνακες ολοκληρωμάτων βρίσκω το απαιτούμενο ολοκλήρωμα και γράφω γαι τη λύση των παραπάνω διαφορικών εξισώσεων στις δύο περιοχές της γωνίας θ. 1 l 2 /r 2 I : 1 l 2 /R = sin ( 2θ + a 1l), θ θ c (34) 2 II : 1 l 2 /r 2 1 l 2 /R 2 = sin (2θ 4θ c + a 1 l), θ θ c (35) Στις παραπάνω δύο σχέσεις έχω κάνει χρήση της συνέχειας της r(θ) ώστε να συσχετίσω τις σταθερές ολοκλήρωσης. Αρχικές συνθήκες: (i) Η φωτεινή ακτίνα πέφτει παράλληλα με τον άξονα x στη θέση (r = R, θ = θ 0 ) της σφαίρας. Αρα, ισχύει η σχέση sin ( 2θ 0 + a 1 l) = 1 l 2 /R 2 (36) (ii) Δεδομένου οτι ο δείκτης διάθλασης του φακού είναι ίσος με 1 στην επιφάνειά του, συνεπάγεται οτι η προσπίπτουσα ακτίνα συνεχίζει παράλληλα με τον άξονα x αμέσως μετά την είσοδό της στο φακό. Αυτό σημαίνει οτι κοντά στην επιφάνεια του φακού έχουμε y(s) = 0, x(s) = s. Οπότε (ẏ) 0 = 0 = (ṙ) 0 sin θ 0 + R( θ) 0 cos θ 0, (ẋ) 0 = 1 = (ṙ) 0 cos θ 0 R( θ) 0 sin θ 0 (37) από τις οποίες προκύπτουν οι (ṙ) 0 = cos θ 0, ( θ) 0 = sin θ 0 R = l R 2 (38) sin θ 0 = l R, cos θ 0 = 1 l2 R 2 (39) Οι θ c και r c ικανοποιούν τη σχέση (34), όπου αντικαθιστώντας το r c από την (33) παίρνω sin ( 2θ c + a 1 l) = 1 l2 /rc 1 2 =... = 1 (40) l 2 /R2 Χρησιμοποιώντας τη τελευταία έχω 2θ c = π 2 + a 1l + 2πn (41) sin (2π 4θ c + a 1 l) = sin ( 4θ c + a 1 l) = sin (a 1 l) = sin ( 2θ 0 + a 1 l + 2θ 0 ) = sin ( 2θ 0 + a 1 l) cos (2θ 0 ) + cos ( 2θ 0 + a 1 l) sin (2θ 0 ) =... = 1 l 2 /R 2 (42) Η τελευταία σχέση σημαίνει οτι το σημείο (r = R, θ = π) ικανοποιεί την (35) και επομένως βρίσκεται πάνω στην τυχούσα γεωδεσιακή που θεωρήσαμε. Συμπέρασμα: Η τυχούσα ακτίνα που πέφτει στο φακό περνάει από το σημείο της επιφάνειας που είναι το πέρα σημείο τομής της από την ευθεία την παράλληλη προς την προσπίπτουσα, που περνάει από το κέντρο της σφαίρας. 6

7 10. Το Υπερβολικό Επίπεδο είναι μια διδιάστατη επιφάνεια που ορίζεται από τη μετρική ds 2 = 1 y 2 (dx2 + dy 2 ), y 0 (43) (α) Να δείξετε οτι τα σημεία του άξονα x απέχουν άπειρη απόσταση από οποιοδήποτε σημείο (x, y) του πάνω ημιεπιπέδου. (β) Να γράψετε τις εξισώσεις της γεωδεσιακής. (γ) Να δείξετε οτι οι γεωδεσιακές είναι ημικύκλια με κέντρο στον άξονα των x, ή ευθείες κάθετες στον άξονα x. (δ) Να λύσετε τις εξισώσεις για να βρείτε τα x(s) και y(s) συναρτήσει του μήκους s κατά μήκος τους. Λύση: (α) Για οποιαδήποτε καμπύλη y = y(x) έχω 1 + y 2 ds = dx dx y = d ln y. (44) y(x) y Το μήκος ενός μικρού τμήματός της που ακουμπάει τον άξονα x είναι a L = ds d ln y = lim(ln a ln ɛ) = (45) ɛ 0 ό.έ.δ. (β) Οι εξισώσεις της γεωδεσιακής είναι 0 L = 1 y 2 (ẋ2 + ẏ 2 ) = 1, ( ) d ẋ = 0 (46) ds y 2 ẋ y 2 = κ (47) (γ) (i) Για κ = 0 έχουμε ẋ = 0, ήτοι καμπύλη κάθετη στον άξονα των x. Η y(s) ικανοποιεί την εξίσωση ẏ = ±y, της οποίας η λύση είναι y(s) = C exp(±s). Οι αρχικές ή οριακές συνθήκες προσδιορίζουν τις σταθερές ολοκλήρωσης. Προφανώς, οι καμπύλες αυτές είναι γεωδεσιακές που συνδέουν αναγκαστικά σημεία με το ίδιο x. (ii) Για κ 0 έχουμε ẋ = κy 2 και ẋ 2 + ẏ 2 = y 2. Αντικαθιστώντας την πρώτη στη δεύτερη παίρνουμε dy dx = ẏ ẋ = η οποία γράφεται ισοδύναμα και ως Ορίζοντας Y 1 κ 2 y 2 παίρνω ισοδύναμα της οποίας η λύση είναι 1 κ2 y 2, (48) κy d dx (1 κ2 y 2 ) = 2κ 1 κ 2 y 2. (49) Y (x) dy dx = κ (50) 1 κ 2 y 2 = κ(x a) (51) 7

8 που μετά από τετραγωνισμό παίρνει τη μορφή του κύκλου (x a) 2 + y 2 = 1 κ 2. (52) Οι σταθερές όπως πάντα καθορίζονται από δύο συνθήκες. (δ) Η γενική λύση της (52) έχει τη μορφή x a = 1 κ cos Θ(s), y(s) = 1 sin Θ(s) (53) κ και αντικαθιστώντας στην (47) παίρνω Ολοκληρώνω και παίρνω dθ sin Θ = ds (54) ή ισοδύναμα Οπότε ln tan(θ/2) = s + Ã, (55) Θ(s) = tan 1 (Ae s ). (56) x(s) = a + 1 κ cos ( tan 1 (Ae s ) ) 1 = a + κ 1 + A 2 e 2s y(s) = 1 κ sin ( tan 1 (Ae s ) ) = Ae s κ 1 + A 2 e 2s (57) 8

ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)

ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7) ΒΑΡΥΤΗΤΑ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑ Θ. Τομαράς 1. ΤΟ ΥΠΕΡΒΟΛΙΚΟ ΕΠΙΠΕΔΟ. Το υπερβολικό επίπεδο ορίζεται με τη μετρική ds = 1 y dx + dy ), y 0, < x < + 1) α) Να υπολογίσετε το μήκος της γραμμής της παράλληλης στον

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα

Διαβάστε περισσότερα

dx cos x = ln 1 + sin x 1 sin x.

dx cos x = ln 1 + sin x 1 sin x. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια

Διαβάστε περισσότερα

ξ i (t) = v i t + ξ i (0) (9) c (t t 0). (10) t = t, z = z 1 2 gt 2 (12)

ξ i (t) = v i t + ξ i (0) (9) c (t t 0). (10) t = t, z = z 1 2 gt 2 (12) Η ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1 Κίνηση σώματος σε πεδίο βαρύτητας Εδώ θα εφαρμόσουμε την Ι.Α.Ι. και τις γνώσεις μας από την Ειδική Θεωρία της Σχετικότητας για να παράγουμε

Διαβάστε περισσότερα

v r T, 2 T, a r = a r (t) = 4π2 r

v r T, 2 T, a r = a r (t) = 4π2 r Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που

Διαβάστε περισσότερα

dv 2 dx v2 m z Β Ο Γ

dv 2 dx v2 m z Β Ο Γ Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή 11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι c. Να λύσετε

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής

Διαβάστε περισσότερα

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας 1 Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας Σκοπός της δέκατης διάλεξης: 10/11/12 Η κατανόηση των εννοιών της ολικής ενέργειας, της κινητικής ενέργειας και της ορμής στην ειδική θεωρία της

Διαβάστε περισσότερα

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ 1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1.1 Newton s law A. Newton s law: Περιγράφει τη κίνηση υλικού σημείου μάζας m σε χωρο-χρονικά μεταβαλλόμενο πεδίο δυνάμεων F. Σε Αδρανειακό Σύστημα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 213 Τα δεδομένα όλων των ερωτημάτων αναφέρονται σε σύστημα μονάδων όπου η ταχύτητα του φωτός c είναι ίση με 1. Σας προτρέπουμε

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Στις παρενθέσεις δίνονται τα μόρια του κάθε ερωτήματος. Σε ένα σωματίδιο που κινείται στον

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης. Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική

Διαβάστε περισσότερα

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής 11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται

F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται 6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΠΑΓΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΠΑΚΟΣΜΙΑ ΕΛΞΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.poias.weebly.co ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ

Διαβάστε περισσότερα

1. Κίνηση Υλικού Σημείου

1. Κίνηση Υλικού Σημείου 1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες

Διαβάστε περισσότερα

GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r

GMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, Σεπτεμβρίου 05 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία = bonus ερωτήματα),

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018 Καλή σας επιτυχία. Σύνολο πόντων 130. Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Πρόβλημα Α 1. Να γραφεί το διάνυσμα της έντασης του βαρυτικού πεδίου

Διαβάστε περισσότερα

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου. Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015 Τμήμα Θ. Αποστολάτου & Π. Ιωάννου Απαντήστε και στα 4 προβλήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται

Διαβάστε περισσότερα

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4 Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 2015 (πτυχιακή περίοδος)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 2015 (πτυχιακή περίοδος) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 25 (πτυχιακή περίοδος) Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI Ιουνίου 202 Απαντήστε και στα 4 Θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski 1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει

Διαβάστε περισσότερα

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m. Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 015-016 Ν. Βλαχάκης 1. Σώμα μάζας m και φορτίου q κινείται σε κατακόρυφο άξονα x, δεμένο σε ελατήριο σταθεράς k = mω του οποίου το άλλο άκρο είναι σταθερό. Το σύστημα

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015

ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015 ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 15 Ct 1. Η επιτάχυνση ενός σώματος που κινείται σε ευθεία γραμμή είναι a At Be, όπου Α, B, C είναι θετικές ποσότητες. Η αρχική ταχύτητα του σώματος είναι

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

2 ο Μάθημα Κίνηση στο επίπεδο

2 ο Μάθημα Κίνηση στο επίπεδο ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations) ΦΥΣ 11 - Διαλ.09 1 Σήμερα...? q Λογισμό μεταβολών (calculus of variations) Λογισμός μεταβολών - εισαγωγικά ΦΥΣ 11 - Διαλ.09 q Εύρεση του ελάχιστου ή μέγιστου μιας ποσότητας που εκφράζεται με τη μορφή ενός

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι. Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ

P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι. Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι Σχολή Αγρονόμων & Τοπογράφων Μηχανικών (Σ.Α.Τ.Μ. ΕΜΠ) ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ 00-0-0 ΘΕΜΑ Ο ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι Σχολή Αγρονόμων

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση

Διαβάστε περισσότερα

ΦΥΣ Τελική Εξέταση : 9-Δεκεμβρίου Υπεύθυνος Μαθήματος: Τζιχάντ Μούσα

ΦΥΣ Τελική Εξέταση : 9-Δεκεμβρίου Υπεύθυνος Μαθήματος: Τζιχάντ Μούσα ΦΥΣ. 131 Τελική Εξέταση : 9-Δεκεμβρίου-2015 Υπεύθυνος Μαθήματος: Τζιχάντ Μούσα Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας). Επίθετο: ---------------------------------------

Διαβάστε περισσότερα

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ

Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ04 του ΑΣΕΠ Ενδεικτικές ερωτήσεις Μηχανικής για τους υποψήφιους ΠΕ του ΑΣΕΠ Ένα κινητό κινείται σε κύκλο Κεντρομόλος και επιτρόχια επιτάχυνση υπάρχουν: α Και οι δύο πάντα β Η πρώτη πάντα γ Η δεύτερη πάντα δ Ενδέχεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων

Διαβάστε περισσότερα

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :

Διαβάστε περισσότερα

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α, Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 4 Σεπτεμβρίου 2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 4 Σεπτεμβρίου 2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 4 Σεπτεμβρίου 018 Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι

Διαβάστε περισσότερα

2 ο Μάθημα Κίνηση στο επίπεδο

2 ο Μάθημα Κίνηση στο επίπεδο 2 ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή

Διαβάστε περισσότερα

Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 19 Απριλίου 2013 Κεφάλαιο Ι 1. Να γραφεί το διάνυσμα της ταχύτητας και της επιτάχυνσης υλικού σημείου σε

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής

Διαβάστε περισσότερα

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης

Τροχιές σωμάτων σε πεδίο Βαρύτητας. Γιώργος Νικολιδάκης Τροχιές σωμάτων σε πεδίο Βαρύτητας Γιώργος Νικολιδάκης 9/18/2013 1 Κωνικές Τομές Είναι καμπύλες που σχηματίζονται καθώς επίπεδα τέμνουν με διάφορες γωνίες επιφάνειες κώνων. Παραβολή Έλλειψη -κύκλος Υπερβολή

Διαβάστε περισσότερα

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33

c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33 ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Α. Η ΕΞΙΣΩΣΗ EINSTEIN Διδάσκων: Θεόδωρος Ν. Τομαράς G µν R µν 1 g µν R = κ T µν, κ 8πG N c 4 (1) Β. Η ΕΞΙΣΩΣΗ FRIEDMANN. Για ομογενή και ισότροπο χωρόχρονο έχουμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ η ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ η ΕΡΓΑΣΙΑ 15/10/2004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ34 2004-05 1 η ΕΡΓΑΣΙΑ Προθεσμία παράδοσης 15/11/2004 ΑΣΚΗΣΕΙΣ 1) Επιβάτης τραίνου, το οποίο κινείται προς τα δεξιά με ταχύτητα υ = 0.6c στη διεύθυνση του άξονα

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

Ασκήσεις Κλασικής Μηχανικής, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 30 Μαρτίου 2014 Κεφάλαιο Ι: Κινηματική του Υλικού Σημείου 1. Αν το διάνυσμα θέσης υλικού σημείου είναι:

Διαβάστε περισσότερα

8 ο Μάθημα Περιστροφική κίνηση

8 ο Μάθημα Περιστροφική κίνηση 8 ο Μάθημα Περιστροφική κίνηση Κέντρο μάζας Στερεό σώμα Γωνιακή ταχύτητα γωνιακή επιτάχυνση Περιστροφή με σταθερή γωνιακή επιτάχυνση Σχέση γωνιακής ταχύτητας και επιτάχυνσης Κινητική ενέργεια λόγω περιστροφής

Διαβάστε περισσότερα

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου}

Κεφάλαιο 8. Βαρυτικη Δυναμικη Ενεργεια { Εκφραση του Βαρυτικού Δυναμικού, Ταχύτητα Διαφυγής, Τροχιές και Ενέργεια Δορυφόρου} Κεφάλαιο 8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Νομος της Βαρυτητας {Διανυσματική Εκφραση, Βαρύτητα στη Γη και σε Πλανήτες} Νομοι του Kepler {Πεδίο Κεντρικών Δυνάμεων, Αρχή Διατήρησης Στροφορμής, Κίνηση Πλανητών και Νόμοι του

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ)

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) 1. (α) Περιγράψτε συνοπτικά το πείραμα των Michelson και Morley (όχι απόδειξη σχέσεων). Ποιό ήταν το βασικό αποτέλεσμα του πειράματος; (β)

Διαβάστε περισσότερα

Το βαρυτικό πεδίο της Γης.

Το βαρυτικό πεδίο της Γης. Το βαρυτικό πεδίο της Γης. Θα μελετήσουμε το βαρυτικό πεδίο της Γης, τόσο στο εξωτερικό της όσο και στο εσωτερικό της, χρησιμοποιώντας τη λογική μελέτης του ηλεκτροστατικού πεδίου, με την βοήθεια της ροής.

Διαβάστε περισσότερα

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται

Διαβάστε περισσότερα

ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι:

ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ. ΛΥΣΗ (α) Το οδόστρωμα στη στροφή είναι οριζόντιο: N. Οι δυνάμεις που ασκούνται πάνω στο αυτοκίνητο είναι: ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΑΣΚΗΣΗ 1 Μια οριζόντια στροφή μιας ενικής οδού έχει ακτίνα = 95 m. Ένα αυτοκίνητο παίρνει τη στροφή αυτή με ταχύτητα υ = 26, m/s. (α) Πόση πρέπει να είναι η τιμή του συντελεστή μ s της στατικής

Διαβάστε περισσότερα

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) ΑΣΚΗΣΗ 1 ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση 30-06-08 ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) Α) Τρία σηµειακά ϕορτία τοποθετούνται στις κορυφές ενός τετραγώνου πλευράς α, όπως ϕαίνεται στο σχήµα 1. Υπολογίστε

Διαβάστε περισσότερα

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή

Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Επανεξέταση του αρμονικού ταλαντωτή Κεφάλαιο 11 ΣΥΝΤΗΡΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Μία ειδική κατηγορία διδιάστατων δυναμικών συστημάτων είναι τα λεγόμενα συντηρητικά συστήματα. Ο όρος προέρχεται από την μηχανική, όπου για υλικό σημείο που δέχεται δύναμη

Διαβάστε περισσότερα

Ασκήσεις 6 ου Κεφαλαίου

Ασκήσεις 6 ου Κεφαλαίου Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

B 2Tk. Παράδειγμα 1.2.1

B 2Tk. Παράδειγμα 1.2.1 Παράδειγμα 1..1 Μία δέσμη πρωτονίων κινείται μέσα σε ομογενές μαγνητικό πεδίο μέτρου,0 Τ, που έχει την κατεύθυνση του άξονα των θετικών z, (Σχ. 1.4). Τα πρωτόνια έχουν ταχύτητα με μέτρο 3,0 10 5 m / s

Διαβάστε περισσότερα

ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 131 Τελική Εξέταση: 11-Δεκεµβρίου-2011 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 017 Πρόβλημα Α Ένα σημειακό σωματίδιο μάζας m βάλλεται υπό γωνία ϕ και με αρχική ταχύτητα μέτρου v 0 από το έδαφος Η κίνηση εκτελείται στο ομογενές

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y ΛΥΣΕΙΣ 6. Οι ασκήσεις από το βιβλίο των Marsden - romba. 7.5. Θεωρούμε την παραμετρικοποίηση rx, y = x, y, a 2 x 2 y 2, όπου το x, y διατρέχει τον δίσκο στο xy-επίπεδο που ορίζεται από την x 2 +y 2 a 2.

Διαβάστε περισσότερα

Λύση: Η δύναμη σε ρευματοφόρο αγωγό δίνεται από την

Λύση: Η δύναμη σε ρευματοφόρο αγωγό δίνεται από την 1) Στο παρακάτω σχήμα το τμήμα της καμπύλης ΚΛ μεταξύ x = 1 και x = 3.5 αντιστοιχεί σε ένα αγωγό που διαρρέεται από ρεύμα Ι = 1.5 Α με τη φορά που δείχνεται. Η καμπύλη είναι δευτεροβάθμια ως προς x με

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Στις παρακάτω ερωτήσεις 1-4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση. Γ' ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗΣ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Στις παρακάτω ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα, το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο λαµπτήρας φθορισµού:

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

) z ) r 3. sin cos θ,

) z ) r 3. sin cos θ, Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 4-5 Ν. Βλαχάκης. Σώμα μάζας m κινείται στο πεδίο δύναμης της πρώτης άσκησης της τέταρτης εργασίας με λ, αλλά επιπλέον είναι υποχρεωμένο να κινείται μόνο στην ευθεία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)

ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ- ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΥΣΙΚΗ ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ ΤΜΗΜΑ Α. ΚΑΘΗΓ. ΖΑΧΑΡΙΑΔΟΥ ΚΑΤΕΡΙΝΑ ΓΡΑΦΕΙΟ ΖΒ114 ΡΑΓΚΟΥΣΗ-ΖΑΧΑΡΙΑΔΟΥ E-mil: zchri@niw.gr Βιβλιογραφία

Διαβάστε περισσότερα