ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ"

Transcript

1 ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Μετασχηματισμοί συντεταγμένων και συμμετρίες. 1α. Στροφές στο επίπεδο. Θεωρείστε δύο καρτεσιανά συστήματα συντεταγμένων στο επίπεδο, στραμμένα το ένα ως προς το άλλο κατά γωνία α. Ονομάζω i, j) και i, j ) τα μοναδιαία διανύσματα στα δύο συστήματα. Για τυχόν διάνυσμα r του επιπέδου ισχύει r = xi + yj = x i + y j 1) Χρησιμοποιώ το ότι i = i cos α + j sin α, j = i sin α + j cos α 2) και βρίσκω ) ) ) x cos α sin α x y = sin α cos α y Σημειώστε οτι x 2 + y 2 = x 2 + y 2 = r 2 4) Επίσης, αποδεικνύεται οτι η 3) είναι ο πιό γενικός μετασχηματισμός συντεταγμένων που ικανοποιεί την 4). Τα παραπάνω γενικεύονται σε περισσότερες διαστάσεις. Γενικά έχουμε οτι σε n διάστατο Ευκλείδειο χώρο ισχύει x i = R ij x j R ij x j 5) i 3) RR T = R T R = I 6) n ποσότητες U 1, U 2,..., U n, που κάτω από στροφές μετασχηματίζονται με τον ίδιο πίνακα όπως και οι συντεταγμένες, δηλαδή U i = R ij U j, 7) λέμε οτι αποτελούν τις n συνιστώσες ενός διανύσματος U. 1β. Συμμετρία σε στροφές της εξίσωσης του Νεύτωνα Fr) = ma. Η δύναμη F και η επιτάχυνση a είναι διανύσματα. F i = R ij F j, a i = R ij a j 8) Η εξίσωση του Νεύτωνα εκφράζει την ισότητα δύο διανυσμάτων. Αρα, αν ισχύει ως προς ένα παρατηρητή, ισχύει και ως προς οποιονδήποτε άλλον στραμμένο ως προς τον πρώτο. Δηλαδή, άν ισχύει η F i = ma i 9) τότε έπεται οτι ό.έ.δ. 1γ. Η συμμετρία Γαλιλαίου της θεωρίας του Νεύτωνα. F i = R ij F j = R ij ma j = ma i 10) 1

2 Παράδειγμα 1. Θεωρείστε ένα ελεύθερο σώμα. Η εξίσωση κίνησής του σε αδρανειακό σύστημα συντεταγμένων είναι d 2 r 2 = 0 11) Ενας άλλος αδρανειακός παρατηρητής, κινούμενος με ταχύτητα V μετράει για τη θέση του σώματος και το χρόνο, σύμφωνα με τον Γαλιλαίο Οπότε, και ως προς αυτόν ισχύει η εξίσωση του Νεύτωνα, αφού r = r + Vt, t = t 12) d 2 r = 0. 13) 2 Λέμε οτι η εξίσωση του Νεύτωνα είναι συναλλοίωτη ως προς τους μετασχηματισμούς Γαλιλαίου. Παράδειγμα 2. Ας πάρουμε τώρα δύο σώματα που αλληλεπιδρούν με μια δύναμη F, που προκύπτει από δυναμικό V = V r 1 r 2 ), που εξαρτάται μόνο από τη διαφορά των διανυσμάτων θέσης τους. Ισχύει 1 m 1 d 2 r 1 2 = Fr 1 r 2 ), m 2 d 2 r 2 2 = Fr 1 r 2 ) 14) οι οποίες δεν αλλάζουν μορφή κάτω από τον μετασχηματισμό 12). Η Νευτώνεια Μηχανική είναι αναλλοίωτη ως προς τους μετασχηματισμούς Γαλιλαίου. 1δ. Ομως, οι εξισώσεις Maxwell ΔΕΝ είναι συναλλοίωτες σε μετασχηματισμούς Γαλιλαίου. Χρειάζεται ενας μετασχηματισμός που δεν θα αλλάζει την ταχύτητα c του φωτός στο κενό, σε συμφωνία και με το πείραμα των Michelson Morley. Ας πάρουμε, για παράδειγμα, τις εξισώσεις Maxwell στο κενό. Από αυτές μπορείτε να δείξετε οτι το ηλεκτρικό και το μαγνητικό πεδίο ικανοποιούν την κυματική εξίσωση 2 1c 2 ) 2 t 2 Er, t) = 0 15) με λύσεις επίπεδα κύματα και επαλληλίες επιπέδων κυμάτων Er, t) = E 0 cosωt k r), ω = c k 16) Είναι εύκολο να πειστείτε οτι η κυματική αυτή εξίσωση δεν είναι συναλλοίωτη ως προς τους μετασχηματισμούς Γαλιλαίου x = x + V t, t = t. Αντίθετα, είναι συναλλοίωτη ως προς τους μετασχηματισμούς Lorentz 18) Η Ειδική Θεωρία της Σχετικότητας. Κάτι να σκεφτείτε: Για να συγχρονίσω δύο ρολόγια χρειάζεται να μπορώ να μετράω ταχύτητες. Για να μετρήσω ταχύτητα χρειάζομαι συγχρονισμένα ρολόγια. Φαύλος κύκλος. Συμφωνείτε; 2α. Τα δύο αξιώματα. α) Το αξίωμα της Σχετικότητας του Einstein και β) η ταχύτητα του φωτός στο κενό είναι η ίδια ως προς όλους τους αδρανειακούς παρατηρητές. 1 ΣΚΗΣΗ: Αποδείξτε αυτόν τον ισχυρισμό. 2 ΑΣΚΗΣΗ: Να αποδείξετε οτι η κυματική εξίσωση ϕx, t) = 0 είναι συναλλοίωτη ως προς μετασχηματισμούς Lorentz, ενώ δεν είναι ως προς μετασχηματισμούς x 2 c 2 t 2 Γαλιλαίου. 2

3 2β. Η σχετικότητα του ταυτόχρονου. 2γ. Διαστολή του χρόνου και συστολή του μήκους. Με δύο απλά πειράματα αποδεικνύεται οτι τ t = 1 V 2 /c, L = L 0 1 V 2 /c 2 17) 2 2δ. Οι μετασχηματισμοί Lorentz. Υπενθύμιση της απόδειξης από το Φ4. Χρησιμοποιώντας α) τον τύπο της διαστολής του χρόνου, β) τον τύπο της συστολής του μήκους, γ) το γεγονός οτι η ταχύτητα του φωτός είναι η ίδια c ως προς όλους τους αδρανειακούς παρατηρητές και δ) την εξίσωση κίνησης της αρχής των αξόνων του δεύτερου παρατηρητή ως προς τον πρώτο, βρίσκουμε οτι x = x V t 1 V 2 /c 2, t = t V x/c2 1 V 2 /c 2, y = y, z = z 18) που γράφεται ισοδύναμα ως με τον πίνακα ΛV ) να είναι όπου c t x y z = ΛV ) c t x y z 19) γ βγ 0 0 ΛV ) = βγ γ ) β V c, γ 1 1 V 2 /c 2 21) 2ε. Μετασχηματισμός ταχύτητας και επιτάχυνσης. Από τις εξισώσεις των μετασχηματισμών Lorentz με παραγωγίσεις ως προς τους αντίστοιχους χρόνους παίρνω τους μετασχηματισμούς της ταχύτητας και της επιτάχυνσης 3. Για παράδειγμα, αν v x, v y, v z ) είναι οι τρεις συνιστώσες της ταχύτητας ως προς αδρανειακό παρατηρητή Σ, αυτές ως προς Σ, που κινείται σε σχέση με τον Σ με ταχύτητα V είναι v x = v x V 1 v, v xv y = 1 V 2 /c 2 c 2 v y 1 V v x c 2, v y = 1 V 2 /c 2 v y 1 V v x c 2 22) 2στ. Η ενέργεια και η ορμή σώματος. Χρησιμοποιώντας το αξίωμα της Σχετικότητας βρήκαμε οτι η Νευτώνεια έκφραση p = mv της ορμής σώματος δεν είναι σωστή. Ο νόμος διατήρησης της ορμής δεν είναι συμβιβαστός με την έκφραση αυτή. Η σωστές εκφράσεις για την ενέργεια και την ορμή ενός σώματος μάζας m είναι E = mc 2 1 v 2 /c 2, p = mv 1 v 2 /c 2. 23) H εξίσωση κίνησης ελεύθερου σώματος μάζας m είναι ) dp d mv = 0, 24) 1 v 2 /c 2 3 ΑΣΚΗΣΗ: Να βρείτε τους τύπους μετασχηματισμού της επιτάχυνσης. 3

4 η γενική λύση της οποίας είναι η εξίσωση της ευθείας 4 rt) = r 0 + v t 25) όπου οι σταθερές r 0 και v προσδιορίζονται από τις αρχικές ή τις συνοριακές συνθήκες. 2ζ. Η αναλλοιωτότητα του διαστήματος. Από τις σχέσεις 18) προκύπτει οτι η ποσότητα ή ισοδύναμα η s 2 c 2 t 2 x 2 y 2 z 2 26) ds 2 = c 2 2 dx 2 dy 2 dz 2 27) για απειροστά μικρές διαφορές συντεταγμένων) είναι αναλλοίωτη ως προς μετασχηματισμούς Lorentz. Οπως και στη περίπτωση των στροφών, μπορούμε να χρησιμοποιήσουμε την αναλλοιωτότητα του παραπάνω μήκους για να αποδείξουμε την μορφή των πινάκων μετασχηματισμού Lorentz. Πράγματι, ακολουθώντας τα ίδια βήματα καταλήγουμε στο οτι οι πίνακες των μετασχηματισμών Lorentz Λ, ικανοποιούν τη σχέση Λ T ηλ = η, 28) της οποίας λύση όχι η γενική) είναι ο πίνακας που έχουμε παραπάνω. 2η. Το τετράνυσμα ενέργειας-ορμής. Από τις εκφράσεις της ενέργειας και της ορμής, σε συνδυασμό με τους τύπους μετασχηματισμού της ταχύτητας από παρατηρητή σε παρατηρητή, μπορώ να αποδείξω οτι η ενέργεια και η ορμή μετασχηματίζονται ως εξής: E /c p x p y p z = ΛV ) E/c p x p y p z 29) με τον ίδιο πίνακα μετασχηματισμού ΛV ), που δίνεται στην 20). Τέσσερις ποσότητες εδώ οι E/c, p x, p y, p z ), που κάτω από μετασχηματισμούς Lorentz μετασχηματίζονται όπως παραπάνω, λέμε οτι αποτελούν τις τέσσερις συνιστώσες ενός τετρανύσματος. Επομένως, με τον ίδιο ακριβώς τρόπο που αποδείξαμε την 26), ισχύει και η E 2 c 2 p 2 = E 2 c 2 p2 30) Για σώμα μάζας m χρησιμοποιώντας τις εκφράσεις της ενέργειας και της ορμής που έχω παραπάνω, βρίσκω E 2 c 2 p 2 E 2 = c 2 p2 = m 2 c 2. 31) Η σχέση 31) αποτελεί τον ορισμό της μάζας τυχόντος συστήματος με ενέργεια Ε και ορμή p. 3. Γεωμετρία Minkοwski. 3α. Διαγράμματα Minkowski. 3β. Κοσμικές γραμμές. Κώνοι φωτός. Αιτιότητα στον χωρό-χρονο M inkowski. Μή ύπαρξη οριζόντων. 4 ΑΣΚΗΣΗ: Να αποδείξετε οτι η 25) είναι η γενική λύση της 24). 4

5 3γ. Διαστολή του χρόνου, συστολή του μήκους. Γεωμετρική απόδειξη των δύο αυτών βασικών φαινομένων. 3δ. Χωρο-χρονικά διαστήματα τύπου χρόνου time like), χώρου space like) και φωτός light like). ds 2 > 0, ds 2 < 0, ds 2 = 0 32) 3ε. Η φυσική σημασία του χωροχρονικού διαστήματος: ds = c dτ. Φανταστείτε τον εαυτό σας με το ρολόϊ σας στο χέρι να κινείστε, κάνοντας μιά τυχαία κίνηση, κατά μήκος μιας αντίστοιχης κοσμικής τροχιάς. Φανταστείτε ακόμα και έναν αδρανειακό παρατηρητή Σ, να σας παρατηρεί και ο οποίος περιγράφει στο σύστημά του την τροχιά σας ως t, xt)) 5. Θα αποδείξω οτι s, B) = c τ, B) 33) όπου s, B) είναι η απόσταση ανάμεσα στα σημεία και B της κοσμικής τροχιάς σας, που μετράει ο Σ και που υπολογίζει από τη σχέση s, B) = ds 34) και τ, B) ο χρόνος που δείχνει το ρολόϊ σας οτι πέρασε κατά τη διαδρομή σας από το στο B. Αρα, το μήκος s μιάς καμπύλης στο χωρό-χρονο είναι ο χρόνος τ, που δείχνει το ρολόϊ που ακολουθεί την καμπύλη. Ο τ ονομάζεται ιδιοχρόνος σας. Απόδειξη: Θεωρείστε δύο οποιαδήποτε κοντινά σημεία πάνω στη τροχιά σας. Ο αδρανειακός παρατηρητής Σ τα βλέπει να έχουν χωρικές συντεταγμένες που διαφέρουν κατά dx, dy, dz) και να απέχουν χρονικά κατά. H απόσταση Minkowski αυτών των δύο γεγονότων είναι ds 2 Σ = c 2 2 dx 2. 35) Ως προς εσάς τα δύο αυτά γεγονότα έχουν dx = 0, dy = 0, dz = 0, και απέχουν χρονικά κατά dτ, όπου χρησιμοποιώ το σύμβολο τ για το χρόνο που μετράει το ρολόϊ σας. Οπότε, εσείς μετράτε απόσταση Minkowski ds = c dτ. 36) Ομως, για απειροστά μικρά χρονικά διαστήματα η ταχύτητά σας ως προς τον αδρανειακό παρατηρητή Σ είναι σταθερή. Αρα, είστε και εσείς αδρανειακός παρατηρητής. Επομένως ισχύει ds = ds, ήτοι ds = c 2 2 dx 2 = c dτ. 37) Oλοκληρώνοντας κατά μήκος της τροχιάς παίρνω την σχέση 33). ό.έ.δ. 3στ. Επιταχυνόμενος παρατηρητής. Η έννοια του ορίζοντα γεγονότων. 3ζ. Η Λαγκραντζιανή και η Δράση στη Κλασική Μηχανική Στη Κλασική Μηχανική λύσατε το εξής πρόβλημα: Να βρεθεί η συνάρτηση τροχιά) xt) για την οποία το ολοκλήρωμα δράση) S L xt), dxt) ) 5 Για απλότητα θεωρείστε τη κίνησή σας να γίνεται κατά μήκος του άξονα x. 38) 5

6 ανάμεσα στα σημεία = t, x ) και B = t B, x B ) γίνεται ελάχιστο. Βρήκατε οτι η ζητούμενη τροχιά είναι αυτή που ικανοποιεί την διαφορική εξίσωση ) d L = L 39) dx/) x με οριακές συνθήκες xt ) = x και xt B ) = x B. Μάθατε ακόμα οτι η διατύπωση αυτή της εξίσωσης κίνησης ενός σώματος είναι, με κατάλληλη εκλογή της Λαγκραντζιανής L, ισοδύναμη με το Νόμο του Νεύτωνα. Πράγματι, αν για παράδειγμα θεωρήσω ένα σώμα που κινείται στον άξονα x με δυναμική ενέργεια V x), αν πάρω για L την L = 1 ) dx 2 2 m V x) 40) η αντίστοιχη εξίσωση Euler-Lagrange ταυτίζεται με την εξίσωση του Νεύτωνα m d2 x 2 = dv dx 41) 3η. Η εξίσωση της γεωδαισιακής Το πρόβλημα της εύρεσης της γραμμής σε ένα χώρο που συνδέει δύο σημεία του και που έχει το ελάχιστο μήκος είναι μαθηματικά ακριβώς το ίδιο. Και στη περίπτωση αυτή το ζητούμενο είναι η ελαχιστοποίηση ενός ολοκληρώματος του μήκους καμπύλης) ανάμεσα σε δύο σημεία. Για παράδειγμα ας πάρουμε το χωρόχρονο Minkowski, στον οποίο οι αποστάσεις δίνονται από την έκφραση ds 2 = c 2 2 dx 2. 42) Βρείτε την γραμμή που συνδέει δύο σημεία = t, x ) και B = t B, x B ) και που το μήκος της είναι ακρότατο. Απάντηση: Το μήκος τυχούσης γραμμής ανάμεσα στα και B είναι s B = ds = c 1 ẋ 2 /c 2 43) Εφαρμόζοντας αυτά που μάθατε στη Μηχανική για την L που εδώ είναι L = 1 1 ) dx 2 c 2 44) βρίσκω d ) v = 0. 45) 1 v 2 /c 2 Παρατηρείστε οτι η 45) ταυτίζεται με τη γνωστή σας εξίσωση κίνησης ελεύθερου σώματος στην Ειδική Θεωρία της Σχετικότητας. Με άλλα λόγια, ένα ελεύθερο σώμα κινείται σε γεωδαισιακή του χωρόχρονου Minkowski. Η λύση της 45), που ικανοποιεί και τις οριακές συνθήκες xt ) = x και xt B ) = x B είναι η ευθεία γραμμή xt) = x B x t B t t t ) + x 46) Σε τετραδιάστατο χώρο Minkowski, όπου ds 2 = c 2 2 dx 2 dy 2 dz 2 = c 2 2 dr 2 47) 6

7 η εξίσωση αυτή γενικεύεται στην γνωστή σας v = dr/) ) d v = 0 48) 1 v 2 /c 2 3θ. Η έννοια της γεωδαισιακής σε δοσμένο χωρόχρονο. Παραδείγματα: 1) Η ευθεία στον Ευκλείδιο χώρο D διαστάσεων. 2) Οι γεωδεσιακές σε κύλινδρο. 3) Οι γεωδεσιακές σε διδιάστατη σφαίρα. 7

ξ i (t) = v i t + ξ i (0) (9) c (t t 0). (10) t = t, z = z 1 2 gt 2 (12)

ξ i (t) = v i t + ξ i (0) (9) c (t t 0). (10) t = t, z = z 1 2 gt 2 (12) Η ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1 Κίνηση σώματος σε πεδίο βαρύτητας Εδώ θα εφαρμόσουμε την Ι.Α.Ι. και τις γνώσεις μας από την Ειδική Θεωρία της Σχετικότητας για να παράγουμε

Διαβάστε περισσότερα

1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x

1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 6 Θ. Τομαράς 1. Πρωτόνια στις κοσμικές ακτίνες φτάνουν ακόμα και ενέργειες της τάξης των 10 20 ev. Να συγκρίνετε την ενέργεια αυτή με την ενέργεια που έχει μια πέτρα που πετάτε με

Διαβάστε περισσότερα

Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ

Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ Ο ΧΩΡΟΣ ΚΑΙ Ο ΧΡΟΝΟΣ. Γενικές αρχές. Η αντιληπτική μας ικανότητα του Φυσικού Χώρου, μας οδηγεί στον προσδιορισμό των σημείων του, μέσω τριών ανεξαρτήτων παραμέτρων. Είναι, λοιπόν, αποδεκτή η απεικόνισή

Διαβάστε περισσότερα

Εισαγωγή στη Σχετικότητα και την Κοσμολογία ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ

Εισαγωγή στη Σχετικότητα και την Κοσμολογία ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εισαγωγή στη Σχετικότητα και την Κοσμολογία Διδάσκων: Θεόδωρος Τομαράς, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1 Σχετικότητα 1.1 Η ανεπάρκεια της μηχανικής του Νεύτωνα V1.1.1 Σύντομη εισαγωγή

Διαβάστε περισσότερα

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου. Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη

Διαβάστε περισσότερα

Ο ειδικός μετασχηματισμός του Lorentz

Ο ειδικός μετασχηματισμός του Lorentz Ο ειδικός μετασχηματισμός του Lorentz Με αφετηρία τις δυο απαιτήσεις της Ειδικής Θεωρίας Σχετικότητας του Einstein θα βρούμε τον ειδικό μετασχηματισμό του Lorentz Πρώτη απαίτηση: Όλοι οι αδρανειακοί παρατηρητές

Διαβάστε περισσότερα

Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους

Τμήμα Φυσικής, Παν/μιο Ιωαννίνων, Ειδική Σχετικότητα, Διάλεξη 5 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους 1 Οι Μετασχηματισμοί του Lorentz και η Συστολή του μήκους Σκοποί της πέμπτης διάλεξης: 10.11.2011 Εξοικείωση με τους μετασχηματισμούς του Lorentz και τις διάφορες μορφές που μπορούν να πάρουν για την επίλυση

Διαβάστε περισσότερα

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ ΜΑΘΗΜΑ 5: Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί όπου δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 213 Τα δεδομένα όλων των ερωτημάτων αναφέρονται σε σύστημα μονάδων όπου η ταχύτητα του φωτός c είναι ίση με 1. Σας προτρέπουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη ΜΗΧΑΝΙΚΗ Ι 26 Ιανουαρίου 2016 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Στις παρενθέσεις δίνονται τα μόρια του κάθε ερωτήματος. Σε ένα σωματίδιο που κινείται στον

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙ Α ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ»

ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙ Α ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ» ΑΠΟ ΤΟ ΝΕΥΤΩΝΑ ΣΤΟΝ ΑΪΝΣΤΑΪΝ ΙΑΤΡΑΚΗΣ ΙΩΑΝΝΗΣ «ΗΜΕΡΙΑ ΣΥΓΧΡΟΝΗΣ ΦΥΣΙΚΗΣ» ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ z z y y ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΓΑΛΙΛΑΙΟΥ Αδρανειακό σύστηµααναφοράςείναι αυτό στο οποίο ενα σώµαπουδεν του ασκούνται

Διαβάστε περισσότερα

ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)

ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7) ΒΑΡΥΤΗΤΑ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑ Θ. Τομαράς 1. ΤΟ ΥΠΕΡΒΟΛΙΚΟ ΕΠΙΠΕΔΟ. Το υπερβολικό επίπεδο ορίζεται με τη μετρική ds = 1 y dx + dy ), y 0, < x < + 1) α) Να υπολογίσετε το μήκος της γραμμής της παράλληλης στον

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild. Κουλούρης Κωνσταντίνος

Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild. Κουλούρης Κωνσταντίνος Αριθμητικός υπολογισμός τροχιών σωμάτων στη γεωμετρία Schwarzschild Κουλούρης Κωνσταντίνος Σύνοψη Σχετικότητα Ειδική και γενική θεωρία Γεωμετρία Swarzschild Μετρική και εξισώσεις γεωδαιτικών τροχιών Υπολογιστική

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 3 Μαρτίου 2019 1 Τανυστής Παραμόρφωσης Συνοδεύον σύστημα ονομάζεται το σύστημα συντεταγμένων ξ i το οποίο μεταβάλλεται

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας

Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας 1 Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας Σκοπός της δέκατης διάλεξης: 10/11/12 Η κατανόηση των εννοιών της ολικής ενέργειας, της κινητικής ενέργειας και της ορμής στην ειδική θεωρία της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 2015 (πτυχιακή περίοδος)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 2015 (πτυχιακή περίοδος) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 23 Μαρτίου 25 (πτυχιακή περίοδος) Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα

ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ: Ιστορική εξέλιξη και σύγχρονα πειράματα ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Νάουσα, 31/3/2012 Περιεχόμενα 1. Ειδική Θεωρία Σχετικότητας (ΕΘΣ)

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Ομαλή Σχετική Μεταφορική Κίνηση Μετασχηματισμοί Γαλιλαίου

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Ομαλή Σχετική Μεταφορική Κίνηση Μετασχηματισμοί Γαλιλαίου ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΧΕΤΙΚΗ ΚΙΝΗΣΗ Ομαλή Σχετική Μεταφορική Κίνηση Μετασχηματισμοί Γαλιλαίου ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ Μετασχηματισμός Loenz Πείραμα Mihelson

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 010-11 Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Α ΚΕΦΑΛΑΙΟΥ Τα φροντιστήρια γίνονται κάθε Δευτέρα 1100-100 και κάθε

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

Στοιχείατης. τηςθεωρίαςτης Σχετικότητας. Άλµπερτ Αϊνστάιν 1905

Στοιχείατης. τηςθεωρίαςτης Σχετικότητας. Άλµπερτ Αϊνστάιν 1905 Στοιχείατης τηςθεωρίαςτης Σχετικότητας Άλµπερτ Αϊνστάιν 1905 Έννοια Συστήµατος Αναφοράς Ένα σταθερό σύστηµα (x,y,z) και t βάσει του οποίου περιγράφουµε ένα φυσικό γεγονός. Συνήθως σύστηµα Εργαστηρίου.

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski 1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέματα και Λύσεις. Ox υπό την επίδραση του δυναμικού. x 01 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ 1 Θέματα και Λύσεις ΘΕΜΑ 1 Υλικό σημείο κινείται στον άξονα x' Ox υπό την επίδραση του δυναμικού 3 ax x V ( x) a x, a 3 α) Βρείτε τα σημεία ισορροπίας και την ευστάθειά τους

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ : ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Πρώτα απ όλα θέλουμε να βρούμε και να εξηγήσουμε έναν ορισμό που να ταιριάζει όσο το δυνατό καλύτερα στα φυσικά φαινόμενα Και η πεποίθησή μας θα ενισχυθεί

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz

Σύγχρονη Φυσική 1, Διάλεξη 4, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz 1 Η Αρχές της Ειδικής Θεωρίας της Σχετικότητας και οι μετασχηματισμοί του Lorentz Σκοποί της τέταρτης διάλεξης: 25.10.2011 Να κατανοηθούν οι αρχές με τις οποίες ο Albert Einstein θεμελίωσε την ειδική θεωρία

Διαβάστε περισσότερα

ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) αφού σύμφωνα με τα πειράματα Mickelson-Morley είναι c =c.

ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) αφού σύμφωνα με τα πειράματα Mickelson-Morley είναι c =c. ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) y y z z t t Το οποίο οδηγεί στο ότι - υ.(άτοπο), αφού σύμφωνα με τα πειράματα Mikelson-Morley είναι. Επίσης y y, z z, t t Το οποίο ( t t ) είναι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Σσναλλοίωτη παράγωγος και παράλληλη μεταφορά Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 17 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ)

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) 1. (α) Περιγράψτε συνοπτικά το πείραμα των Michelson και Morley (όχι απόδειξη σχέσεων). Ποιό ήταν το βασικό αποτέλεσμα του πειράματος; (β)

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :

Διαβάστε περισσότερα

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης

Διαβάστε περισσότερα

ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ

ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΕΧΕΙΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΙ ΣΥΝΕΧΕΙΣ ΣΥΜΜΕΤΡΙΕΣ Για ένα φυσικό σύστηµα που περιγράφεται από τις συντεταγµένες όπου συνεχής συµµετρία είναι ένας συνεχής µετασχηµατισµός των συντεταγµένων που αφήνει αναλλοίωτη

Διαβάστε περισσότερα

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ

1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ 1 Η ΑΡΧΗ ΤΗΣ ΙΣΟΔΥΝΑΜΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς 1.1 Newton s law A. Newton s law: Περιγράφει τη κίνηση υλικού σημείου μάζας m σε χωρο-χρονικά μεταβαλλόμενο πεδίο δυνάμεων F. Σε Αδρανειακό Σύστημα

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι c. Να λύσετε

Διαβάστε περισσότερα

Ο ειδικός μετασχηματισμός του Lorentz

Ο ειδικός μετασχηματισμός του Lorentz Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Ο ειδικός μετασχηματισμός του Lorentz Ο ειδικός μετασχηματισμός του Lorentz Με αφετηρία τις δυο απαιτήσεις της Ειδικής Θεωρίας Σχετικότητας του Einstein θα

Διαβάστε περισσότερα

10. Παραγώγιση διανυσµάτων

10. Παραγώγιση διανυσµάτων Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις

Διαβάστε περισσότερα

1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble

1 Ο παράγοντας κλίμακας και ο Νόμος του Hubble ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Διδάσκων: Θεόδωρος Ν. Τομαράς Ο παράγοντας κλίμακας και ο Νόμος του Hubble Σύμφωνα με την Κοσμολογική Αρχή το Σύμπαν είναι σε μεγάλες κλίμακες ομογενές και ισότροπο.

Διαβάστε περισσότερα

ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ ΜΑΘΗΜΑ 5: ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί που δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η μαθηματική

Διαβάστε περισσότερα

dv 2 dx v2 m z Β Ο Γ

dv 2 dx v2 m z Β Ο Γ Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

dx cos x = ln 1 + sin x 1 sin x.

dx cos x = ln 1 + sin x 1 sin x. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια

Διαβάστε περισσότερα

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙII

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙII 2.11.2011 Άσκηση 1: Θεωρήστε δύο αδρανειακά συστήματα αναφοράς O, O ' και ας υποθέσουμε ότι το δεύτερο κινείται με ταχύτητα V κατά τη διεύθυνση του άξονα των χ σε σχέση με το πρώτο. Τη χρονική στιγμή που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 περίοδος Σεπτεμβρίου 2013-14 Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου

Διαβάστε περισσότερα

Ασκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων

Διαβάστε περισσότερα

Η μέθοδος του κινουμένου τριάκμου

Η μέθοδος του κινουμένου τριάκμου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI Ιουνίου 202 Απαντήστε και στα 4 Θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2.

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2. ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητής: Σ ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 011) 1 Από τους ακόλουθους μετασχηματισμούς του αριθμητικού χωρο-χρόνου εντοπίστε

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Στοιχεία Σχετικότητας, χρήσιμα στο μάθημα της Ατομικής Φυσικής Ε. Γ. Βιτωράτος. Τμήμα Φυσικής, Πανεπιστήμιο Πατρών (2005)

Στοιχεία Σχετικότητας, χρήσιμα στο μάθημα της Ατομικής Φυσικής Ε. Γ. Βιτωράτος. Τμήμα Φυσικής, Πανεπιστήμιο Πατρών (2005) Ε. Γ. Βιτωράτος. Τμήμα Φυσικής, Πανεπιστήμιο Πατρών (5) ΠΑΡΑΡΤΗΜΑ Ι (ΣΧΕΤΙΚΟΤΗΤΑ) Λέμε πως η φυσική είναι μια επιστήμη που ασχολείται με τον εντοπισμό και την ερμηνεία των φυσικών φαινομένων. Συνάμα όμως

Διαβάστε περισσότερα

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c

GMR L = m. dx a + bx + cx. arcsin 2cx b b2 4ac. r 3. cos φ = eg. 2 = 1 c Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, 9 Μαΐου 01 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία bonus ερωτήματα Ονοματεπώνυμο:,

Διαβάστε περισσότερα

Κλασική Μηχανική 1 ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ

Κλασική Μηχανική 1 ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Κλασική Μηχανική 1 Διδάσκων: Κώστας Τάσσης, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1: Νόμοι Νεύτωνα 1.1: Θεμελίωση θεωρίας Νόμοι Νεύτωνα V1.1.1 Ορισμός και όρια της Κλασικής Μηχανικής V1.1.2

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης.

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης. ΠΕΙΡΑΜΑ 5 Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης. Σκοπός του πειράματος Σκοπός του πειράματος είvαι vα μελετηθούν τα βασικά φυσικά μεγέθη της μεταφορικής κίνησης σε μία διάσταση. Τα μεγέθη

Διαβάστε περισσότερα

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LORENTZ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LORENTZ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ LORENTZ 1. Βασικά Αξιώματα Ειδικής Θεωρίας Σχετικότητας - Μετασχηματισμοί Lorentz Σύμφωνα με την Κλασσική Μηχανική το Newton μια σταθερή

Διαβάστε περισσότερα

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙI

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Ειδική Σχετικότητα - Λυμένα Προβλήματα - ΙI .11.011 Άσκηση 1: Χρησιμοποιήστε την διωνυμική σχέση 1x N = i=0 N! i! N i! xi για να υπολογίστε το 1 V /c για (α) V = 0.01c και (β) V = 0.9998c (α) Η διωνυμική σχέση είναι ιδανική για προσεγγίσεις όταν

Διαβάστε περισσότερα

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000

Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000 Τµήµα Π Ιωάννου & Θ Αποστολάτου 2/2000 Μηχανική ΙI Λογισµός των µεταβολών Προκειµένου να αντιµετωπίσουµε προβλήµατα µεγιστοποίησης (ελαχιστοποίησης) όπως τα παραπάνω, όπου η ποσότητα που θέλουµε να µεγιστοποιήσουµε

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018 Καλή σας επιτυχία. Σύνολο πόντων 130. Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Πρόβλημα Α 1. Να γραφεί το διάνυσμα της έντασης του βαρυτικού πεδίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1 ΤΟ ΜΟΝΤΕΛΟ ΤΟΥ ΑΚΑΜΠΤΟΥ ΣΩΜΑΤΟΣ Βασικές έννοιες: Στερεά σώματα του φυσικού κόσμου - Ευκλείδειος χώρος - Σωματίδιο - Ελεύθερο σωματίδιο - Άκαμπτο σώμα - Σχετικές θέσεις σωματιδίων - Αδρανειακό

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ

ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ

Διαβάστε περισσότερα

Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Η «ΠΡΟΣΘΕΤΙΚΗ ΙΔΙΟΤΗΤΑ» ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΘΗΝΑ,ΜΑΡΤΗΣ 2011 ΑΝΤΙ ΠΡΟΛΟΓΟΥ Αφορμή για την παρακάτω εργασία αποτέλεσε μια παρατήρηση του συνάδελφου (και φίλου) Διονύση Μητρόπουλου, για την «προσθετική

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός

Διαβάστε περισσότερα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των δυνάμεων που την διατηρούν είναι αντικείμενο της

Διαβάστε περισσότερα

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή 11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

... Σχετικότητα. Αναίρεση λοιπόν της ιδέας απόλυτου χρόνου ή χώρου, εισαγωγή απόλυτου χωροχρόνου.

... Σχετικότητα. Αναίρεση λοιπόν της ιδέας απόλυτου χρόνου ή χώρου, εισαγωγή απόλυτου χωροχρόνου. ΝΟΜΟΙ ΤΟΥ NEWTON Αδρανειακά η Γαλιλαιϊκά συστήματα αναφοράς Μη Αδρανειακά συστήματα αναφοράς Αρχή της αιτιοκρατίας Συμμετρία αντιστροφής χρόνου Νόμοι του Newton I. O Χώρος είναι Ευκλείδειος II. Όλοι οι

Διαβάστε περισσότερα

ẋ = f(x), x = x 0 όταν t = t 0,

ẋ = f(x), x = x 0 όταν t = t 0, Κεφάλαιο 2 ΤΟ ΘΕΩΡΗΜΑ ΥΠΑΡΞΗΣ ΚΑΙ ΜΟΝΑΔΙΚΟΤΗΤΑΣ 2.1 Πρόβλημα αρχικών τιμών Στο κεφάλαιο αυτό θα δούμε ότι το πρόβλημα αρχικών τιμών (ΑΤ) ẋ = f(x), x = x 0 όταν t = t 0, έχει λύση και μάλιστα μοναδική για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 4 Σεπτεμβρίου 2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 4 Σεπτεμβρίου 2018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 4 Σεπτεμβρίου 018 Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΕΡΕΟ ΣΩΜΑ. Ταυτόχρονη διατήρηση της ορμής και της στροφορμής σε κρούση

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΕΡΕΟ ΣΩΜΑ. Ταυτόχρονη διατήρηση της ορμής και της στροφορμής σε κρούση N B P Y T ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΕΡΕΟ ΣΩΜΑ 9 5 Ταυτόχρονη διατήρηση της ορμής και της στροφορμής σε κρούση - y y h + O x Ω + O V x υ a Σχήμα : Το σύστημα με τους δύο παρατηρητές του φαινομένου

Διαβάστε περισσότερα

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 0 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ Πνευματικός Μάθημα ο ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η Κλασική Μηχανική, ως ορθολογική

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( (http://www.natgeotv.com/uk/street-genius/ videos/bulletproof-balloons) n=0 Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ. Τσίγκανου & Ν. Βλαχάκη, Μαΐου 7 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία ( = bonus ερωτήματα) Ονοματεπώνυμο:,

Διαβάστε περισσότερα

Ειδική Θεωρία Σχετικότητας

Ειδική Θεωρία Σχετικότητας Ειδική Θεωρία Σχετικότητας Σύνολο διαφανειών 8/3/07 Γ. Βούλγαρης Πριν τον Αινστάιν. Νόμος το Νεύτωνα. Αδρανειακά Σστήματα. Σχετικότητα στη Μηχανική. Οι νόμοι της Μηχανικής αναλλοίωτοι στα αδρανειακά σστήματα.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ η ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ η ΕΡΓΑΣΙΑ 15/10/2004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ34 2004-05 1 η ΕΡΓΑΣΙΑ Προθεσμία παράδοσης 15/11/2004 ΑΣΚΗΣΕΙΣ 1) Επιβάτης τραίνου, το οποίο κινείται προς τα δεξιά με ταχύτητα υ = 0.6c στη διεύθυνση του άξονα

Διαβάστε περισσότερα

Ακουστικό Ανάλογο Μελανών Οπών

Ακουστικό Ανάλογο Μελανών Οπών Ακουστικό Ανάλογο Μελανών Οπών ιάδοση ηχητικών κυµάτων σε ρευστά. Ηχητικά κύµατα σε ακίνητο ρευστό. Εξίσωση συνέχειας: ρ t + ~ (ρ~v) =0 Εξίσωση Euler: ~v t +(~v ~ )~v = 1 ρ ~ p ( ~ Φ +...) Μικρές διαταραχές:

Διαβάστε περισσότερα

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ) ΕΙΣΑΓΩΓΗ- ΦΥΣΙΚΑ ΜΕΓΕΘΗ Στα φυσικά φαινόμενα εμφανίζονται κάποιες ιδιότητες της ύλης. Για να περιγράψουμε αυτές τις ιδιότητες χρησιμοποιούμε τα φυσικά μεγέθη. Τέτοια είναι η μάζα, ο χρόνος, το ηλεκτρικό

Διαβάστε περισσότερα

(ΚΕΦ 32) f( x x f( x) x z y

(ΚΕΦ 32) f( x x f( x) x z y (ΚΕΦ 3) f( x x f( x) x z y ΣΥΝΟΨΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ J. C. Maxwell (~1860) συνόψισε τη δουλειά ως τότε για το ηλεκτρικό και μαγνητικό πεδίο σε 4 εξισώσεις. Όμως, κατανόησε ότι οι εξισώσεις αυτές (όπως

Διαβάστε περισσότερα

L 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin.

L 2 z. 2mR 2 sin 2 mgr cos θ. 0 π/3 π/2 π L z =0.1 L z = L z =3/ 8 L z = 3-1. V eff (θ) =L z. 2 θ)-cosθ. 2 /(2sin. Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 15-16 Ν. Βλαχάκης 1. Σημειακό σώμα μάζας m είναι δεμένο σε αβαρές και μη εκτατό νήμα ακτίνας R και κινείται κάτω από την επίδραση του βάρους του mgẑ και της τάσης

Διαβάστε περισσότερα