Αναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο.
|
|
- Παύλος Γούσιος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο. Πού χρειάζεται; Πολλές μαθηματικές συναρτήσεις ορίζονται αναδρομικά. Δεν είναι προφανές πώς μπορούν να οριστούν αλλιώς. Πολλά προβλήματα λύνονται εύκολα αναδρομικά και δύσκολα μη αναδρομικά
2 Τρίγωνο Sierpinski Μη αναδρομικός ορισμός;
3 Δύο παρεξηγήσεις «Είναι δύσκολο να κατανοηθεί» Όχι, απλά απαιτείται εξάσκηση «Δεν είναι αποδοτική (χάσιμο χρόνου, χώρου)» Κριτήριο η ευκολία για τον άνθρωπο, όχι την μηχανή. Η αποδοτικότητα εξαρτάται από την επιλογή αλγορίθμου (καλή και κακή χρήση αναδρομικότητας). Θα δούμε δύο παραδείγματα.
4 Σκέψου Αναδρομικά Χωρίζουμε τη λύση σε τρία μέρη i. Κάνε κάποια δουλειά προς την λύση ii. Χρησιμοποίησε την μέθοδο για ένα (ή περισσότερα) μικρότερα υπο-προβλήματα σε ένα (ή περισσότερα) υποσύνολο δεδομένων iii. Ένωσε το i) και ii) Πρέπει να περιλαμβάνει μια τετριμμένη περίπτωση για το i), που να μην απαιτείται η ii) ώστε να σταματάει η αναδρομικότητα
5 Παράδειγμα: Παραγοντικό Αναδρομικός Ορισμός του n!, n>=0 0! = 1 n! = n * (n-1)! Αναδρομικός Ορισμός Υποπρογράμματος «Λίγη δουλειά»: ένας πολλαπλασιασμός και μια αφαίρεση Βήμα Διακοπής (stopping case) το 0! -«Υποπρόβλημα»: Αναδρομικό Βήμα (recursive step) (n-1)! -Ενώνουμε τα δύο
6 Αναδρομικός Υπολογισμός του 3! 3! = 3 * 2! 2! = 2 * 1! 1! = 1* 0! 0! = 1 Χρησιμοποιώντας την τιμή 1 του 0! (βήμα διακοπής) είναι δυνατός ο υπολογισμός του 3! επιστρέφοντας στον υπολογισμό του 1!, του 2! και τέλος του 3! όπως φαίνεται στο παρακάτω σχήμα 3! = 3 * 2! = 3 * 2 = 6 2! = 2 * 1! = 2 * 1 = 2 1! = 1 * 0! = 1 * 1 = 1 0! = 1 Βήμα Διακοπής
7 Ο αναδρομικός αυτός ορισμός μπορεί να υλοποιηθεί εύκολα όπως φαίνεται στο παρακάτω υποπρόγραμμα: long par(int n) { long timi; if (n == 0) /* βήμα διακοπής */ timi = 1; else /* αναδρομικό βήμα n! = n * (n-1)!*/ timi = n * par(n - 1); // επιστροφή (Α) return (timi); }
8 paragontiko = par(3); 6 To n είναι 3 timi = 3* par(2) επιστροφή Αποτέλεσμα 2 To n είναι 2 timi = 2* par(1) επιστροφή Αποτέλεσμα 1 Παρουσιάζεται ο τρόπος λειτουργίας του αναδρομικού υποπρογράμματος, όπου κάθε πλαίσιο σχετίζεται με την εγγραφή ενεργοποίησης (activation record). To n είναι 1 timi = 1* par(0) επιστροφή Αποτέλεσμα 1 To n είναι 0 timi = 1 επιστροφή
9 Υλοποίηση Αναδρομής { /*κύριο πρόγραμμα*/ x = par(3); /* program address B */ } παράμετροι 3 B Διεύθυνση επιστροφής συνάρτησης 1 η κλήση της par(3) στο main (B) 2 Α 3 B 2 η κλήση της par(2) στην par (A)
10 3 η και 4 η κλήσεις της par(1) και par(0) στην par (A) 0 Α 1 Α 2 Α 3 B Τερματισμός 4 ης κλήσης της par(0) στην par (A) Επιστροφή τιμής 0!==1 Επιστροφή ροής προγράμματος στην διεύθυνση Α 1 Α 2 Α 3 B 1 Α
11 Τερματισμός 3 ης κλήσης της par(1) στην par (A) Επιστροφή τιμής 1!==1*0!==1 Επιστροφή ροής προγράμματος στην διεύθυνση Α 2 Α 3 B 1 Α Τερματισμός 2 ης κλήσης της par(2) στην par (A) Επιστροφή τιμής 1!==2*1!==2 Επιστροφή ροής προγράμματος στην διεύθυνση Α 3 Β 2 Α 6 Β Τερματισμός 1 ης κλήσης της par(3) στην main (B) Επιστροφή τιμής 3!==3*2!=6 Επιστροφή ροής προγράμματος στην διεύθυνση B
12 Οπτικοποίηση Χρόνου - Χώρου Συναρτήσεων Χρόνος Κλήσεων, Διάρκεια Εκτέλεσης και Απαιτούμενη μνήμη) Space E B Proc A C Main Proc D Proc D Proc D Proc D Time
13 Πολυπλοκότητα Ο(?) Παραγοντικού Αναδρομή-Επανάληψη Χρήση αναδρομικών συναρτήσεων Α. Με αναδρομή timi = n * par (n - 1) : Δυο κύριες πράξεις *, - T Α (n) = 2 + T(n - 1) = T(n - 2) = T(0) = 2*n+1 T Α (n) = O(n) Β. Με επανάληψη n! = 1*1 * 2 * 3 *... * n, μια κύρια πράξη * T Ε (n) = =(n+1)*1=n+1 T Ε (n) = O(n) T Α (n) = T Ε (n) = O(n)
14 Αριθμοί Fibonacci Fibn = Fibn-1 + Fibn-2 Αναδρομική Υλοποίηση long Fib (long n) { long Fibnum; if (n <= 0) Fibnum = 0; else if (n == 1) Fibnum = 1; else Fibnum = Fib (n - 1) + Fib (n - 2); } return (Fibnum);
15 Πολυπλοκότητα Αναδρομικής Υλοποίησης Fibnum = Fib (n - 1) + Fib (n - 2); 3 βασικές πράξεις -, +, - Τ(n) = 3 + T(n - 1) + T(n - 2) = 3 + [3 + T(n - 2) + T(n - 3)] + T(n - 2) = 6 + 2Τ(n-2) + Τ(n - 3), για n>=3 T(n) >= 2T(n - 2) >= 2 2 T(n - 4) >=... >= 2 n/2 T(0), αν n άρτιο ή T(n) >= 2T(n - 2) >= 2 2 T(n - 4) >=... >= 2 (n-1)/2 T(1), αν n περιττό Αλλά Τ(0) = Τ(1) = 1, συνεπώς T Α (n) = O(2 n/2 ) για όλα τα n >=2 Αναδρομικές Συναρτήσεις Αναλυτικές Λύσεις (μάθημα Πολυπλοκότητα)
16 long efib (long n) /* Επαναληπτικό υποπρόγραμμα για τον υπολογισμό του n-ιοστού αριθμού Fibonacci*/ { long Fib1, Fib2, Fib3, i; } Fib1 = 0; Fib2 = 1; for (i = 3;i<=n;i++) { Fib3 = Fib1 + Fib2; Fib1 = Fib2; Fib2 = Fib3; } return(fib2); T E = = 1*(n+1)= n+ 1= O(n)
17 The Ackermann function Η συνάρτηση Ackermann ορίζεται αναδρομικά για μη-αρνητικούς ακέραιους m, n ως εξής
18 Η υλοποίηση απλή long ack(int m, int n) { if (m == 0) return (n+1) ; else if (n = =0) return ack(m-1, 1) ; else return ack(m-1, ack(m, n-1)) ; }
19 ... Αλλά η συμπεριφορά της A(1, 2) = A(0, A(1,1)) = A(0, A(0, A(1,0))) = A(0, A(0, A(0,1))) = A(0, A(0, 2)) = A(0, 3) = 4
20 A(4, 3) = A(3, A(4, 2)) = A(3, A(3, A(4, 1))) = A(3, A(3, A(3, A(4, 0)))) = A(3, A(3, A(3, A(3, 1)))) = A(3, A(3, A(3, A(2, A(3, 0))))) = A(3, A(3, A(3, A(2, A(2, 1))))) = A(3, A(3, A(3, A(2, A(1, A(2, 0)))))) = A(3, A(3, A(3, A(2, A(1, A(1, 1)))))) = A(3, A(3, A(3, A(2, A(1, A(0, A(1, 0))))))) = A(3, A(3, A(3, A(2, A(1, A(0, A(0, 1))))))) = A(3, A(3, A(3, A(2, A(1, A(0, 2)))))) = A(3, A(3, A(3, A(2, A(1, 3))))) = A(3, A(3, A(3, A(2, A(0, A(1, 2)))))) = A(3, A(3, A(3, A(2, A(0, A(0, A(1, 1))))))) = A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(1, 0)))))))) = A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(0, 1)))))))) = A(3, A(3, A(3, A(2, A(0, A(0, A(0, 2)))))) = A(3, A(3, A(3, A(2, A(0, A(0, 3))))) = A(3, A(3, A(3, A(2, A(0, 4))))) = A(3, A(3, A(3, A(2, 5)))) =... = A(3, A(3, A(3, 13))) =... = A(3, A(3, 65533)) =... A(3, 65533) επιστρέφει , αριθμός μεγαλύτερος από τον αριθμό των ατόμων σε όλο τον ορατό κόσμο. Κατόπιν, αυτός ο αριθμός χρησιμοποιείται ως δύναμη του 2 για το τελικό αποτέλεσμα.
21 Πιθανές Παγίδες Λάθος συνθήκη τερματισμού (do while) Ατέρμων Βρόχος Συνεχής Αναδρομή Δεν γίνεται Έλεγχος τερματισμού Χρησιμοποιούμε αναδρομή με μη αποδεκτές παραμέτρους
22 Μη τερματίζουσα Αναδρομή Δεν ικανοποιείται η συνθήκη τερματισμού Κλήση par(-1) ενώ ελέγχουμε (n==0) Συμπτώματα: συνεχείς κλήσεις έως ότου εξαντληθεί η μνήμη Δεν αλλάζουν οι παράμετροι της αναδρομής, N=f(N). Δεν υπάρχει πρόοδος.
23 Αφαίρεση της Γραμμικής Αναδρομής (αναδρομή με μια μόνο αναδρομική κλήση) Με χρήση Στοίβας void grammiki_anadromi (long n) { if (συνθήκη (n)) μη αναδρομική περίπτωση (n); else { προηγούμενες πράξεις (n); grammiki_anadromi (F(n)); μετέπειτα πράξεις (n); } }
24 void epanaliptiki (long n) { typos_stoiva stoiva; dimiourgia(stoiva); while (!συνθήκη (n)) { προηγούμενες πράξεις (n); othisi (stoiva, n); n = F(n); } } μη αναδρομική περίπτωση (n); while (!keni(stoiva)) { exagogi(stoiva, &n); μετέπειτα πράξεις (n); }
Αναδροµή (Recursion) ύο παρεξηγήσεις. Σκέψου Αναδροµικά. Τρίγωνο Sierpinski Μη αναδροµικός ορισµός;
Αναδροµή (Recursion) Πώς να λύσουµε ένα πρόβληµα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί µε τον ίδιο τρόπο. Πού χρειάζεται; Πολλές µαθηµατικές συναρτήσεις ορίζονται αναδροµικά. εν είναι
Προγραµµατισµός. Αναδροµή (1/2)
Προγραµµατισµός Αναδροµή (1/2) Προγραµµατισµός Κλήσεις Συναρτήσεων Όταν καλείται µια συνάρτηση, πρέπει Να θυµάται σε ποιο σηµείο του προγράµµατος θα επιστρέψει Να δεσµεύσει χώρο για την τιµή που θα επιστρέψει
Αναδρομή Ανάλυση Αλγορίθμων
Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).
Προγραμματισμός Αναδρομή
Αναδρομή Κλήσεις Συναρτήσεων Όταν καλείται μια συνάρτηση, πρέπει Να θυμάται σε ποιο σημείο του προγράμματος θα επιστρέψει Να δεσμεύσει χώρο για την τιμή που θα επιστρέψει Να δεσμεύσει χώρο για τα ορίσματα
Προγραμματισμός Αναδρομή
Προγραμματισμός Αναδρομή Προγραμματισμός Προγραμματισμός Κλήσεις Συναρτήσεων Όταν καλείται μια συνάρτηση, πρέπει Να θυμάται σε ποιο σημείο του προγράμματος θα επιστρέψει Να δεσμεύσει χώρο για την τιμή
ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό. Αναδροµικές Συναρτήσεις Χειµερινό Εξάµηνο 2014
ΜΥΥ105: Εισαγωγή στον Προγραµµατισµό Αναδροµικές Συναρτήσεις Χειµερινό Εξάµηνο 2014 Ορισµός και ιδιότητες Μια συνάρτηση είναι αναδροµική αν καλεί τον εαυτό της Οι περισσότερες γλώσσες προγραµµατισµού υποστηρίζουν
Διάλεξη 20: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου
1 Διάλεξη 20: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Η έννοια της αναδρομής - Μη-αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων - Παραδείγματα Ανάδρομης - Αφαίρεση
Χαρακτηριστικά αναδροµής
Χαρακτηριστικά αναδροµής base case : συνθήκη τερµατισµού της αναδροµής Όταν το πρόβληµα είναι αρκετά µικρό ή απλό ώστε η λύση να είναι άµεση αναδροµικό βήµα : κλήση της ίδιας συνάρτησης για µικρότερη ή
Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 9.8
Δείκτες (Pointers) Ένας δείκτης είναι μια μεταβλητή με τιμή μια διεύθυνση μνήμης. 1000 1001 1002 1003 1004 1005 12 9.8 9976 3 1010 26 1006 1007 1008 1009 1010 1011 16 125 1299 a 13 1298 Δήλωση Δήλωση Τύπος
ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή
ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή Στο εργαστήριο αυτό θα μάθουμε για τη χρήση συναρτήσεων με σκοπό την κατασκευή αυτόνομων τμημάτων προγραμμάτων που υλοποιούν μία συγκεκριμένη διαδικασία, τα οποία
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωμύλος Κορακίτης
ΣΥΝΑΡΤΗΣΕΙΣ (Functions)
ΣΥΝΑΡΤΗΣΕΙΣ (Functions) Δομή Συνάρτησης τύπος όνομα ( λίστα τυπικών παραμέτρων ) Δηλώσεις μεταβλητών εντολή_1 εντολή_2 : εντολή_ν Σώμα της συνάρτησης Δομή της Λίστας Τυπικών Παραμέτρων τύπος_1 τύπος_2
ΣΤΟΙΒΕΣ (stacks) Σχήµα: Λειτουργία Στοίβας
ΣΤΟΙΒΕΣ (stacks) Η στοίβα είναι µια συλλογή δεδοµένων µε γραµµική διάταξη στην οποία όλες οι εισαγωγές και οι διαγραφές γίνονται στο ένα άκρο που λέγεται κορυφή (top) της στοίβας Σχήµα: Λειτουργία Στοίβας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
ΕΠΛ232: Εργαστήριο 2
ΕΠΛ232: Εργαστήριο 2 Παράδειγμα σε Στοίβες 1 Υπολογισμός Αριθμητικών Παραστάσεων - Πολωνικός Συμβολισμός A + (B * C) A + (BC * ) A(BC *) + ABC * + Ενδοθεματική μορφή Μεταθεματική μορφή Οι κανόνες που διέπουν
Σημειωματάριο μαθήματος 1ης Νοε. 2017
Σημειωματάριο μαθήματος 1ης Νοε. 2017 Παραδείγματα συναρτήσεων. Αναδρομικές συναρτήσεις. Ξεκινήσαμε πακετάροντας παλαιότερό μας κώδικα για τον υπολογισμό των διαιρετών ενός φυσικού αριθμού σε συνάρτηση.
Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035).
Ανάλυση Αλγορίθµων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Ανάλυση αλγορίθµων Ο, Θ, Ω Ανάλυση µη αναδροµικών αλγόριθµων Ανάλυση αναδροµικών αλγόριθµων Εµπειρική Ανάλυση Visualization Απόδοση Αλγορίθµων Απόδοση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής:
Εργαστήριο 1. Βαθμός ΑΜ Εργ1.2 Σχόλια Εργ1.3 Σχόλια (20)
Εργαστήριο 1 ΑΜ Εργ1.2 Σχόλια Εργ1.3 Σχόλια (2) 1 5 Μόνο μέγιστες τιμές, με λάθη 15 95 Στοίχιση 95 Στοίχιση 19 95 Πλεονάζων έλεγχος ισότητας 7 Ίσες τιμές, μη φωλιασμένος έλεγχος, λάθος: 4-1-2-3 16,5 1
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
τις αναδρομικές ακολουθίες (recursive sequences) στις οποίες ορίζαμε
Κεφάλαιο 9: Αναδρομή Ο τρόπος με τον οποίο σκεφτήκαμε και σχεδιάσαμε τις συναρτήσεις στο προηγούμενο κεφάλαιο ακολουθούσε τη φιλοσοφία του προγραμματισμού που είχαμε αναπτύξει σε όλο το προηγούμενο βιβλίο.
ΣΥΝΑΡΤΗΣΕΙΣ Παραδείγματα χρήσης συναρτήσεων
ΣΥΝΑΡΤΗΣΕΙΣ Παραδείγματα χρήσης συναρτήσεων ΠΟΛΛΕΣ ΕΝΤΟΛΕΣ ΕΠΙΣΤΡΟΦΗΣ Να γραφτεί ένα πρόγραμμα που να διπλασιάζει ένα ποσό που του δίνει ο χρήστης μεταξύ 0 και 1000. Να ελέγχει εάν το ποσό που εισήχθη
Προγραμματιστικές Τεχνικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Προγραμματιστικές Τεχνικές Βασίλειος Βεσκούκης Δρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ Επικ. Καθηγητής ΕΜΠ v.vescoukis@cs.ntua.gr
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Κεφάλαιο 10. Ερωτήσεις ανάπτυξης
Κεφάλαιο 10 Ερωτήσεις ανάπτυξης 1. Τι ονομάζουμε τμηματικό προγραμματισμό; 2. Τι ονομάζουμε υποπρόγραμμα; 3. Ποια τα χαρακτηριστικά των υποπρογραμμάτων; 4. Ποια τα πλεονεκτήματα του τμηματικού προγραμματισμού;
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 7: Διαχείριση Μνήμης,Δυναμικές Δομές Δεδομένων, Αναδρομή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Δυναμικές Δομές Δεδομένων Γενικά - Δυναμική Δέσμευση/Αποδέσμευση
Αναδρομικός αλγόριθμος
Αναδρομικός αλγόριθμος Ένας αναδρομικός αλγόριθμος επιλύει ένα πρόβλημα για κάποιες τιμές δεδομένων λύνοντας το ίδιο πρόβλημα για άλλες (σχετιζόμενες) τιμές δεδομένων Είναι απαραίτητο βέβαια να λύνεται
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος
Κεφάλαιο 10 Υποπρογράμματα 1 10.1 Τμηματικός προγραμματισμός Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων.
Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }
Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:
Στόχοι και αντικείμενο ενότητας. Πέρασμα Πίνακα σε Συνάρτηση (συν.) Πέρασμα Πίνακα σε Συνάρτηση. #8.. Ειδικά Θέματα Αλγορίθμων
Στόχοι και αντικείμενο ενότητας Πέρασμα Πίνακα σε Συνάρτηση #8.. Ειδικά Θέματα Αλγορίθμων Προβλήματα Αναζήτησης Γραμμική Αναζήτηση (Linear Search) Ενημέρωση Μέτρηση Δυαδική Αναζήτηση (Binary Search) Προβλήματα
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Συναρτήσεις Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Συναρτήσεις Ως τώρα γράφαμε όλα τα προγράμματα μας μέσα στην main..1
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 4-1
Εφαρμογές στοιβών Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Αναδρομικές συναρτήσεις Ισοζυγισμός Παρενθέσεων Αντίστροφος Πολωνικός Συμβολισμός ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι
Εισαγωγή στον Προγραμματισμό (με. τη C)
Υποχρεωτικό Μάθημα 3 ου Εξαμήνου Χειμερινό Εξάμηνο Ακ. Έτους 20 Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εισαγωγή στον Προγραμματισμό (με τη C) Διδάσκουσα: Φατούρου Παναγιώτα faturu [at] csd.uoc.gr
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»
Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 1 Αλγόριθμοι και Πολυπλοκότητα Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Εισαγωγή Ας ξεκινήσουμε
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΣΕΠΤΕΜΒΡΙΟΥ 6 Ι ΑΣΚΩΝ: Ε. ΚΟΦΙ ΗΣ Όλα τα ερωτήµατα είναι ισοδύναµα. Καλή επιτυχία! ΘΕΜΑ ο a) Βρείτε την αναπαράσταση
Μάθημα 20: Δυναμικός Προγραμματισμός (DP)
Μάθημα 20: Δυναμικός Προγραμματισμός (DP) Γενικά Είναι μια γενική μεθοδολογία και δεν υπάρχει ένα πρότυπο διατύπωσης /επίλυσης προβλημάτων Αρχικά ξεκίνησε σαν μαθηματική μέθοδος για τη λήψη σειράς αλληλοσυνδεόμενων
Μεταγλωττιστές Βελτιστοποίηση
Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη, 15780
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διάλεξη 15η: Αναδρομή, μέρος 1ο
Διάλεξη 15η: Αναδρομή, μέρος 1ο Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αναδρομή I CS100, 2016-2017
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Η γλώσσα προγραμματισμού Strange
Προγραμματιστική άσκηση: Η γλώσσα προγραμματισμού Strange Η Strange είναι μια μικρή γλώσσα προγραμματισμού. Παρόλο που οι προγραμματιστικές της ικανότητες είναι μικρές, η εκπαιδευτική αυτή γλώσσα περιέχει
Αναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -
Η πολυνηματική γλώσσα προγραμματισμού Cilk
Η πολυνηματική γλώσσα προγραμματισμού Cilk Β Καρακάσης Ερευνητικά Θέματα Υλοποίησης Γλωσσών Προγραμματισμού Μεταπτυχιακό Μάθημα (688), ΣΗΜΜΥ Νοέμβριος 2009 Β Καρακάσης (CSLab, NTUA) ΣΗΜΜΥ, Μετ/κό 688 9/2009
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡ/ΚΗΣ ΘΕΜΑ Α Α1. Να γράψετε
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
Μέρος 2 Κατασκευή Συντακτικού Αναλυτή
Αντίρριο, 05/04/2017 Προδιαγραφές Εργαστηριακής Εργασίας για το μάθημα «Μεταγλωττιστές» To δεύτερο μέρος της εργασίας έχει ως στόχο την ανάπτυξη του συντακτικού αναλυτή με χρήση του bison / byacc. Στο
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 5ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 Η ΕΝΤΟΛΗ for Με την εντολή for δημιουργούμε βρόχους επανάληψης σε
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ Η/Υ (ΟΜΑΔΑ ΘΕΜΑΤΩΝ A)
ΑΣΚΗΣΗ 1 Δίνεται η λογική συνάρτηση: F = ((A AND B) OR (B AND C) OR (A AND C)) ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ Η/Υ (ΟΜΑΔΑ ΘΕΜΑΤΩΝ A) α) Σχεδιάστε το λογικό κύκλωμα που υλοποιεί τη συνάρτηση F. β) Σχηματίστε τον πίνακα
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Πολυπλοκότητα Αλγορίθµων
Πολυπλοκότητα Αλγορίθµων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εµπειρική Θεωρητική Ανάλυση Αλγορίθµων Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις
Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015
ΘΕΜΑ Α Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015 Α1.Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα να σημειώσετε
ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ. Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out)
ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out) Χρήσεις Στοίβας Καθημερινή Ζωή (όχι πάρα πολλές) Δίσκοι Τραπεζαρίας
ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ. Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out)
ΣΤΟΙΒΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ ΤΗΣ ΣΤΟΙΒΑΣ Το τελευταίο στοιχείο που εισήχθη θα εξαχθεί πρώτο. Άλλο όνομα L I F O (Last In First Out) Χρήσεις Στοίβας Καθημερινή Ζωή (όχι πάρα πολλές) Δίσκοι Τραπεζαρίας
Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;
5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας
Προχωρημένες έννοιες προγραμματισμού σε Pazcal
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)
Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος
Κεφάλαιο 10 Υποπρογράμματα 1 10.1 Τμηματικός προγραμματισμός Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων.
Α. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf("%u\n", x); Β. unsigned char
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Β Περιόδου 2015 (8/9/2015) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Η βασική συνάρτηση προγράμματος main()
Η βασική συνάρτηση προγράμματος main() HEADER FILES main(){ ΔΗΛΩΣΕΙΣ ΜΕΤΑΒΛΗΤΩΝ ΕΝΤΟΛΕΣ (σειριακές, επιλογής ή επανάληψης) ΕΠΙΣΤΡΕΦΟΜΕΝΟΣ ΤΥΠΟΣ (return 0;) Συναρτήσεις Η συνάρτηση είναι ένα υποπρόγραμμα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
5.1. Προσδοκώμενα αποτελέσματα
5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Η εντολή if-else. Η απλή μορφή της εντολής if είναι η ακόλουθη: if (συνθήκη) { Η γενική μορφή της εντολής ifelse. εντολή_1; εντολή_2;..
Επιλογή - Επανάληψη Η εντολή if-else Ο τελεστής παράστασης συνθήκης H εντολή switch Η εντολές for και while Η εντολή do-while Η εντολές break - continue - goto Μαθηματικές συναρτήσεις Λέξεις κλειδιά στη
Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),
ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου
ΕΝΟΤΗΤΑ 4 Λήψη Αποφάσεων και Συναρτήσεις Ελέγχου Σκοπός και περίγραμμα της Ενότητας 4 Σκοπός της παρουσίασης Να μελετήσουμε τις συναρτήσεις που ελέγχουν την ροή και την εκτέλεση ενός προγράμματος Σύνοψη
Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ
Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά
Δέντρα (Trees) - Ιεραρχική Δομή
Δέντρα (Trees) - Ιεραρχική Δομή Εφαρμογές Δομή Οργάνωση Αρχείων Οργανογράμματα Ορισμός (αναδρομικός ορισμός): Ένα δέντρο είναι ένα πεπερασμένο σύνολο κόμβων το οποίο είτε είναι κενό είτε μη κενό σύνολο
Μορφοποίηση της εξόδου
Μορφοποίηση της εξόδου (i) Όταν θέλουμε τα αποτελέσματα μιάς εντολής WRITE(*, *) να εμφανίζονται με συγκεκριμένο τρόπο τροποποιούμε τον δεύτερο αστερίσκο. 2 τρόποι μορφοποίησης WRITE(*, '(format εξόδου)')
Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:
Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
Εισαγωγή στην Ανάλυση Αλγορίθμων (1) Διαφάνειες του Γ. Χ. Στεφανίδη
Εισαγωγή στην Ανάλυση Αλγορίθμων (1) Διαφάνειες του Γ. Χ. Στεφανίδη 0. Εισαγωγή Αντικείμενο μαθήματος: Η θεωρητική μελέτη ανάλυσης των αλγορίθμων. Στόχος: επιδόσεις των επαναληπτικών και αναδρομικών αλγορίθμων.
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #3
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #3 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #3 2 Γενικά Στο Τετράδιο #3 του Εργαστηρίου θα εξοικειωθούμε με τη χρήση της εντολής πολλαπλής
Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση
Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής
Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων
I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.
I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
FORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 1: Εισαγωγή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εισαγωγή στους Αλγορίθμους Ενότητα 11η
Εισαγωγή στους Αλγορίθμους Ενότητα 11η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Δυναμικός Προγραμματισμός Σταθμισμένος Χρονοπρογραμματισμός