Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 6 : Κίνηση του νερού στο έδαφος ΙΙ Δρ.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 6 : Κίνηση του νερού στο έδαφος ΙΙ Δρ."

Transcript

1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 6 : Κίνηση του νερού στο έδαφος ΙΙ Δρ. Μενέλαος Θεοχάρης

2 .3.. Μέτρηση της υδραυλικής αγωγιμότητας στον αγρό.3... Μέθοδος του φρεατίου σε ομογενή εδάφη α. Μέτρηση για την περίπτωση ύπαρξης ελεύθερης επιφάνειας Η μέθοδος του φρεατίου (Auge hole mehod) είναι μια απλή, γρήγορη και σχετικά ακριβής μέθοδος μέτρησης του συντελεστή υδραυλικής αγωγιμότητας, Κ, για την περιοχή του εδάφους που βρίσκεται κάτω από τη στάθμη του υπόγειου νερού. Η μέθοδος αυτή είναι η περισσότερο χρησιμοποιούμενη για την εκπόνηση της στραγγιστικής μελέτης μιας περιοχής με υψηλή στάθμη υπογείου νερού. Η γενική αρχή της είναι πολύ απλή. Ανοίγεται ένα φρεάτιο σε βάθος μεγαλύτερο από την υπόγεια στάθμη. Όταν επέλθει ισορροπία στην υπόγεια στάθμη, αντλείται το νερό από το φρεάτιο και μετράται η ταχύτητα ανύψωσης της στάθμης του νερού του φρεατίου. Οι μετρήσεις αυτές, μαζί με τα στοιχεία της διάνοιξης του φρεατίου, οδηγούν στον υπολογισμό της υδραυλικής αγωγιμότητας, Κ, του εδάφους. Η μέθοδος του φρεατίου δίνει τη μέση τιμή της υδραυλικής αγωγιμότητας των στρωμάτων του εδάφους, τα οποία βρίσκονται κάτω από την υπόγεια στάθμη, σε μικρή απόσταση κάτω από τον πυθμένα του φρεατίου και σε μια ακτίνα της τάξεως 3-5 cm. Αν ο πυθμένας του φρεατίου εδράζεται σε αδιαπέρατο υπόστρωμα, η τιμή του Κ αντιπροσωπεύει τα στρώματα που βρίσκονται πάνω από αυτό. Έτσι η εφαρμογή της περιορίζεται σε περιοχές με υψηλή υπόγεια στάθμη, έστω και σε μικρές περιόδους του έτους, καθώς και σε εδάφη όπου είναι δυνατό να διατηρηθεί αδιατάρακτο το φρεάτιο για όλη τη διάρκεια του πειράματος. Αυτός ο τελευταίος περιορισμός όμως μπορεί να ξεπεραστεί πολλές φορές με τη χρήση διάτρητων σωλήνων, διαδικασία που έχει ευρεία εφαρμογή σε αμμώδη εδάφη. Επιφάνεια εδάφους Υπόγεια στάθμη H n h Δ σε Δ D Αδιαπέρατο υπόστρωμα Σχήμα.. Γεωμετρικά μεγέθη της μεθόδου του φρεατίου σε ομογενές έδαφος. Η όλη διαδικασία εφαρμογής της μεθόδου διακρίνεται σε τέσσερες φάσεις, οι οποίες είναι: (α) η διάνοιξη του φρεατίου, (β) η αφαίρεση του νερού από αυτό (γ) η μέτρηση της

3 ταχύτητας ανύψωσης της στάθμης του νερού στο φρεάτιο και (δ) ο υπολογισμός του συντελεστή υδραυλικής αγωγιμότητας από τα δεδομένα των μετρήσεων. Η διάνοιξη του φρεατίου απαιτεί την ελάχιστη δυνατή διαταραχή του εδάφους και γίνεται με ειδικό γεωτρύπανο. Το βάθος διάνοιξής του εξαρτάται από τον τύπο του εδάφους, το πάχος των διαστρώσεων και τη θέση στην οποία πρόκειται να υπολογιστεί η υδραυλική αγωγιμότητα. Έτσι για ένα ομογενές έδαφος μεγάλου πάχους διαστρώσεως, ο πυθμένας του φρεατίου θα πρέπει να βρίσκεται περίπου 6-7 cm κάτω από την υπόγεια στάθμη. Όσον αφορά την πυκνότητα των φρεατίων, για την εκπόνηση της στραγγιστικής μελέτης μιας περιοχής θα πρέπει να αντιστοιχεί ένα φρεάτιο για κάθε δέκα στρέμματα περίπου. Η αφαίρεση του νερού από το φρεάτιο γίνεται με μια ειδική προς τούτο μικρή αντλία. Η εργασία της αφαίρεσης μπορεί να αρχίσει αφού επέλθει ισορροπία μεταξύ της στάθμης του φρεατίου και της υπόγειας στάθμης. Αν το έδαφος έχει μικρή διαπερατότητα, τότε η στάθμη του φρεατίου καλό είναι να κατέβει cm κάτω από την υπόγεια στάθμη, ώστε με τη δημιουργία σχετικά μεγάλης διαφοράς στα δυο αντίστοιχα φορτία, να αυξηθεί η ταχύτητα ανύψωσής της και να ελαττωθεί ο χρόνος που απαιτείται για τη λήψη αξιόπιστων μετρήσεων. Αν το έδαφος είναι πολύ διαπερατό, τότε η άντληση της ποσότητας του νερού που θα έχει μια πτώση της στάθμης του φρεατίου ίση με cm, θεωρείται ικανοποιητική. Η μέτρηση της ταχύτητας ανύψωσης της στάθμης του νερού στο φρεάτιο γίνεται με ειδικά αυτογραφικά σταθμήμετρα. Οι μετρήσεις που παίρνονται ανάγονται είτε σε σταθερά χρονικά βήματα Δ είτε σε ορισμένα σταθερά διαστήματα ανύψωσης της στάθμης Δ. Το μέγεθος των Δ ή Δ εξαρτάται από τη διαπερατότητα του εδάφους. Πάντως λαμβάνεται φροντίδα ώστε κάθε χρονικό βήμα Δ να είναι ίσο με 5,, 5, ή 3 sec και να αντιστοιχεί σε μια τιμή Δ = cm περίπου. Αν είναι το βάθος της πτώσης της στάθμης του φρεατίου, δηλαδή η πρώτη μέτρηση της διαδικασίας των μετρήσεων της ανύψωσης της στάθμης του νερού, τότε η όλη εργασία των μετρήσεων θα πρέπει να συμπληρωθεί πριν γίνει n < 3/ ή πριν Δ > /, όπου n είναι η τελευταία η-οστή μέτρηση και Δ = Σ Δ = - n. Στο σχήμα.., με συμβολίζεται η απόσταση μεταξύ της στάθμης του υπόγειου νερού και του μέσου επιπέδου της στάθμης του φρεατίου κατά τη διάρκεια των μετρήσεων. Έτσι θα είναι : n Για τον υπολογισμό του συντελεστή υδραυλικής αγωγιμότητας χρησιμοποιείται στη μέθοδο αυτή ο τύπος του Hooghoud ή ο αντίστοιχος τύπος του Ens. Ο Hooghoud το 936 ( Luhin, 966) θεώρησε ότι η ανύψωση της στάθμης του νερού στο φρεάτιο οφείλεται τόσο στην πλάγια εισροή που γίνεται από την παράπλευρη επιφάνειά του, όσο και στην κατακόρυφη εισροή που γίνεται από του πυθμένα του. Η ταχύτητα ανύψωσης της στάθμης του νερού που οφείλεται στην πλάγια εισροή παραδέχτηκε ότι είναι: d d οριζ. π Η..Η. Κ (.9) π S.S όπου οι διάφοροι συμβολισμοί φαίνονται στο σχήμα.. και S είναι μια σταθερή που έχει διαστάσεις μήκους [L] και εξαρτάται από τα, Η, D καθώς και το ύψος h του νερού στο φρεάτιο κατά το χρόνο των μετρήσεων. Από πειράματα που έκανε ο Hooghoud βρήκε την εμπειρική σχέση:.h S (.),9

4 Ο αριθμητικός συντελεστής,9 έχει διαστάσεις μήκους [L = m]. Η εξίσωση (.) μπορεί να δώσει ένα μέγιστο σφάλμα της τάξης του 7 %, πράγμα που θεωρείται μη σημαντικό για τον υπολογισμό του συντελεστή υδραυλικής αγωγιμότητας, του οποίου οι τιμές μεταβάλλονται για τους διάφορους τύπους εδαφών από, μέχρι περισσότερο από m/ημέρα. Η ταχύτητα ανύψωσης της στάθμης του νερού του φρεατίου, που οφείλεται στην κατακόρυφη εισροή από τον πυθμένα του, παραδέχτηκε ότι είναι: d d κατ. π Κ π S.. S (.) Αν αθροιστούν οι εξισώσεις (.9) και (.) προκύπτει: d d (H ) S (.) η οποία δίνει τη συνολική ανύψωση της στάθμης του νερού του φρεατίου. Από την ολοκλήρωση της εξίσωσης (.) μεταξύ των ορίων = όταν = και = n όταν = Δ, προκύπτει : ln n.(h ) S η οποία επιλυόμενη ως προς Κ ως προς Κ δίνει : S ln H Δ n Η εξίσωση (.) λόγω της (.) γίνεται:,9 H H ln n στην οποία το Δ είναι σε sec και το Κ σε m/s, όταν τα και Η είναι σε m. ή ακόμη 5,7 x H ln H n (.3) (,) (.5) (.6) στην οποία το Δ είναι σε sec και το Κ σε m/ημέρα, όταν τα και Η είναι σε m. Όταν το φρεάτιο εδράζεται πάνω σε ένα αδιαπέρατο υπόστρωμα, η κάθετη εισροή του νερού από τον πυθμένα του είναι μηδενική, οπότε η συμβολή της εξίσωσης (.) είναι μηδέν και η εξίσωση (.6) γίνεται: 7368, ln n (.7) στην οποία και πάλι το Δ είναι σε sec και το Κ σε m/ημέρα, όταν η ακτίνα είναι σε m. Οι εξισώσεις (.6) και (.7) είναι οι δύο τύποι του Hooghoud οι οποίοι χρησιμοποιούνται για τον υπολογισμό του συντελεστή υδραυλικής αγωγιμότητας Κ του εδάφους, από τα δεδομένα των μετρήσεων της μεθόδου του φρεατίου, όταν το φρεάτιο βρίσκεται υψηλότερα από το αδιαπέρατο υπόστρωμα ή όταν ο πυθμένας του εδράζεται πάνω σ' αυτό, αντίστοιχα.

5 Ο Ens το 95 (Luhin,966) έλυσε το πρόβλημα της ροής προς το φρεάτιο με αριθμητική μέθοδο και κατάληξε ότι ο συντελεστής υδραυλικής αγωγιμότητας Κ δίνεται από την εξίσωση: (.8) όπου είναι μια συνάρτηση των, H, και D. Εργαζόμενοι στην εξίσωση (.8) του Ens οι Maasland and Haskew το 957 παρουσίασαν δυο νομογραφήματα σε αδιάστατη μορφή όπου ο παράγοντας δίνεται ως συνάρτηση των διαφόρων τιμών των H/ και /. Τα δυο αυτά νομογραφήματα παρουσιάζονται στο σχήμα.5α. και στο σχήμα.5β. και αντιστοιχούν στις τιμές D = και D =. Σημειώνεται ότι έχει ληφθεί φροντίδα ώστε όταν το Δ είναι σε sec και το Δ σε m, ο συντελεστής υδραυλικής αγωγιμότητας θα είναι σε m/ ημέρα. (α) Σχήμα.5. Νομογραφήματα των Maasland and Haskew της εξίσωσης του Ens α) για D = και β) για D =. Ακόμα ο Ens έδωσε τις αριθμητικές του λύσεις σε απλές μορφές προσεγγιστικών εξισώσεων, ως εξής : α) Για D >,5Η (.9) β) Για D = H H (β)

6 H 36 H (.3) όπου το Κ είναι σε m/ημέρα όταν τα, Η, και Δ είναι σε m και το Δ σε sec. Σύμφωνα με τον Van Bees, το σφάλμα που δίνουν οι εξισώσεις (.9) και (.3) είναι της τάξης του %, για πεδία τιμών 3 cm < < 7 cm, cm < Η < cm, >, Η, Δ <,5 και για D > θα πρέπει D > Η. Για τις περιπτώσεις < D <,5 Η, οι τιμές του Κ παίρνονται κατ' αναλογία από τις τιμές που υπολογίστηκαν από τα διαγράμματα για D = και D >,5 Η. Η μέθοδος του φρεατίου έχει και ορισμένους περιορισμούς για την εφαρμογή της. Έτσι δε μπορεί να εφαρμοστεί σε περιοχές που επικρατούν αρτεσιανές συνθήκες ή σε περιοχές που υπάρχουν λιμνάζοντα επιφανειακά νερά. Επίσης σε βραχώδεις περιοχές ή περιοχές με πολλά χαλίκια είναι δύσκολο να διανοιχτούν φρεάτια ομοιόμορφης διαμέτρ9υ, ενώ προβλήματα παρουσιάζονται και σε περιοχές που υπάρχουν στενές διαστρώσεις χονδρόκοκκης άμμου, μεταξύ στρωμάτων με μικρή διαπερατότητα. Τέλος, συντελεστές υδραυλικής αγωγιμότητας μεγαλύτεροι από 6 m/ημέρα καθιστούν τη μέθοδο πολύ δύσχρηστη, αφού συνήθως το νερό εισρέει στο φρεάτιο γρηγορότερα από ότι αντλείται, ενώ πολύ μικροί συντελεστές υδραυλικής αγωγιμότητας - τιμές μικρότερες από,6 m/ημέρα - δεν είναι δυνατό να μετρηθούν με ακρίβεια, αφού οι διαδοχικές αναγνώσεις μιας μέτρησης θα παρουσιάζουν μεγάλες διακυμάνσεις. β. Μέτρηση για την περίπτωση που ο υπόγειος ορίζοντας είναι πολύ κατεβασμένος Στην περίπτωση αυτή χρησιμοποιείται η μέθοδος Shallow Well Pump in Tes. Σύμφωνα με τη μέθοδο αυτή ανοίγεται μια οπή στο ακόρεστο έδαφος με διάμετρο. Στη συνέχεια γεμίζεται με νερό η οπή μέχρι ένα ορισμένο ύψος h, το οποίο καταβάλλεται προσπάθεια να διατηρείται σταθερό. Αυτό γίνεται με τη βοήθεια ενός πλωτήρα που ειδοποιεί όταν πέφτει ή ανεβαίνει η στάθμη έτσι ώστε να αυξάνεται ή να ελαττώνεται η παροχή ανάλογα. Ένα από τα μειονεκτήματα της μεθόδου αυτής είναι ότι πρέπει να συνεχίζονται οι μετρήσεις από -6 ημέρες μέχρις ότου να σταθεροποιηθεί η παροχή. Η υδραυλική αγωγιμότητα για τις δύο περιπτώσεις του σχήματος.6. δίνεται σύμφωνα με το U.S. Bueau of Reclamaion από τις σχέσεις : α) Για h Tu 3 h h 7 ln πh Q (.3)

7 β) Για 3 h T u h 7 3 ln Q πh h T u (.3) d h T u h T u Ελεύθερη επιφάνεια ή αδιαπέρατο στρώμα Ελεύθερη επιφάνεια ή αδιαπέρατο στρώμα (α) (β) Σχήμα.6. Σχηματική διάταξη των δύο περιπτώσεων (α) h Tu 3 και (β) 3 h T u.3... Μέθοδος του φρεατίου σε διαστρωμένα εδάφη Σε πολλές περιπτώσεις το έδαφος μιας περιοχής αποτελείται από δυο ή περισσότερα στρώματα, τα οποία έχουν αισθητή διαφορά στη διαπερατότητα τους. Στις περιπτώσεις αυτές επιβάλλεται σχεδόν πάντοτε να γνωρίζουμε τη διαπερατότητα κάθε ιδιαίτερης στρώσης. Πράγματι κατά την εκπόνηση της στραγγιστικής μελέτης μιας περιοχής θα πρέπει να γνωρίζουμε τους συντελεστές υδραυλικής αγωγιμότητας των στρώσεων του εδάφους στις οποίες λαμβάνει χώρα κίνηση του στραγγιζόμενου νερού. Οι στρώσεις αυτές καθορίζονται από τη θέση της στάθμης του υπόγειου νερού και από το βάθος των στραγγιστικών αγωγών, αφού η ροή γίνεται από τις στρώσεις που βρίσκονται πάνω και κάτω από το επίπεδο στο οποίο βρίσκεται ο πυθμένας των στραγγιστικών τάφρων ή στο οποίο τοποθετούνται οι στραγγιστικοί σωλήνες. Όταν η στάθμη του υπόγειου νερού βρίσκεται στο ανώτερο στρώμα ενός εδάφους που αποτελείται από δυο ή περισσότερες στρώσεις, τότε είναι δυνατό να υπολογιστεί η υδραυλική αγωγιμότητα κάθε στρώσης, εφαρμόζοντας τη μέθοδο του φρεατίου, κατάλληλα προσαρμοσμένη για διαστρωμένα εδάφη. Στην περίπτωση αυτή είναι αναγκαίο να εργαστούμε με δυο ή περισσότερα φρεάτια διαφορετικού βάθους. Πρώτα γίνεται η διάνοιξη του βαθιού φρεατίου, οπότε εξετάζονται και καταγράφονται οι διάφορες στρώσεις του εδάφους. Το βάθος αυτού του φρεατίου θα πρέπει κανονικά να είναι γύρω στα m, ώστε να υπολογιστεί ο συντελεστής υδραυλικής αγωγιμότητας σ' αυτό το βάθος, στοιχείο το οποίο παίρνεται υπόψη κατά την εκπόνηση της στραγγιστικής μελέτης μιας περιοχής αφού σ' αυτό το βάθος τοποθετούνται συνήθως οι στραγγιστικοί σωλήνες. Το βάθος του αβαθούς φρεατίου θα καθοριστεί με βάση τη διάστρωση του εδάφους που καταγράφηκε. Πάντως ο πυθμένας του αβαθούς φρεατίου θα πρέπει να βρίσκεται -5 cm πάνω από τη διαχωριστική γραμμή

8 των δυο στρώσεων και για πρακτικούς λόγους cm κάτω από την υπόγεια στάθμη. Στις περισσότερες περιπτώσεις όμως το βάθος του αβαθούς φρεατίου φτάνει μέχρι τη διαχωριστική γραμμή των δυο στρώσεων. Στο σχήμα.7. φαίνονται τα δυο φρεάτια και οι χρησιμοποιούμενοι στη συνέχεια αυτής της παραγράφου συμβολισμοί. Από τα δεδομένα του αβαθούς φρεατίου, με τη βοήθεια του σχήμα.7., έχουμε την τιμή Η και υπολογίζουμε την τιμή και την τιμή της ( ) / n n ανύψωσης της στάθμης του νερού σ' αυτό, η οποία έλαβε χώρα σε χρόνο Δ. Έτσι ο συντελεστής υδραυλικής αγωγιμότητας της ανώτερης στρώσης θα είναι: (.33) στην οποία το παίρνεται από το νομογράφημα του σχήμα.5., χρησιμοποιώντας τις τιμές των, H και και για D =. Η ταχύτητα ανύψωσης της στάθμης στο βαθύ φρεάτιο είναι συνάρτηση της εισροής τόσο από την ανώτερη όσο και από την κατώτερη στρώση του εδάφους. Από τα δεδομένα του βαθιού φρεατίου, με τη βοήθεια του σχήμα.7., έχουμε τις τιμές Η και d και ακόμα υπολογίζεται η τιμή και την τιμή της ανύψωσης της ( ) / n στάθμης του νερού σ' αυτό, η οποία έλαβε χώρα σε χρόνο Δ. n Σχήμα.7. Φρεάτια σε διαστρωμένο έδαφος και συμβολισμοί Στην ανώτερη στρώση θα έχουμε: (.3) όπου ο παράγοντας υπολογίζεται από το νομογράφημα του σχήμα.5 για D =, με τη βοήθεια των τιμών των d, και. Το νομογράφημα D = χρησιμοποιείται σ' αυτή, την περίπτωση, γιατί στο ανώτερο στρώμα του βαθιού φρεατίου λαμβάνει χώρα μόνο οριζόντια ροή. Με ( / ) παριστάνεται η συμβολή της ανύψωσης της στάθμης του νερού του

9 φρεατίου, που είναι αποτέλεσμα της εισροής του υπόγειου νερού από την ανώτερη στρώση μόνο. Η εξίσωση αυτή δίνει: (.35) Αν το έδαφος ήταν ομογενές, με συντελεστή υδραυλικής αγωγιμότητας Κ, τότε για το βαθύ φρεάτιο θα ήτο: (.36) όπου ο παράγοντας υπολογίζεται χρησιμοποιώντας τις τιμές, Η και, από το νομογράφημα του σχήμα.5. για D = ή για D =, ανάλογα με τη θέση του αδιαπέρατου υποστρώματος. Σ' αυτή την περίπτωση ) / ( θα ήταν η ταχύτητα ανύψωσης της στάθμης του νερού στο φρεάτιο, αν η ανώτερη στρώση ήταν συνέχεια της κατώτερης. Αν επιλυθεί η εξίσωση (.36) ως προς ) / ( προκύπτει: (.37) Όμως στην υποθετική αυτή περίπτωση της ομογένειας των δυο στρώσεων, ο συντελεστής υδραυλικής αγωγιμότητας της ανώτερης στρώσης θα ήταν Κ, οπότε για την περιοχή αυτή θα ήταν: (.38) όπου ο παράγοντας υπολογίζεται, όπως λέχτηκε και προηγούμενα στην εξίσωση (.3), από το σχήμα.5. για D =, με τις τιμές των d, και. Επομένως από την εξίσωση (.38) προκύπτει: (.39) Η εξίσωση αυτή δίνει το σφάλμα που εισάγεται στην ταχύτητα ανύψωσης της στάθμης του νερού στο βαθύ φρεάτιο, αν θεωρήσουμε το έδαφος ομογενές και ότι οι δυο στρώσεις έχουν τον ίδιο συντελεστή διαπερατότητας ίσο με Κ. Έτσι από τις εξισώσεις (.37) και (.39), η καθαρή συμβολή της ταχύτητας ανύψωσης της στάθμης του νερού στο βαθύ φρεάτιο, που οφείλεται στην εισροή του υπόγειου νερού από την κατώτερη στρώση του εδάφους, θα είναι: (.) Από την άθροιση των εξισώσεων (.35) και (.) παίρνεται: (.) Η εξίσωση αυτή δίνει την πραγματική ταχύτητα ανύψωσης της στάθμης του νερού του φρεατίου. Καθώς τα Κ,,,Δ και Δ μπορούν να υπολογιστούν, λύνοντας την εξίσωση (.) ως προς Κ παίρνουμε:

10 (.) Η εξίσωση (.) χρησιμοποιείται για τον υπολογισμό της υδραυλικής αγωγιμότητας της κατώτερης στρώσης του εδάφους, με τη μέθοδο του φρεατίου κατάλληλα προσαρμοσμένη για ένα διαστρωμένο έδαφος. Με τον υπολογισμό και του συντελεστή Κ μπορούμε να εξετάσουμε επιπλέον και αν το κατώτερο στρώμα του εδάφους μπορεί να θεωρηθεί αδιαπέρατο. Σύμφωνα με τον Ens το 95 (Luhin,966), η υδραυλική αγωγιμότητα Κ της κατώτερης στρώσης μπορεί να υπολογιστεί και με τη βοήθεια της εξίσωσης: ( ) (.3) όπου Κ είναι η αγωγιμότητα της ανώτερης στρώσης, η οποία μετρήθηκε από τα δεδομένα του αβαθούς φρεατίου και Κ είναι η μέση τιμή της αγωγιμότητας των δυο στρώσεων όπως μπορεί να μετρηθεί στο βαθύ φρεάτιο. Σ' αυτή την περίπτωση τα Δ και Δ είναι ήδη γνωστά. Έτσι είναι: (.) Ο παράγοντας υπολογίζεται με τις τιμές των Η, και, από τα νομογραφήματα του σχήμα.5. για D = ή D =, ανάλογα με τη θέση του αδιαπέρατου υποστρώματος. Με γνωστά τα, Κ, H και Η και με τη βοήθεια της εξίσωσης (.3) προκύπτει: (.5) Η εξίσωση αυτή δίνει την τιμή του συντελεστή υδραυλικής αγωγιμότητας Κ της κατώτερης στρώσης ενός διαστρωμένου εδάφους. Αν το έδαφος αποτελείται από τρεις στρώσεις τότε ο πυθμένας του δεύτερου φρεατίου θα πρέπει να βρίσκεται πάνω από τη διαχωριστική γραμμή της δεύτερης και της τρίτης στρώσης. Στην περίπτωση αυτή ανοίγεται και ένα τρίτο φρεάτιο που διαπερνά, με τα ίδια μεγέθη, και την τρίτη στρώση. Για τον υπολογισμό του συντελεστή Κ 3 της στρώσης αυτής ακολουθείται η ίδια διαδικασία, όπως και στην περίπτωση των δυο στρώσεων Μέθοδος του πιεζομέτρου Η μέθοδος του πιεζομέτρου ( Piezomee Mehod o Pipe- avi Mehod) προτάθηκε από του ikham το 96 (Luhin, 966) και ο τρόπος εφαρμογής της στον αγρό αναπτύχθηκε από τους Luhin και ikham το 99. Αυτή συνίσταται από τη διάνοιξη ενός φρεατίου στο έδαφος, στην τοποθέτηση ενός σωλήνα στο φρεάτιο, στη δημιουργία μιας κοιλότητας ορισμένου μεγέθους κάτω από το διασωληνωμένο τμήμα του φρεατίου και τέλος στη μέτρηση της ταχύτητας ανύψωσης της στάθμης του νερού μέσα στο σωλήνα, μετά την άντλησή του από αυτόν. Στο σχήμα.8. παρουσιάζεται η εγκατάσταση του πιεζομέτρου με τους διάφορους συμβολισμούς. Η μέθοδος αυτή μειονεκτεί ως προς τη μέθοδο του φρεατίου γιατί απαιτεί περισσότερη εργασία και έτσι κοστίζει περισσότερο.

11 Όμως έχει το πλεονέκτημα ότι με αυτή μπορούμε να μετρήσουμε το συντελεστή υδραυλικής αγωγιμότητας Κ ενός πολύ μικρού όγκου εδάφους, γύρω από την κοιλότητα. Αυτό το πλεονέκτημα είναι σοβαρό στις περιπτώσεις που πρέπει να μετρήσουμε τη διαπερατότητα των διαφόρων στρώσεων ενός διαστρωμένου εδάφους. Ο χρησιμοποιούμενος τύπος για τον υπολογισμό της υδραυλικής αγωγιμότητας από τα δεδομένα των μετρήσεων αυτής της μεθόδου είναι: π. ln. n (.6) όπου είναι η εσωτερική διάμετρος του σωλήνα του πιεζομέτρου, που συνήθως είναι ίση με τη διάμετρο της κοιλότητας c, Α είναι ο παράγοντας σχήματος, ο οποίος εξαρτάται από τα γεωμετρικά χαρακτηριστικά του συστήματος και έχει μονάδες μήκους, είναι η απόσταση της υπόγειας στάθμης από τη στάθμη του νερού στο σωλήνα κατά το χρόνο, n είναι η απόσταση της υπόγειας στάθμης από τη στάθμη του νερού του σωλήνα κατά το χρόνο n και Δ = n - Πιεζομετρικός θάλαμος A/ Επιφάνεια Υπόγεια στάθμη εδάφους H/ = Η / = H n Δ σε Δ H/ = h c D θάλαμο ς h c / Σχήμα.8. Εγκατάσταση πιεζομέτρου Σχήμα.9. Διάγραμμα παράγοντα σχήματος της μεθόδου του πιεζομέτρου για τον υπολογισμό της υδραυλικής αγωγιμότητας Κ Ο Youngs εξέφρασε τα αποτελέσματα της ανάλυσής του σε αδιάστατους όρους και συνέταξε τον πίνακα., ο οποίος δίνει τις τιμές του λόγου Α/ για διάφορες τιμές των h c /, Η/ και D/. Από τα δεδομένα του πίνακα αυτού φαίνεται ότι το έδαφος που βρίσκεται σε μια απόσταση κάτω από το θάλαμο μεγαλύτερη από, έχει μικρή επίδραση στον υπολογισμό του Κ.

12 Επίσης η επίδραση του Η στον παράγοντα Α αυξάνεται, καθώς αυξάνεται η τιμή του h c. Τέλος για τιμές Η/ > η επίδραση του Η στον παράγοντα Α είναι μη σημαντική για τις περισσότερες περιπτώσεις στην πράξη. Πίνακας. Τιμές Α/ για τον υπολογισμό του παράγοντα σχήματος Α (Υουngs,968) h c / Η/ D/ για αδιαπέρατο στρώμα D/ για απείρως διαπερατό στρώμα 8,,,,, 8,,,,, 5,6 5,5 5,3 5,, 3,6 5,6 5,6 5,8 6,3 7,, 6 5,6 5,5 5,3 5,, 3,6 5,6 5,6 5,8 6, 7,5,3 5,6 5,5 5, 5,,5 3,7 5,65 5,9 6,5 7,6 7,6, 8 5,7 5,6 5,5 5,,6 3,8 5,7 5,7 5,9 6,6 7,7,5 5,8 5,7 5,6 5,,8 3,9 5,8 5,8 6, 6,7 7,9,7 8,7 8,6 8,3 7,7 7, 6,,8 8,7 8,9 9,,3, 5, 6 8,8 8,7 8, 7,8 7, 6,,8 8,8 9, 9,,3, 5,,5 8,9 8,8 8,5 8, 7, 6,3,8 8,9 9, 9,5,, 5,3 8 9, 9, 8,7 8, 7, 6,,9 9, 9,3 9,6,5,3 5,3 9,5 9, 9, 8,6 7,5 6,5 5, 9,5 9,6 9,8,6, 5,,6,, 9,3 8, 7,6 6,3,6,,6,8,9 9, 6,7,5, 9, 8,5 7,7 6,,7,,6,8,9 9,,,8,6, 9,5 8,6 7,8 6,5,8,,7,8,9 9, 8,,9,5 9,8 8,9 8, 6,7,,,8,9,9 9,,5,,,5 9,7 8,8 7,3,5,6, 3, 5, 9, 3,8 3,5,8,9,9, 9, 3,8, 5, 6,5 9, 3, 6 3,9 3,6 3,,,, 9, 3,9,3 5, 6,6 9, 3,,, 3,7 3,,3,, 9,,, 5, 6,7 9, 3, 8,3, 3,6,7,5,7 9,6,3,8 5,5 7, 9, 3,3 5,,9,5 3,7,6,7,5 5, 5, 6, 7,6, 3,8 8,6 8, 7,3 6,3 5,3,6 3,6 8,6 9,8,8,7 5,5 9,9 6 9, 8, 7,6 6,6 5,6,8 3,8 9,,,9,8 5,6 9,9, 9, 8,8 8, 7, 6, 5,, 9,,3, 3, 5,8 3, 8 9,8 9, 8,7 7,6 6, 5,5,5 9,8,6, 3,3 6, 3,,,5, 9, 7,8 7, 5,8,,5,, 6,8 3,5 6,9 6, 5,5, 3,,, 6,9 9,6 3,6 3,9 36,,6 6 7, 6,3 5,8, 3,,7,9 7, 9,8 3,8 33, 36,,7 8, 8,3 7, 6, 5,, 3,,6 8,3 3, 3, 33,3 36,,8 8 9, 8, 7, 6, 5,, 3, 9, 3,3 3, 33,8 36,9, 3,8 3, 9,6 8, 6,9 5,7,5 3,8 3,5 3,8 35, 38, 3,.3..3 Έμμεσος τρόπος υπολογισμού της υδραυλικής αγωγιμότητας Η ροή μέσα στους πόρους του εδάφους μπορεί να συγκριθεί με την στρωτή ροή ενός ρευστού μέσα σ' ένα σωλήνα κυκλικής διατομής με εσωτερική ακτίνα. Έτσι αν θεωρηθεί η σταθερή στρωτή ροή σ' ένα σωλήνα με σταθερή εσωτερική διάμετρο d = R αποδεικνύεται

13 ότι η παροχή στο σωλήνα αυτόν υπολογίζεται από τη σχέση (.9) η οποία καλείται Νόμος των Hagen Poiseuille. π.ρ.g.d dh π.ρ.g.d Q i 8.μ ds 8.μ (.9) Σχήμα.. Στρωτή ροή σε στοιχειώδη κύλινδρο μήκους dx Απόδειξη. Από την εφαρμογή της εξίσωσης ποσότητας κινήσεως σ' ένα στοιχειώδη κύλινδρο μήκους dx (σχήμα.. ), προκύπτει : ( ποσότητα κίνησης εισερχόμενου ) - ( ποσότητα κίνησης εξερχομένου ) + Σ F =. Η ποσότητα κίνησης που εισέρχεται στη διατομή Α-Α στη μονάδα χρόνου είναι: m Q ρ m ρ.q Επομένως m.u x ρ.q.u x ρ.u.s.u x ρ.u.π. Ομοίως η ποσότητα κίνησης που εξέρχεται από τη διατομή Β-Β στη μονάδα χρόνου είναι: m.u xdx ρ.u.π..u xdx.u x και επειδή η ταχύτητα u είναι σταθερή ( μόνιμη ροή ) έχουμε : Οι δυνάμεις που ενεργούν στο στοιχειώδη κύλινδρο είναι: ρ.u.π..u x ρ.u.π..u xdx

14 - Δύναμη των πιέσεων : - Δύναμη των τριβών : p p F p.π. p dx.π. dx..π. p x x F τ τ.(.π..dx) - Δύναμη που οφείλεται στη βαρύτητα : Επομένως p ΣF dx..π. x F g γ.π. τ.(.π..dx) γ.π. Έτσι από την εξίσωση ποσότητας κινήσεως προκύπτει : ρ.u.π. p x d p ( d x γ.u x.τ p γ.sinφ x z) ρ.u.π..τ γ..u xdx F.τ γ dh τ.. dx.dx.sinφ.dx.sinφ p dx.π x dz d p γ.(- ) dx γ d x Η διατμητική τάση όμως ακολουθεί τό νόμο τού Νεύτωνα : τ du μ d du μ. d d d και η παραπάνω σχέση γίνεται : τ.(.π..dx) γ.π..dx.sinφ.τ dz - γ. dx du d( ) du d d du du μ. μ. μ.. μ. d d d d d d d du γ dh γ dh μ... du...d du d dx.μ dx Αλλά για = είναι u = οπότε γ dh...μ dx Στη συνέχεια υπολογίζεται η μέση ταχύτητα ροής : Q V E π. u.de π. γ dh..(.μ dx γ..μ και ).π..d π. dh..d u dx γ.μ γ dh u..(.μ dx γ..μ..π dh dx dh.. dx ) (. ( = -) )..d γ.μ. dh. dx γ.μ. dh. dx γ 8.μ dh.. dx ρ.g.d 3.μ dh. dx Επομένως : ρ.g.d dh π.d π.ρ.g.d Q E.V...i 3.μ dx 8.μ όπου η οποία είναι η παροχή της σχέσης (.9) : Αν στη σχέση (.9) τεθεί ρ.g.d 3.μ προκύπτει : dh i dx

15 .d Q και αν τεθεί προκύπτει : i Ei V i d k 3 ρ.g k. μ το οποίο είναι η γεωμετρική διαπερατότητα του πορώδους μέσου Αν υποτεθεί ότι το έδαφος αποτελείται από άπειρους τέτοιους σωλήνες με μέση διάμετρο d και ότι σε μία διατομή Ε υπάρχουν Ν σωλήνες με παροχή ο καθένας, τότε η συνολική παροχή είναι : πρgd Q Ν i 8μ και η ειδική παροχή δια μέσω της πορώδους διατομής Ε είναι: q Q E N πρgd i -i E 8.μ Επομένως Nπd E ρgd 3μ Επειδή το πορώδες του εδάφους είναι n κενών εδαφ. υδραυλική αγωγιμότητα του πορώδους μέσου είναι : ρgd nd ρg ρg g Κ n Κ k k. 3μ 3 μ μ ν πd N E x και η γεωμετρική ή εσωτερική διαπερατότητα αυτού είναι : x πd N.E n.d k 3. προκύπτει ότι η Ένα από τα μοντέλα που έγιναν περισσότερο γνωστά και παραδεκτά στα πορώδη μέσα είναι του ozen και στη συνέχεια η τροποποίηση του από τον aman το (937), πού είναι γνωστό σαν μοντέλο των ozen - aman. Αυτοί εισήγαγαν την έννοια της υδραυλικής ακτίνας στα πορώδη μέσα σαν το λόγο του πορώδους n προς την ειδική επιφάνεια των πόρων. Η εξίσωση των ozen - aman είναι: k 8 3 n ( n) d m όπου d m είναι μία κάποια μέση διάμετρος των κόκκων του εδάφους. Φυσικά ή θεώρηση του εδάφους σαν πορώδες μέσο που αποτελείται από άπειρους σωλήνες με διάμετρο d, αποτελεί μία ιδανική περίπτωση. Παρ' όλη την απλότητα αυτού του

16 μοντέλου, αποδεικνύεται ότι η υδραυλική αγωγιμότητα μπορεί να γραφεί με τη μορφή g Κ k ν. Η γεωμετρική ή εσωτερική διαπερατότητα του πορώδους μέσου k [L ] εξαρτιέται από τις ιδιότητες του στερεού μητρώου, δηλαδή την κατανομή των πόρων, την μορφή των πόρων, την ειδική επιφάνεια, τη στρεβλότητα της διαδρομής (ouosi) και το πορώδες. Επίσης διαπιστώνεται ότι η υδραυλική αγωγιμότητα είναι συνάρτηση της εσωτερικής διαπερατότητας του πορώδους μέσου, των ιδιοτήτων του ρευστού που ρέει (πυκνότητα, δυναμική συνεκτικότητα) και της έντασης του πεδίου βαρύτητας.

17 Προτεινόμενη Βιβλιογραφία. Μενέλαος Θεοχάρης, Στραγγίσεις, Τ.Ε.Ι. Ηπείρου, Άρτα,.. Μενέλαος Θεοχάρης, Ασκήσεις Στραγγίσεων, Τ.Ε.Ι. Ηπείρου, Άρτα,. 3. Θεοχάρης Μ.: " Στραγγίσεις ", Άρτα. Θεοχάρης Μ.: " Ασκήσεις Στραγγίσεων ", Άρτα 5 5. Θεοχάρης Μ.: " Αρδεύσεις - Στραγγίσεις ", Άρτα Θεοχάρης Μ.: " Αρδεύσεις - Στραγγίσεις, Εργαστηριακές Ασκήσεις", Άρτα Dauge - Fanzini : "Υδραυλική" Τόμοι Ι, ΙΙ, Εκδόσεις Πλαίσιο, Αθήνα. 8. Davis- Soensen : " Handbook of applied Hdaulics" Thid ediion McGaw-Hill Book ompan, Ηansen V. - Isaelsen : "Αρδεύσεις. Βασικοί Αρχαί και Μέθοδοι. Μετάφραση από τους Α. Νικολαϊδη και Α. Κοκκινίδη ", Αθήνα 96.. Καρακατσούλης Π. : " Αρδεύσεις - Στραγγίσεις και Προστασία των Εδαφών ", Αθήνα Τερζίδης Γ. - Καραμούζης Δ. :"Υδραυλική Υπόγειων Νερών ", Εκδόσεις Ζήτη, Θεσσαλονίκη Τερζίδης Γ. - Καραμούζης Δ. :"Στραγγίσεις Γεωργικών Εδαφών " Εκδόσεις Ζήτη, Θεσσαλονίκη Τερζίδης Γ. : "Μαθήματα Υδραυλικής", Τόμοι Ι,ΙΙ, ΙΙΙ, Θεσσαλονίκη Τερζίδης Γ. - Παπαζαφειρίου Ζ. : "Γεωργική Υδραυλική ", Εκδόσεις Ζήτη, Θεσσαλονίκη Τζιμόπουλος Χ. : " Στραγγίσεις - Υδραυλική Φρεάτων ", Θεσς/νίκη Χαλκιάς Ν. :"Στραγγίσεις γαιών ", Αθήνα 97.

18 Σημείωμα Αναφοράς opigh Τεχνολογικό Ίδρυμα Ηπείρου. Μενέλαος Θεοχάρης. Στραγγίσεις (Θεωρία) hp://eclass.eiep.g/couses/texg7/ Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης eaive ommons Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα. Διεθνές [] ή μεταγενέστερη. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, Διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [] hp://ceaivecommons.og/licenses/b-nc-nd/./deed.el Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Επεξεργασία: Δημήτριος Κατέρης Άρτα, 5

Στραγγίσεις (Θεωρία)

Στραγγίσεις (Θεωρία) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 4 : Μέτρηση της στάθμης του υπόγειου νερού Δρ. Μενέλαος Θεοχάρης 4.1 Εγκατάσταση πιεζομετρικών σωλήνων Η στάθμη

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ Μενέλαος Θεοχάρης 61 Γενικά Η ροή του υπόγειου νερού ονομάζεται ασταθής,

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 8 : Κλειστοί Αγωγοί ΙΙ Δρ. Μενέλαος Θεοχάρης 5.4. Λυμένες ασκήσεις Άσκηση 1η Δίνεται ένας σωληνωτός αγωγός από

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 1 : Η έννοια της άρδευσης Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 1 : Η έννοια της άρδευσης Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 1 : Η έννοια της άρδευσης Δρ. Μενέλαος Θεοχάρης 1. Η έννοια της άρδευσης 1.1. Γενικά Άρδευση ονομάζεται γενικά η εφαρμογή

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 11 : H υπόγεια άρδευση Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 11 : H υπόγεια άρδευση Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 11 : H υπόγεια άρδευση Δρ. Μενέλαος Θεοχάρης 11. H υπόγεια άρδευση 11.1. Γενικά. Η υπόγεια άρδευση ή υπάρδευση συνίσταται

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 0 : Ανοικτοί Αγωγοί II Δρ. Μενέλαος Θεοχάρης Μόνιμη ομοιόμορφη ροή σε ανοικτούς αγωγούς 6... Εφαρμογή Για b=0,60

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 6 : Εκροές Δρ. Μενέλαος Θεοχάρης Εκροές Εκροές από οπές υπερχειλιστές & θυροφράγματα Εισαγωγή Τα προβλήματα εκροής

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 5 : Κίνηση του νερού στο έδαφος Ι Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 5 : Κίνηση του νερού στο έδαφος Ι Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 5 : Κίνηση του νερού στο έδαφος Ι Δρ. Μενέλαος Θεοχάρης 4.1 Γενικά Όπως προαναφέρθηκε, το νερό που βρίσκεται μέσα

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 3 : Φυσικές ιδιότητες του εδάφους ΙΙ Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 3 : Φυσικές ιδιότητες του εδάφους ΙΙ Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 3 : Φυσικές ιδιότητες του εδάφους ΙΙ Δρ. Μενέλαος Θεοχάρης 2.3.6 Το νερό μέσα στο έδαφος 2.3.6.1 Κατηγορίες του

Διαβάστε περισσότερα

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως. Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή

Διαβάστε περισσότερα

Υπόγεια Υδραυλική και Υδρολογία

Υπόγεια Υδραυλική και Υδρολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: ΝΟΜΟΣ ΤΟΥ DARCY Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου ΑΠΘ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 1 : Εισαγωγή Δρ. Μενέλαος Θεοχάρης

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 1 : Εισαγωγή Δρ. Μενέλαος Θεοχάρης Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 1 : Εισαγωγή Δρ. Μενέλαος Θεοχάρης 1.1 Η υπόγεια στάθμη Στραγγίσεις είναι η επιστήμη που ασχολείται με την απομάκρυνση

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 2 : Φυσικές ιδιότητες του εδάφους Ι Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 2 : Φυσικές ιδιότητες του εδάφους Ι Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 2 : Φυσικές ιδιότητες του εδάφους Ι Δρ. Μενέλαος Θεοχάρης 2.1 Γενικά Ο όρος έδαφος αναφέρεται βασικά στην εξωτερική

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 8 : Η άρδευση με κατάκλυση Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 8 : Η άρδευση με κατάκλυση Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 8 : Η άρδευση με κατάκλυση Δρ. Μενέλαος Θεοχάρης 8. Η άρδευση με κατάκλυση Γενικά. Κατά τη μέθοδο αυτή η προς άρδευση

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 6 ο : Υδρολογία

Διαβάστε περισσότερα

Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών

Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών Γραπτή εξέταση περιόδου Ιουνίου 011 διάρκειας,0 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική (ΜΕ0011), 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επ.Συν.Τμ.Πολ.Εργ.Υποδ.

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΩΝ ΓΕΩΠΟΝΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΩΝ ΓΕΩΠΟΝΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ CRP5050 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Ε ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 9 : Ανοικτοί Αγωγοί I Δρ. Μενέλαος Θεοχάρης Μόνιμη ομοιόμορφη ροή σε ανοικτούς αγωγούς 6.1. Γενικά Ανοικτός αγωγός

Διαβάστε περισσότερα

Υπόγεια ροή. Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής

Υπόγεια ροή. Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής Υπόγεια ροή Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής Ποια προβλήματα λύνονται με ποια εργαλεία; Μονοδιάστατα προβλήματα (ή μονοδιάστατη απλοποίηση -D πεδίων ροής), σταθερή υδραυλική κλίση

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΤΟΥ Ε ΑΦΙΚΟΥ ΝΕΡΟΥ

ΚΙΝΗΣΗ ΤΟΥ Ε ΑΦΙΚΟΥ ΝΕΡΟΥ ΚΙΝΗΣΗ ΤΟΥ Ε ΑΦΙΚΟΥ ΝΕΡΟΥ Το εδαφικό νερό υπό την επίδραση διαφόρων δυνάµεων βρίσκεται σε συνεχή κίνηση και µπορεί να κινηθεί προς διάφορες κατευθύνσεις. Οι δυνάµεις οφείλονται στη βαρύτητα, Στην πίεση

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών. Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 7 :Κλειστοί Αγωγοί Ι Δρ. Μενέλαος Θεοχάρης Ροή σε κλειστούς αγωγούς υπό πίεση 5.1. Γενικά Η ροή των πραγματικών

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 10 : Η άρδευση με αυλάκια Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 10 : Η άρδευση με αυλάκια Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 10 : Η άρδευση με αυλάκια Δρ. Μενέλαος Θεοχάρης 10. Η άρδευση με αυλάκια 10.1. Γενικά. Από τις επιφανειακές μεθόδους

Διαβάστε περισσότερα

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου.

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου. Δίνονται g=10m/s 2, ρ ν =1000 kg/m 3 [u 2 =3u 1, 10 3 Pa, 0,5m/s] ΚΕΦΑΛΑΙΟ 3 ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI 16 Το ανοικτό δοχείο του σχήματος περιέχει

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι. κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Ι κ. ΣΟΦΙΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης Η παρουσίαση του τρόπου υπολογισμού της

Διαβάστε περισσότερα

Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα

Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα Κεφάλαιο 5: Αρχές υδραυλικής στα αστικά υδραυλικά έργα Γραμμικές απώλειες Ύψος πίεσης Γραμμικές απώλειες Αρχές μόνιμης ομοιόμορφης ροής Ροή σε κλειστό αγωγό Αρχή διατήρησης μάζας (= εξίσωση συνέχειας)

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

Τα τρία βασικά προβλήματα της Υδραυλικής

Τα τρία βασικά προβλήματα της Υδραυλικής Τα τρία βασικά προβλήματα της Υδραυλικής Α βασικό πρόβλημα,, παροχή γνωστή απλός υπολογισμός απωλειών όχι δοκιμές (1): L1 = 300, d1 = 0.6 m, (): L = 300, d = 0.4 m Q = 0.5m 3 /s, H=?, k=0.6 mm Διατήρηση

Διαβάστε περισσότερα

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright, 2012, Eκδόσεις ZHTH, Διαμαντής Νικ. Καραμούζης

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright, 2012, Eκδόσεις ZHTH, Διαμαντής Νικ. Καραμούζης Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 978-960-456-315-9 Copyright, 2012, Eκδόσεις ZHTH, Διαμαντής Νικ. Καραμούζης Tο παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται κατά τις διατάξεις

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης Η παρουσίαση του τρόπου υπολογισμού της

Διαβάστε περισσότερα

ΑΝΤΛΗΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ. Προϋποθέσεις

ΑΝΤΛΗΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ. Προϋποθέσεις ΑΝΤΛΗΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ Κατά τη διάρκεια των αντλήσεων σε έργα υδροληψίας (γεωτρήσεις, πηγάδια) δημιουργείται σαν συνέπεια των αντλήσεων ένας ανάστροφος κώνος ή κώνος κατάπτωσης (depession cone) του οποίου

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

Γεωργικά Μηχανήματα (Εργαστήριο)

Γεωργικά Μηχανήματα (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικά Μηχανήματα (Εργαστήριο) Ενότητα 8 : Γεωργικός Ελκυστήρας Σύστημα Διεύθυνσης - Σύστημα Πέδησης Δρ. Δημήτριος Κατέρης Εργαστήριο 8 ο ΣΥΣΤΗΜΑ

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 13 : Στραγγιστικά δίκτυα ΙΙ Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 13 : Στραγγιστικά δίκτυα ΙΙ Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Στραγγίσεις (Θεωρία) Ενότητα 13 : Στραγγιστικά δίκτυα ΙΙ Δρ. Μενέλαος Θεοχάρης 8.3.2.3 Η κατασκευή των τάφρων Η κατασκευή των στραγγιστικών δικτύων,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 4: Κινητική ενέργεια-έργο-ισχύς- Δυναμική ενέργεια

ΦΥΣΙΚΗ. Ενότητα 4: Κινητική ενέργεια-έργο-ισχύς- Δυναμική ενέργεια ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 4: Κινητική ενέργεια-έργο-ισχύς- Δυναμική ενέργεια Παπαζάχος Κωνσταντίνος Καθηγητής Γεωφυσικής, Τομέας Γεωφυσικής Τσόκας

Διαβάστε περισσότερα

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 1:Εισαγωγικές έννοιες της Υδρογεωλογίας. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 1:Εισαγωγικές έννοιες της Υδρογεωλογίας. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας ΥΔΡΟΧΗΜΕΙΑ Ενότητα 1:Εισαγωγικές έννοιες της Υδρογεωλογίας Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Συνοπτική παρουσίαση του Εργαστηρίου Υδρογεωλογίας του Τμήματος Γεωλογίας

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

Αρδεύσεις (Εργαστήριο)

Αρδεύσεις (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Εργαστήριο) Ενότητα 12 : Μελέτη άρδευσης συγκροτήματος καταιονισμού Δρ. Μενέλαος Θεοχάρης ΜΕΛΕΤΗ ΑΡΔΕΥΤΙΚΩΝ 6.1.1 ΣΥΓΚΡΟΤΗΜΑΤΩΝ ΚΑΤΑΙΟΝΙΣΜΟΥ

Διαβάστε περισσότερα

Τεχνική Υδρολογία. Κεφάλαιο 6 ο : Υδρολογία Υπόγειων Νερών. Φώτιος Π. ΜΑΡΗΣ

Τεχνική Υδρολογία. Κεφάλαιο 6 ο : Υδρολογία Υπόγειων Νερών. Φώτιος Π. ΜΑΡΗΣ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία Κεφάλαιο 6 ο : Υδρολογία Υπόγειων

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 11 : Κόστος παραγωγής Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 11 : Κόστος παραγωγής Καραμάνης Κωνσταντίνος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Μικροοικονομική Ενότητα 11 : Κόστος παραγωγής Καραμάνης Κωνσταντίνος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και χρηματοοικονομικής

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας

Διαβάστε περισσότερα

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 7: Τεχνικές εξυγίανσης υπόγειων υδροφορέων Αναπληρωτής Καθηγητής Νικόλαος

Διαβάστε περισσότερα

Πορώδη µέσα - Εξισώσεις ροής

Πορώδη µέσα - Εξισώσεις ροής ΝΟΜΟΣ DARCY Πορώδη µέσα - Εξισώσεις ροής (1) Αρχή διατήρησης µάζας - Εξίσωση συνέχειας (2) Εξισώσεις κίνησης (εξισώσεις Navier-Stokes) Ροή συνήθως στρωτή, µε πολύµικρό αριθµό Reynolds =έρπουσα ροή, εποµένως:

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΝΕΡΟΥ ΣΕ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ

ΕΠΙΔΡΑΣΗ ΤΗΣ ΡΟΗΣ ΝΕΡΟΥ ΣΕ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΕΔΑΦΟΜΗΧΑΝΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,

Διαβάστε περισσότερα

Γεωργικές και Θερμοκηπιακές κατασκευές (Εργαστήριο)

Γεωργικές και Θερμοκηπιακές κατασκευές (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικές και Θερμοκηπιακές κατασκευές (Εργαστήριο) Ενότητα 1: Διαστασιολόγηση της επικάλυψης των υαλόφρακτων θερμοκηπίων Δρ Μενέλαος Θεοχάρης

Διαβάστε περισσότερα

Γεωργικά Μηχανήματα (Θεωρία)

Γεωργικά Μηχανήματα (Θεωρία) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικά Μηχανήματα (Θεωρία) Ενότητα 11 : Γεωργικά Μηχανήματα Μηχανήματα σποράς και φύτευσης Δρ. Δημήτριος Κατέρης ΜΗΧΑΝΙΚΗ ΣΠΟΡΑ - ΦΥΤΕΥΣΗ-ΛΙΠΑΝΣΗ

Διαβάστε περισσότερα

Σχέσεις εδάφους νερού Σχέσεις μάζας όγκου των συστατικών του εδάφους Εδαφική ή υγρασία, τρόποι έκφρασης

Σχέσεις εδάφους νερού Σχέσεις μάζας όγκου των συστατικών του εδάφους Εδαφική ή υγρασία, τρόποι έκφρασης Γεωργική Υδραυλική Αρδεύσεις Σ. Αλεξανδρής Περιγραφή Μαθήματος Σχέσεις εδάφους νερού Σχέσεις μάζας όγκου των συστατικών του εδάφους Εδαφική ή υγρασία, τρόποι έκφρασης Χαρακτηριστική Χ ή καμπύλη υγρασίας

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 9 : Η άρδευση με περιορισμένη διάχυση Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 9 : Η άρδευση με περιορισμένη διάχυση Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 9 : Η άρδευση με περιορισμένη διάχυση Δρ. Μενέλαος Θεοχάρης 9. Η άρδευση με περιορισμένη διάχυση Γενικά. Η ομοιόμορφη

Διαβάστε περισσότερα

Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli

Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli Ιωάννης Α. Σιανούδης Πραγματικά ρευστά: Επιβεβαίωση του θεωρήματος του Torricelli Σκοπός Σκοπός της άσκησης αυτής είναι η επιβεβαίωση μέσα από μια σειρά μετρήσεων και υπολογισμών του θεωρήματος του Torricelli,

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών

Εργαστήριο Μηχανικής Ρευστών Εργαστήριο Μηχανικής Ρευστών Αργυρόπουλος Αθανάσιος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Β Ημ/νία εκτέλεσης Πειράματος: 26-11-1999 Ημ/νία παράδοσης Εργασίας: 16-12-1999 1 Θεωρητική Εισαγωγή: 1. Εισαγωγικές έννοιες

Διαβάστε περισσότερα

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ

ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκοντες: Βασίλειος Παπαδόπουλος,

Διαβάστε περισσότερα

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα).

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα). 1. Το κυβικό δοχείο του σχήματος ακμής h = 2 m είναι γεμάτο με υγρό πυκνότητας ρ = 1,1 10³ kg / m³. Το έμβολο που κλείνει το δοχείο έχει διατομή Α = 100 cm². Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά

Διαβάστε περισσότερα

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου

Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Ανατομία - Φυσιολογία Ακοής Ομιλίας Λόγου Ενότητα 5 : Στοματική κοιλότητα Φάρυγγας (Μέρος Α ) Ναυσικά Ζιάβρα 2 Ανοιχτά Ακαδημαϊκά Μαθήματα

Διαβάστε περισσότερα

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

Γεωργικά Μηχανήματα (Εργαστήριο)

Γεωργικά Μηχανήματα (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικά Μηχανήματα (Εργαστήριο) Ενότητα 10 : Γεωργικά Μηχανήματα Μηχανήματα κατεργασίας του Εδάφους ΙΙ Δρ. Δημήτριος Κατέρης Εργαστήριο 10 ο

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 3 : Η ποιότητα του αρδευτικού νερού Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Αρδεύσεις (Θεωρία) Ενότητα 3 : Η ποιότητα του αρδευτικού νερού Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρδεύσεις (Θεωρία) Ενότητα 3 : Η ποιότητα του αρδευτικού νερού Δρ. Μενέλαος Θεοχάρης 3. Η ποιότητα του αρδευτικού νερού Η φυσική ποιότητα Από

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Περατότητα και Διήθηση διαμέσου των εδαφών

Περατότητα και Διήθηση διαμέσου των εδαφών Περατότητα και Διήθηση διαμέσου των εδαφών Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια = 17 λεπτά 1 Τι είναι Περατότητα των εδαφών? Ένα μέτρο για το πόσο εύκολα ένα ρευστό (π.χ., νερό) μπορεί να περάσει

Διαβάστε περισσότερα

Γεωργικά Μηχανήματα (Θεωρία)

Γεωργικά Μηχανήματα (Θεωρία) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικά Μηχανήματα (Θεωρία) Ενότητα 7 : Γεωργικός ελκυστήρας Συστήματα μηχανικής μετάδοσης της κίνησης Δρ. Δημήτριος Κατέρης ΣΥΣΤΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ

Διαβάστε περισσότερα

Ροη αέρα σε Επίπεδη Πλάκα

Ροη αέρα σε Επίπεδη Πλάκα Ροη αέρα σε Επίπεδη Πλάκα Η ροή του αέρα γύρω από ένα σώμα επηρεάζεται από παράγοντες όπως το σχήμα του σώματος, το μέγεθός του, ο προσανατολισμός του, η ταχύτητά του όπως επίσης και οι ιδιότητες του ρευστού.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ενότητα 2: Ο νόμος του Gauss Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.4: Υπολογισμός Όγκων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΑ ΠΕΔΙΑ ΣΤΗΝ ΥΛΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μοντέλα Boussinesq. Σειρά V 2

Μοντέλα Boussinesq. Σειρά V 2 Μοντέλα Boussinesq Σειρά V Μοντέλα Boussinesq Η πρώτη ομάδα εξισώσεων εφαρμοσμένη σε μη σταθερό πυθμένα εξήχθη από τον Peregrine (1967) και είναι κοινώς γνωστές ως εξισώσεις Boussinesq. Η μαθηματική προσομοίωση

Διαβάστε περισσότερα

Γεωργικά Μηχανήματα (Εργαστήριο)

Γεωργικά Μηχανήματα (Εργαστήριο) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικά Μηχανήματα (Εργαστήριο) Ενότητα 4 : Γεωργικός Ελκυστήρας Σύστημα Λιπάνσεως Δρ. Δημήτριος Κατέρης Εργαστήριο 4 ο ΣΥΣΤΗΜΑ ΛΙΠΑΝΣΗΣ Το

Διαβάστε περισσότερα

Απόδειξη της σχέσης 3.17 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο

Απόδειξη της σχέσης 3.17 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο ΜΗΧΑΝΙΚΗ ΠΕΤΡΕΛΑΙΩΝ ΚΕΦΑΛΑΙΟ 3 Ασκήσεις Απόδειξη της σχέσης 3.7 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο Νόµος Darcy: A dp π rh dp Q Q µ dr µ dr I e Q µ dr Q µ dr dp dp

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2013 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 013 Θεωρητικό Μέρος Β Λυκείου 9 Μαρτίου 013 Θέμα 1 ο A. Ένα σωματίδιο με μάζα m και ηλεκτρικό φορτίο q επιταχύνεται από διαφορά δυναμικού V, κινούμενο

Διαβάστε περισσότερα

Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται

Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται Ομοιόμορφη ροή σε ανοικτούς αγωγούς γ Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning Σύνθετες διατομές Μθδλ Μεθοδολογίες τα τρία βασικά προβλήματα της Υδραυλικής των ανοικτών

Διαβάστε περισσότερα

Υδρεύσεις Αποχετεύσεις - Αρδεύσεις

Υδρεύσεις Αποχετεύσεις - Αρδεύσεις ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υδρεύσεις Αποχετεύσεις - Αρδεύσεις Ενότητα 4. Σχεδιασμός δικτύων αποχέτευσης Ζαφειράκου Αντιγόνη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

Hydraulics - Υδραυλική CIV 224

Hydraulics - Υδραυλική CIV 224 Hydraulics - Υδραυλική CIV 224 5 ECTS - Ώρες διδασκαλίας 4: Θεωρία 3 ώρες, Εργαστήριο/Φροντιστήριο 1 ώρα Διδάσκοντας: Δρ. Ευάγγελος Ακύλας (www.evangelosakylas.weebly.com) Περιγραφή Μαθήματος Στοιχεία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Διαβάστε περισσότερα