Επαναληπτικές ασκήσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επαναληπτικές ασκήσεις"

Transcript

1 Επαναληπτικές ασκήσεις

2 a a a Τ Τ x Τ Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτελείται από 3 mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δεν αλληλεπιδρούν μεταξύ τους. Τα μόρια αυτά μπορούν να βρεθούν είτε σε μια μη εκφυλισμένη βασική ενεργειακή στάθμη με ε, είτε σε μία πενταπλά εκφυλισμένη διεγερμένη ενεργειακή στάθμη με ε ε 9,336 - J. (A) (B) Στο σχήμα παρουσιάζεται η μεταβολή του πληθυσμού ισορροπίας των δύο αυτών ενεργειακών σταθμών καθώς η θερμοκρασία του συστήματος μεταβάλλεται από τους Κ έως το άπειρο. Στον άξονα Υ του σχήματος έχουν σημειωθεί οι πληθυσμοί a, a,,,,,, a και. ) Σε ποια ενεργειακή στάθμη αναφέρεται η κάθε καμπύλη; ) Να υπολογιστούν: α) οι αριθμητικές τιμές των a,,, και. β) οι αριθμητικές τιμές του αθροίσματος (a a ) καθώς και του αθροίσματος ( ), με δεδομένο ότι Τ 5Τ. γ) η αριθμητική τιμή της Τ x. δ) η μέση ενέργεια των μορίων του συστήματος όταν αυτό είναι στην θερμοκρασία Τ x. ε) η θερμοχωρητικότητα υπό σταθερό όγκο του συστήματος όταν αυτό βρίσκεται στην θερμοκρασία Τ x.

3 ) Σε ποια ενεργειακή στάθμη αναφέρεται η κάθε καμπύλη; Επειδή όταν Τ μόνο η βασική θεμελιώδης στάθμη είναι κατειλημμένη, έπεται ότι η καμπύλη (Β) παριστάνει την μεταβολή του πληθυσμού n με την θερμοκρασία. Συνεπώς, η (Α) αναφέρεται στην μεταβολή του πληθυσμού n. a (A) (B) a a Τ Τ x Τ

4 α) Να υπολογιστούν οι αριθμητικές τιμές των a,,, και. Είναι προφανές ότι: a και α 9 Ν nn A (3 mol) (6, 3 mol - ),7 4 a (n ) (n ) a a Τ Τ x Τ Είναι επίσης προφανές ότι:,5ν,5nn A,5 (3 mol) (6, 3 mol - ) 9,33 3 a n 5 n T T x T T x n n T T x T T x N a N a 5 5 N

5 α) Να υπολογιστούν οι αριθμητικές τιμές των a,,, και. a και α 9 Ν,7 4 και,5ν 9,33 3 a a a Τ Τ x Τ (n ) (n ) Για το σύστημά μας ισχύει ότι: n n ε N N q ε ε N ε N q ε Τα και, είναι οι πληθυσμοί των δύο ενεργειακών σταθμών όταν η θερμοκρασία τείνει στο άπειρο. Αλλά όταν T τότε όλοι οι εκθετικοί όροι τείνουν στην μονάδα, οπότε: a a N n a3 3, T 5N n a7,56 T

6 β) Να υπολογιστούν οι αριθμητικές τιμές του αθροίσματος (a a ) καθώς και του αθροίσματος ( ), με δεδομένο ότι Τ 5Τ. a (n ) (n ) a a Τ Τ x Τ Είναι προφανές ότι: a a Ν,7 4 a a 4 a a 6 n n T T T T n n T T T T N N

7 γ) Να υπολογιστεί η αριθμητική τιμή της Τ x. a a a Τ Τ x Τ (n ) (n ) Όταν η θερμοκρασία είναι Τ x τότε θα ισχύει: T x N ε n ε x x ε k ln n N ε x ε T ε ln x x x 4 K

8 δ) Να υπολογιστεί η μέση ενέργεια των μορίων του συστήματος όταν αυτό είναι στην θερμοκρασία Τ x. Η ενέργεια του συστήματός μας είναι: a a a Τ Τ x Τ (n ) (n ) E n ε nε E nε Όταν η θερμοκρασία είναι Τ x ισχύει ότι: N n Άρα, τότε: N E ε Οπότε: E ε ε ε 4,66 N J

9 a a a Τ Τ x Τ ε) Να υπολογιστεί η θερμοχωρητικότητα υπό σταθερό όγκο του συστήματος όταν αυτό βρίσκεται στην θερμοκρασία Τ x. (n ) (n ) Η ενέργεια του συστήματός μας είναι: E n ε n ε E n ε U U ( ) U U ( ) E E N ε N ε Άρα η θερμοχωρητικότητα θα είναι: V V V U β Nε N, V β β N ε E β N, V N, V N, V

10 ε) Να υπολογιστεί η θερμοχωρητικότητα υπό σταθερό όγκο του συστήματος όταν αυτό βρίσκεται στην θερμοκρασία Τ x. Θα υπολογίσουμε την μερική παράγωγο: N V V N, β ε du u m dm u u m d ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,,,,, N V N V N V N V N V N V ε β β β β β β N V, β ( ) du dm u m d ) ( const d du d u u const x const d ) (

11 ε) Να υπολογιστεί η θερμοχωρητικότητα υπό σταθερό όγκο του συστήματος όταν αυτό βρίσκεται στην θερμοκρασία Τ x. Άρα: a a a Τ Τ x Τ (n ) (n ) V N ε β Nε V ( ) Όταν η θερμοκρασία είναι T x : V V N x ε ( x ) ε ε 6,56 J K x N, V Θα μπορούσαμε να εκφράσουμε πιό κομψά την V :

12 ε) Να υπολογιστεί η θερμοχωρητικότητα υπό σταθερό όγκο του συστήματος όταν αυτό βρίσκεται στην θερμοκρασία Τ x. a (n ) (n ) a a Τ Τ x Τ V V N ( ) ( ) ( ( ) ε Nε Nε ) [( ) ] N V ( ) q ε N ε

13 Παρουσιάζεται η κατανομή της ενέργειας στα μόρια τριών διαφορετικών απομονωμένων μακροσκοπικών συστημάτων, για δύο θερμοκρασίες. Το κάθε σύστημα αποτελείται από σταθερό αριθμό όμοιων, διακριτών και ανεξάρτητων μορίων. Τα τρία συστήματα διαφέρουν μεταξύ τους τόσο ως προς την φύση των μορίων που τα απαρτίζουν όσο και ως προς το συνολικό πλήθος των μορίων. Ποια σχήματα είναι σωστά; Ποια σχέση συνδέει τις θερμοκρασίες Τ και Τ ; T T T T T T Ενέργεια μορίου Ενέργεια μορίου Ενέργεια μορίου

14 Παρουσιάζεται η κατανομή της ενέργειας στα μόρια τριών διαφορετικών απομονωμένων μακροσκοπικών συστημάτων, για δύο θερμοκρασίες. Το κάθε σύστημα αποτελείται από σταθερό αριθμό όμοιων, διακριτών και ανεξάρτητων μορίων. Τα τρία συστήματα διαφέρουν μεταξύ τους τόσο ως προς την φύση των μορίων που τα απαρτίζουν όσο και ως προς το συνολικό πλήθος των μορίων. Ποια σχήματα είναι σωστά; Ποια σχέση συνδέει τις θερμοκρασίες Τ και Τ ; T Αδύνατον, διότι T ( n i ) T < ( ni ) T για κάθε i Ενέργεια μορίου j ( ) ( ) N n j < n N < T j j T Άτοπον! ε i ( n i ) T ( ni ) T

15 Παρουσιάζεται η κατανομή της ενέργειας στα μόρια τριών διαφορετικών απομονωμένων μακροσκοπικών συστημάτων, για δύο θερμοκρασίες. Το κάθε σύστημα αποτελείται από σταθερό αριθμό όμοιων, διακριτών και ανεξάρτητων μορίων. Τα τρία συστήματα διαφέρουν μεταξύ τους τόσο ως προς την φύση των μορίων που τα απαρτίζουν όσο και ως προς το συνολικό πλήθος των μορίων. Ποια σχήματα είναι σωστά; Ποια σχέση συνδέει τις θερμοκρασίες Τ και Τ ; T T Δυνατόν, αν αφορά μόρια που μπορούν να βρεθούν σε εκφυλισμένες καταστάσεις. Ενέργεια μορίου ε ( n ) T ( n ) T

16 Μοριακό Άθροισμα Καταστάσεων (q) Παράδειγμα Η ενέργεια μιας ενεργειακής στάθμης περιστροφικής κίνησης ενός ασύμμετρου διατομικού μορίου (π.χ. Hl) δίνεται από τη σχέση: ( j ) με j,,, ε j hcbj όπου B η σταθερά περιστροφής του μορίου. Η πολλαπλότητα κάθε ενεργειακής στάθμης δίνεται από τη σχέση: j j Κατανομή μορίων σε στάθμες Κατανομή μορίων σε καταστάσεις Ενέργεια ε i Ενέργεια ε i Πληθυσμός n i Πληθυσμός n i

17 Παρουσιάζεται η κατανομή της ενέργειας στα μόρια τριών διαφορετικών απομονωμένων μακροσκοπικών συστημάτων, για δύο θερμοκρασίες. Το κάθε σύστημα αποτελείται από σταθερό αριθμό όμοιων, διακριτών και ανεξάρτητων μορίων. Τα τρία συστήματα διαφέρουν μεταξύ τους τόσο ως προς την φύση των μορίων που τα απαρτίζουν όσο και ως προς το συνολικό πλήθος των μορίων. Ποια σχήματα είναι σωστά; Ποια σχέση συνδέει τις θερμοκρασίες Τ και Τ ; T T Δυνατόν, αν αφορά μόρια που μπορούν να βρεθούν σε εκφυλισμένες καταστάσεις. Ενέργεια μορίου ( n ) < ( n ) T T T T > ε ( n ) T ( n ) T

18 Παρουσιάζεται η κατανομή της ενέργειας στα μόρια τριών διαφορετικών απομονωμένων μακροσκοπικών συστημάτων, για δύο θερμοκρασίες. Το κάθε σύστημα αποτελείται από σταθερό αριθμό όμοιων, διακριτών και ανεξάρτητων μορίων. Τα τρία συστήματα διαφέρουν μεταξύ τους τόσο ως προς την φύση των μορίων που τα απαρτίζουν όσο και ως προς το συνολικό πλήθος των μορίων. Ποια σχήματα είναι σωστά; Ποια σχέση συνδέει τις θερμοκρασίες Τ και Τ ; T T Δυνατόν Μη εκφυλισμένες καταστάσεις. Ενέργεια μορίου Ενέργεια ε i Πληθυσμός n i

19 Παρουσιάζεται η κατανομή της ενέργειας στα μόρια τριών διαφορετικών απομονωμένων μακροσκοπικών συστημάτων, για δύο θερμοκρασίες. Το κάθε σύστημα αποτελείται από σταθερό αριθμό όμοιων, διακριτών και ανεξάρτητων μορίων. Τα τρία συστήματα διαφέρουν μεταξύ τους τόσο ως προς την φύση των μορίων που τα απαρτίζουν όσο και ως προς το συνολικό πλήθος των μορίων. Ποια σχήματα είναι σωστά; Ποια σχέση συνδέει τις θερμοκρασίες Τ και Τ ; T T Δυνατόν, αφού πρόκειται για τυπικές κατανομές ενέργειας σε μόρια που μπορούν να βρεθούν σε μη εκφυλισμένες καταστάσεις. Ενέργεια μορίου ( n ) < ( n ) T T T T > ε ( n ) T ( n ) T

Επαναληπτικές ασκήσεις

Επαναληπτικές ασκήσεις Επαναληπτικές ασκήσις Έστω απομονωμένο μακροσκοπικό σύστημα το οποίο αποτλίται από mol όμοιων και διακριτών μονοατομικών μορίων τα οποία δν αλληλπιδρούν μταξύ τους. Τα μόρια αυτά μπορούν να βρθούν ίτ σ

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2017 8/3/2017 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 17/3/2017 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 24/3/2017 1. Θεωρείστε

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2018 8/3/2018 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2018 Οι λύσεις των προβλημάτων 26 και 27 * να παραδοθούν μέχρι τις 29/3/2018 1. Θεωρείστε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2019 14/3/2019 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 23,24 και 25 * να παραδοθούν μέχρι τις 22/3/2019 Οι λύσεις των προβλημάτων 27 και 28 * να παραδοθούν μέχρι τις 28/3/2019 1. Θεωρείστε

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22 Λυμένες ασκήσεις Στατιστική Θερμοδυναμική Οκτώβριος ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ Άσκηση.: Το άθροισμα καταστάσεων της δονητικής κίνησης των μορίων του Ι αποτελείται από

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 0 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k!

P(n 1, n 2... n k ) = n 1!n 2! n k! pn1 1 pn2 2 pn k. P(N L, N R ) = N! N L!N R! pn L. q N R. n! r!(n r)! pr q n r, n! r 1!r 2! r k! Ασκήσεις Πιθανοτήτων - Στατιστικής Πρόβλημα 1 (Η Πολυωνυμική Κατανομή). Στο πρόβλημα αυτό θα μελετήσουμε μία γενίκευση της διωνυμικής κατανομής που συναντήσαμε στο μάθημα. Συγκεκριμένα, θα δούμε τί συμβαίνει

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 Ιδανικό αέριο περιέχεται σε όγκο 1 δοχείου συνολικού όγκου με θερμομονωτικά τοιχώματα. Στο υπόλοιπο κομμάτι

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Προβλήματα Κεφαλαίου 2

Προβλήματα Κεφαλαίου 2 Άνοιξη 2013 5/3/2013 Προβλήματα Κεφαλαίου 2 Οι λύσεις των προβλημάτων 3, 4, 5 * να παραδοθούν μέχρι τις 22/3/2013 Οι λύσεις των προβλημάτων 8 * και 20 να παραδοθούν μέχρι τις 28/3/2013 1. Για να κερδίσουμε

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1) 1)Συνήθως οι πτήσεις των αεροσκαφών γίνονται στο ύψος των 15000 m, όπου η θερμοκρασία του αέρα είναι 210 Κ και η ατμοσφαιρική πίεση 10000 N / m 2. Σε αεροδρόμιο που βρίσκεται στο ίδιο ύψος με την επιφάνεια

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Επιλέγοντας το κατάλληλο διάγραμμα φάσεων για ένα πραγματικό

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής 1 Γεώργιος Φανουργάκης 2 Κεφάλαιο 1 Εισαγωγή στη Στατιστική Θερμοδυναμική H Στατιστική θερμοδυναμική ή Στατιστική μηχανική είναι η εφαρμογή της θεωρίας πιθανοτήτων,

Διαβάστε περισσότερα

Στοιχειομετρικοί Υπολογισμοί στη Χημεία

Στοιχειομετρικοί Υπολογισμοί στη Χημεία Στοιχειομετρικοί Υπολογισμοί στη Χημεία Δομικές μονάδες της ύλης ΑΤΟΜΑ ΜΟΡΙΑ ΣΤΟΙΧΕΙΑ ΕΝΩΣΕΙΣ Αριθμός Avogadro N A = 6,02 10 23 mol -1 Δηλαδή αυτός ο αριθμός παριστάνει την ποσότητα μιας ουσίας που περιέχει

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ CLAUSIUS-CLAPEYRON ΘΕΩΡΙΑ

ΕΞΙΣΩΣΗ CLAUSIUS-CLAPEYRON ΘΕΩΡΙΑ ΕΞΙΣΩΣΗ CLAUSIUS-CLAEYRON ΘΕΩΡΙΑ Περιεχόμενα 1. 3D Διάγραμμα Φάσης 2. Λανθάνουσα θερμότητα 3. Εξίσωση Clausius Clapeyron 4. Συμπιεστότητα 5. Θερμική διαστολή 6. Θερμοχωρητικότητα 1 στερεό στερεό+υγρό υγρό

Διαβάστε περισσότερα

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Αστροφυσική. Ενότητα # 6: Λευκοί Νάνοι. Νικόλαος Στεργιούλας Τμήμα Φυσικής

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Αστροφυσική. Ενότητα # 6: Λευκοί Νάνοι. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστροφυσική Ενότητα # 6: Λευκοί Νάνοι Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε Διάρκεια: 3 ώρες και 30 λεπτά ( ) Α. Χημική Θερμοδυναμική

ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε Διάρκεια: 3 ώρες και 30 λεπτά ( ) Α. Χημική Θερμοδυναμική ΛΥΣΕΙΣ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ α.ε. 2012-13 Διάρκεια: 3 ώρες και 30 λεπτά (15.15 18.45) ΘΕΜΑ 1 Α. Χημική Θερμοδυναμική Μια πλάκα από χαλκό μάζας 2 kg και θερμοκρασίας 0 ο C

Διαβάστε περισσότερα

Θερμότητα - διαφάνειες , Σειρά 1

Θερμότητα - διαφάνειες , Σειρά 1 Θερμότητα - διαφάνειες 007-8, Σειρά Βιβλιογραφία (ενδεικτική) H.D. Young, Πανεπιστημιακή Φυσική Τόμος Α, (5-, 5-, 5-3, 5-5, 5-6, 6-, 6-, 6-4, 7-, 7-, 7-3, 7-4, 7-5, 7-6, 7-7,7-8) Σημειώσεις καθ. Κου Δ.

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Κεφάλαιο : Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Ασχοληθήκαμε με συστήματα με μεταβλητό αριθμό σωματιδίων. Τον τρίτο

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Βρέθηκε ότι το πηλίκο φ/λ = 68,5905 J K 1.

Βρέθηκε ότι το πηλίκο φ/λ = 68,5905 J K 1. Έστω ποσότητα He σε αεροστεγές δοχείο σταθερού όγκου V. Σε μια σειρά έξι πειραμάτων προσδιορίζουμε την μεταβοή της εντροπίας S τεική S ική, η οποία προκαείται από την μεταβοή της θερμοκρασίας του δοχείου

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

Απαντήσεις στις ασκήσεις του κεφαλαίου 4 του βιβλίου Χημική Κινητική του ΕΑΠ

Απαντήσεις στις ασκήσεις του κεφαλαίου 4 του βιβλίου Χημική Κινητική του ΕΑΠ Απαντήσεις στις ασκήσεις του κεφαλαίου 4 του βιβλίου Χημική Κινητική του ΕΑΠ Ασκηση 4.1 Η κινητική εξίσωση της αντίδρασης: βρέθηκε οτι είναι Αντιδράσεις πρώτης τάξης 2A = Προϊόντα r = k[a] Να υπολογίσετε

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΕΣ-ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ

ΜΕΤΑΒΟΛΕΣ-ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΜΕΤΑΒΟΛΕΣ-ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΕΙΣΑΓΩΓΗ Η αέριος κατάσταση είναι μία από τις τρείς καταστάσεις της ύλης. Η κατάσταση αυτή χαρακτηρίζεται, όπως γνωρίζετε, από το γεγονός ότι τα σώματα σε αυτήν δεν έχουν σταθερό

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Στατιστική Φυσική Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons.

Διαβάστε περισσότερα

Ασκήσεις Φασµατοσκοπίας

Ασκήσεις Φασµατοσκοπίας Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ

3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 3 ος ΘΕΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ- ΘΕΡΜΟΔΥΝΑΜΙΚΑ ΔΥΝΑΜΙΚΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Ο τρίτος θερμοδυναμικός Νόμος 2. Συστήματα με αρνητικές θερμοκρασίες 3. Θερμοδυναμικά

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. Φαινόμενα μεταφοράς Ορισμοί. Ενεργός διατομή 3. Ενεργός διατομή στο μοντέλο των σκληρών σφαιρών

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 Το δοχείο του σχήματος είναι απομονωμένο (αδιαβατικά τοιχώματα). Το διάφραγμα χωρίζει το δοχείο σε δύο μέρη. Το αριστερό μέρος έχει όγκο 1 και περιέχει ιδανικό αέριο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 23 ΝΟΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΜΑ 2 1. Β.2 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση 1 atm και θερμοκρασία 27 C). Το μπαλόνι με κάποιο τρόπο ανεβαίνει σε

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή του παράγοντα της

Διαβάστε περισσότερα

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA. Άσκηση 1 Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο διάγραμμα p V του σχήματος. (α) Αν δίνονται Q ΑΒΓ = 30J και W BΓ = 20J, να βρεθεί η μεταβολή της εσωτερικής

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΚΑΤΑΝΟΜΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΚΑΤΑΝΟΜΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΚΑΤΑΝΟΜΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 1 Θέμα 1 α) Προσδιορίστε τον όγκο V ιδανικού αερίου, στον οποίο η σχετική διακύμανση είναι α = 10-6 και η συγκέντρωση των σωματιδίων είναι n =,7 10 19 cm -3. β) Προσδιορίστε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: νόμοι αερίων, θερμοδυναμική) ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 7.200sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1 4 να γράψετε στο

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΑΩΝΙΣΜΑ ΣΤΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Κατά την αδιαβατική αντιστρεπτή µεταβολή ποσότητας αερίου ισχύει η σχέση P γ = σταθερό. Ο αριθµός γ: α) εξαρτάται από την ατοµικότητα του αερίου και είναι γ < 1 β) εξαρτάται

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «Κινητική Θεωρία των Αερίων» ο κεφάλαιο: «O 1 ος θερµοδυναµικός νόµος» ΘΕΜΑ 1 Ο 1Α Ερωτήσεις πολλαπλής επιλογής. Σηµειώστε τη σωστή από τις προτάσεις που ακολουθούν. 1) Κατά την

Διαβάστε περισσότερα

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19)

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19) Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α.

ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 003-04 (Α. Χημική Θερμοδυναμική) η Άσκηση Θεωρείστε ως σύστημα ένα δοχείο με αδιαβατικά τοιχώματα, μέσα στο οποίο αναμιγνύουμε λίτρο νερού θερμοκρασίας Τ

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Μελέτη Ισόχωρης μεταβολής 2. Μελέτη Ισοβαρής μεταβολής 3. Μελέτη Ισόθερμης μεταβολής 4.

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014

ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014 ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 09/2014 ΘΕΜΑ 1 Ι. α) Κύκλος λειτουργίας στο επίπεδο P-V. P 1 2 1-2 και 3-4: ισοβαρείς (υπό σταθερές P 2 και P 1, αντίστοιχα, P 1

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J

ΛΥΣΕΙΣ. µεταφορική κινητική ενέργεια του K η θερµοκρασία του αερίου πρέπει να: β) τετραπλασιαστεί δ) υποτετραπλασιαστεί (Μονάδες 5) δ) 0 J ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 30// ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις Α.- Α.4

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό

Ο δεύτερος νόμος Παραδείγματα αυθόρμητων φαινομένων: Παραδείγματα μη αυθόρμητων φαινομένων: συγκεκριμένο χαρακτηριστικό Ο δεύτερος νόμος Κάποια φαινόμενα στη φύση συμβαίνουν αυθόρμητα, ενώ κάποια άλλα όχι. Παραδείγματα αυθόρμητων φαινομένων: α) ένα αέριο εκτονώνεται για να καταλάβει όλο το διαθέσιμο όγκο, β) ένα θερμό σώμα

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ 15949 Ποσότητα ιδανικού αέριου ίση με /R mol, βρίσκεται αρχικά σε κατάσταση ισορροπίας στην οποία έχει

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 2 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 2 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ ο γ α 3 δ β 5. α Σ β Λ γ Σ δ Σ 5 Λ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο 35 x. α. U+ n Mo+ La + n

Διαβάστε περισσότερα

Φυσική Κατεύθυνσης Β Λυκείου.

Φυσική Κατεύθυνσης Β Λυκείου. Φυσική Κατεύθυνσης Λυκείου. Διαγώνισμα στην Θερμοδυναμική. Ζήτημα 1 o. ) Να επιλέξτε την σωστή απάντηση. 1) Ορισμένη ποσότητα ιδανικού αερίου μεταβάλλεται από κατάσταση σε κατάσταση. Τότε: α) Η μεταβολή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...5 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ... ΚΕΦΑΛΑΙΟ ΕΥΘΕΙΕΣ... ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...4 ΚΕΦΑΛΑΙΟ 5 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΙ

Διαβάστε περισσότερα

ΒΑΘΜΟΣ = θ - θ. Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: ΒΑΘΜΟΣ της θερμομετρικής μας κλίμακας είναι το μέγεθος

ΒΑΘΜΟΣ = θ - θ. Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: ΒΑΘΜΟΣ της θερμομετρικής μας κλίμακας είναι το μέγεθος Οι πιο διαδεδομένες θερμομετρικές κλίμακες είναι: Μικροσκοπικά ξέρουμε ότι είναι ανάλογη της μέσης κινητικής ενέργειας του μορίου ΜΑΚΡΟΣΚΟΠΙΚΑ ΕΙΝΑΙ ΕΝΑ ΜΕΓΕΘΟΣ ΠΟΥ ΜΑΣ ΔΕΙΧΝΕΙ ΠΟΣΟ «ΖΕΣΤΟ» ΕΙΝΑΙ ΤΟ ΣΩΜΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons. Για

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 1. ΝΟΜΟΣ OYLE-MRIOTTE = σταθ. (όταν Τ = σταθ.) (1) Ο νόμος των oyle Mariotte εφαρμόζεται σε ισόθερμη μεταβολή (Τ = σταθ.) π.χ. στην μεταβολή Α T 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ 103 Α. ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1. Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο ακόλουθο διάγραμμα P-V. α. Αν δίνονται Q ΑΒΓ

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 1β: Ενθαλπία εξατμίσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία Σύμφωνα με τον κανόνα

Διαβάστε περισσότερα

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π Β Λ. Α1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο της ισόχωρης μεταβολής; α. β. γ. δ.

ΦΥΣΙΚΗ Ο.Π Β Λ. Α1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο της ισόχωρης μεταβολής; α. β. γ. δ. ΦΥΣΙΚΗ Ο.Π Β Λ 04-02 - 2018 Άρχων Μάρκος ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1. Ποιο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ

ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ Φυσική Β Λυκείου Προσανατολισμού Γκικόντης Λάμπρος ΗΜΕΡΟΜΗΝΙΑ 4- - 08 ΔΙΑΡΚΕΙΑ ώρες ΘΕΜΑ Ο Στις παρακάτω ερωτήσεις -5 να επιλέξετε τη σωστή απάντηση. Α. Η μεταβολή

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης -Φυσική Προσανατολισμού Β Λυκείου-

Διαγώνισμα Προσομοίωσης -Φυσική Προσανατολισμού Β Λυκείου- Διαγώνισμα Προσομοίωσης -Φυσική Προσανατολισμού Β Λυκείου- ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 5 : Α Θερμοδυναμικός Νόμος Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

3. Έχουμε δύο ποτήρια, το ένα γεμάτο πάγο και το άλλο γεμάτο με νερό 80 C. Τα αφήνουμε πάνω σε ένα τραπέζι. Τι θα συμβεί καθώς περνά ο χρόνος;

3. Έχουμε δύο ποτήρια, το ένα γεμάτο πάγο και το άλλο γεμάτο με νερό 80 C. Τα αφήνουμε πάνω σε ένα τραπέζι. Τι θα συμβεί καθώς περνά ο χρόνος; 1. Τι είναι θερμότητα; Θερμότητα είναι η ενέργεια που μεταφέρεται από ένα θερμό σώμα σε ένα ψυχρό ώσπου να αποκτήσουν την ίδια θερμοκρασία. Μονάδα μέτρησης της θερμότητας είναι το 1 Joule. 2. Τι είναι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Μοντέλο υλικού σώματος 2. Ορισμοί μάζα γραμμομόριο 3. Η κατάσταση ενός υλικού 4. Τα βασικά γνωρίσματα των καταστάσεων 5. Το μοντέλο του ιδανικού

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Χημεία Γ Λυκείου Κεφάλαιο: 1 ο -4 ο και 7 ο Ονοματεπώνυμο Μαθητή: Ημερομηνία: 30-10-2017 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ

Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος 2016-17 ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ Το Δυναμικό του Πυρήνα Πυρηνικές δυνάμεις: Πολύ ισχυρές ελκτικές, μικρής εμβέλειας, σε μικρές αποστάσεις γίνονται απωστικές (Δυναμικό τοίχου)

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

Α3. Όταν η πίεση ορισμένης ποσότητας ιδανικού αερίου διπλασιάζεται υπό σταθερή θερμοκρασία, τότε η μέση κινητική ενέργεια των μορίων του αερίου:

Α3. Όταν η πίεση ορισμένης ποσότητας ιδανικού αερίου διπλασιάζεται υπό σταθερή θερμοκρασία, τότε η μέση κινητική ενέργεια των μορίων του αερίου: ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 04-01-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.-ΚΟΡΚΙΔΑΚΗΣ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική. δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική. δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ + + + + κινητική δυναμική Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ)

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 7 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. o o o f f 3 o o o f 3 f o o o o o f 3 f 2 f 2 f H = H ( HCl ) H ( NH ) 2A + B Γ + 3

ΕΚΦΩΝΗΣΕΙΣ. o o o f f 3 o o o f 3 f o o o o o f 3 f 2 f 2 f H = H ( HCl ) H ( NH ) 2A + B Γ + 3 ΘΕΜΑ ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Η πρότυπη ενθαλπία ( ο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ - B ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Για να έχουμε επιτάχυνση, τι από τα παρακάτω πρέπει να συμβαίνει: i) Το μέτρο της ταχύτητας να

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α Για τις ερωτήσεις (Α.1) μέχρι (Α.5) να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή επιλογή. Α.1 Από

Διαβάστε περισσότερα

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες Ιδιότητες Μιγμάτων Μερικές Μολαρικές Ιδιότητες ΙΔΑΝΙΚΟ ΔΙΑΛΥΜΑ = ή διαιρεμένη διά του = x όπου όλα τα προσδιορίζονται στην ίδια T και P. = Όπου ή διαιρεμένη διά του : = x ορίζεται η μερική μολαρική ιδιότητα

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT ΕΝΤΡΟΠΙΑ-ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNO Η εντροπία είναι το φυσικό µέγεθος το οποίο εκφράζει ποσοτικά το βαθµό αταξίας µιας κατάστασης ενός θερµοδυναµικού συστήµατος. ΣΤΑΤΙΣΤΙΚΟΣ ΟΡΙΣΜΟΣ Η εντροπία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση: ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f () f(), η οποία ικανοποιεί τη σχέση: (f () + f () ) f () + f (), για κάθε. Γ. Να αποδείξετε ότι f() ln( ),. Μονάδες 8 Γ. Να μελετήσετε

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4 ΣΥΝΕΧΗ ΣΤΟ ΧΡΟΝΟ ΔΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Τα συνεχή στο χρόνο δυναμικά συστήματα, γνωστά και ως συστήματα διαφορικών εξισώσεων, περιγράφουν φαινόμενα που μεταβάλλονται συνεχώς στο χρόνο.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής Θερμοδυναμική 1. Η εσωτερική ενέργεια ορισμένης ποσότητας ιδανικού αερίου α) Είναι αντιστρόφως ανάλογη της απόλυτης θερμοκρασίας του αερίου. β) Είναι ανάλογη της απόλυτης θερμοκρασίας

Διαβάστε περισσότερα