ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ"

Transcript

1 ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη ΗΡΑΚΛΕΙΟ - ΚΡΗΤΗ 2014

2 Σκοπός Τα Πειράµατα Πειράµατα µέτρησης ϑερµοχωρητικότητας αερίων Σκοπός της άσκησης είναι η κατανόηση 1 Του εύτερου Νόµου της Θερµοδυναµικής. 2 Η ϑερµοχωρητικότητα είναι µια από τις παραµέτρους που διακρίνει τις ευσταθείς από τις ασταθείς καταστάσεις ισορροπίας και τις µεταβολές ϕάσεων. 3 Πως αποδεικνύεται ότι υπάρχουν µόρια; Ο συντελεστής ϑερµοχωρητικότητας εισήχθη ως παράµετρος µέτρησης του ποσού ϑερµότητας που µπορεί να απορροφήσει ένα σώµα κατά τις µεταβολές της ϑερµοκρασίας, όταν η ϑερµότης εθεωρείτο ως ϱευστό. Ο υπολογισµός της ϑερµοχωρητικότητας από τις µοριακές καταστάσεις ϑεωρείται ένα από τα επιτεύγµατα της Στατιστικής Μηχανικής. Εποµένως, η κατανόηση των ϐασικών υποθέσεων και αρχών της Στατιστικής Μηχανικής είναι απαραίτητη ( ες Παράρτηµα ΣΤ στη σύνδεση [4]). [1] Extensive_and_intensive_quantities [2] achaney/tmve/wiki100k/docs/ Specific_heat_capacity.html [3] ayers/chem2pa3/labs/2pa35.pdf [4] http: //tccc.iesl.forth.gr/education/local/thermodynamics/book.pdf

3 Πειραµατικές ιατάξεις - 1 Σκοπός Τα Πειράµατα Σχήµα : Πειραµατική διάταξη για τον προσδιορισµό της µοριακής ϑερµοχωρητικότητας µε σταθερό όγκο. Η γραµµοµοριακή ϑερµοχωρητικότητα µε σταθερό όγκο υπολογίζεται από τον τύπο C mv R(WI t αp P) Q/(n T) =, (αp + V ) P όπου Q το ποσό ϑερµότητας που αποδίδεται στο αέριο, α = V / P, W η διαφορά δυναµικού, R η σταθερά των αερίων, I η ένταση του ϱεύµατος, t ο χρόνος διέλευσης του ϱεύµατος, n ο αριθµός γραµµοµορίων του αερίου, V η µεταβολή του όγκου, P η µεταβολή της πίεσης, και T η ϑερµοκρασία.

4 Πειραµατικές ιατάξεις - 2 Σκοπός Τα Πειράµατα Σχήµα : Πειραµατική διάταξη για τον προσδιορισµό της µοριακής ϑερµοχωρητικότητας µε σταθερή πίεση. Η γραµµοµοριακή ϑερµοχωρητικότητα µε σταθερά πίεση υπολογίζεται από τον τύπο C mp Q/(n T) = (WI t)/(nt V /V ) = (W I V t)/(n T V ), όπου Q το ποσό ϑερµότητας που αποδίδεται στο αέριο, W η διαφορά δυναµικού, I η ένταση του ϱεύµατος, t ο χρόνος διέλευσης του ϱεύµατος, n ο αριθµός γραµµοµορίων του αερίου, V η µεταβολή του όγκου, και T η ϑερµοκρασία.

5 Πειραµατικές ιατάξεις - 3 Σκοπός Τα Πειράµατα Σχήµα : Πειραµατική διάταξη. ιακρίνεται ο σωλήνας Kundt (έµβολο-µικρόφωνο αριστερά σταθερό µεγάφωνο δεξιά) προενισχυτής σήµατος παλµογεννήτρια, παλµογράφος. Για αδιαβατικές µεταβολές ενός ιδανικού αερίου ισχύει PV γ =σταθερά, όπου γ = C P/C V. Το γ µπορεί να υπολογισθεί από την ταχύτητα του ήχου (c) που παράγεται από το αέριο λόγω αδιαβατικών µεταβολών της πίεσης (P), c = γp/ρ = γrt/m. ρ είναι η πυκνότητα του αερίου και M το µοριακό του ϐάρος.

6 Πειραµατικές ιατάξεις - 4 Σκοπός Τα Πειράµατα Σχήµα : ιάδοση ηχητικού κύµατος µέσω αερίου. Η ταχύτητα του ήχου σχετίζεται µε τη συχνότητα του f και το µήκος κύµατος λ µέσω της σχέσης, c = f λ.

7 Θερµοχωρητικότητες ΠΕΙΡΑΜΑ Α3 : Θερµοχωρητικότητα αερίων ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΑ ΥΠΟ ΣΤΑΘΕΡΟ ΟΓΚΟ: dq = TdS = C V dt. (1) Επειδή du = dq, η ϑερµοχωρητικότητα υπό σταθερό όγκο ορίζεται και ως ( ) U C V = T V,N (2) ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΑ ΥΠΟ ΣΤΑΘΕΡΑ ΠΙΕΣΗ: dq = TdS = C P dt (3) Επειδή dh = dq, η ϑερµοχωρητικότητα υπό σταθερή πίεση ορίζεται και ως ( ) H C P = T P,N (4)

8 Κατανόηση του 2ου Νόµου της Θερµοδυναµικής Σχήµα : Κατά την αλλαγή ϕάσεως η Θερµοχωρητικότητα απειρίζεται µια και το σύστηµα απορροφά ϑερµότητα χωρίς να αλλάζει η ϑερµοκρασία. Η εντροπία ως συνάρτηση της εσωτερικής ενέργειας αλλάζει την καµπυλότητά της από κυρτή σε κοίλη. S ΦΑΣΗ 2 ΦΑΣΕΙΣ 1+2 ΑΣΤΑϑΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΦΑΣΗ 1 U

9 Ευστάθεια Καταστάσεων Ισορροπίας Η ϑερµοκρασία ορίζεται ως 1 T = ( ) S Το ολικό διαφορικό αυτής της συνάρτησης είναι ( ) [( ) ] 1 S d = d T U V [( ) ] 2 S = du (6) U 2 V Επίσης ισχύει ( ) 1 d T ιαιρώντας τις δύο παραπάνω εξεισώσεις παίρνουµε ( ) U C V = = 1 ( ) 2 T V T / S 2 U 2 V [( ) ] S 2 ( ) 2 S = / U V U 2 V U V (5) = dt T 2 (7) (8)

10 Ευστάθεια Καταστάσεων Ισορροπίας Συµπεραίνουµε ότι η ϑερµοχωρητικότητα συνδέεται µε τη δεύτερη παράγωγο της εντροπίας ως προς την ενέργεια, και ότι C V C V > 0) < 0) ( ) 2 S U 2 ( ) 2 S V U 2 V < 0 > 0

11 Στατιστικές Συλλογές ΠΕΙΡΑΜΑ Α3 : Θερµοχωρητικότητα αερίων Οι καταστάσεις ισορροπίας των µακροσκοπικών συστηµάτων περιγράφονται από ένα σχετικά µικρό αριθµό µεταβλητών, π.χ. για ένα µονωµένο σύστηµα από την εσωτερική ενέργεια, τον όγκο και τον αριθµό των µορίων, ενώ για ένα ανοικτό σύστηµα από τη ϑερµοκρασία, την πίεση και τον αριθµό των µορίων, κ.τ.λ. Ο αριθµός όµως των µικροκαταστάσεων που αντιστοιχούν σε µια κατάσταση ισορροπίας είναι τεράστιος. Στη µια παρατηρήσιµη ποσότητα, O, υπολογίζεται ως η µέση τιµή των τιµών της ποσότητας αυτής που λαµβάνει στις συγκεκριµένες µικροκαταστάσεις, το σύνολο των οποίων αποτελούν µια στατιστική ΣΥΛΛΟΓΗ. Στη οι πιο συχνά χρησιµοποιούµενες Συλλογές µικροκαταστάσεων είναι : 1 Μικροκανονική Συλλογή : (U, V, N) (Μονωµένα Συστήµατα) 2 Κανονική Συλλογή : (T, V, N) (Κλειστά Συστήµατα) 3 Μεγαλοκανονική Συλλογή : (T, V, µ) (Ανοικτά Συστήµατα) 4 Ισόθερµη-Ισοβαρής Συλλογή (T, P, N)

12 Μέση Τιµή και Τυπική Απόκλιση Εάν p ν είναι η πιθανότητα εµφάνισης της µικροκατάστασης ν για µια συγκεκριµένη Συλλογή, η µέση τιµή µιας παρατηρήσιµης ποσότητας O ορίζεται O < O >= n p ν O ν, (9) όπου n ο αριθµός των µικροκαταστάσεων, και οι πιθανότητες p ν ικανοποιούν τη συνθήκη κανονικοποίησης n p ν = 1. (10) ν=1 ν=1 Η τυπική απόκλιση από τη µέση τιµή δίδεται από τη σχέση ( O) 2 < ( O) 2 > = < (O < O >) 2 > (11) = < O 2 > (< O >) 2. (12)

13 Κατανοµές Πιθανοτήτων Η Εντροπία ορίζεται ως συνάρτηση των p ν (Josiah Willard Gibbs) S = k B p ν ln p ν. (13) ν Σύµφωνα µε το εύτερο Θερµοδυναµικό νόµο στις καταστάσεις ισορροπίας ενός µονωµένου συστήµατος η εντροπία παίρνει τη µέγιστη τιµή της. Για µονωµένα συστήµατα µπορούµε να υπολογίσουµε τις πιθανότητες p ν από τη συνθήκη µεγίστου της συνάρτησης της εντροπίας µε τη µέθοδο των πολλαπλασιαστών Lagrange. Τα ακρότατα της συνάρτησης F = S(p 1,..., p ν,..., p n) λ( n p ν 1), (14) συµπίπτουν µε αυτά της S. λ είναι µια σταθερά που µπορεί να προσδιορισθεί από τη συνθήκη κανονικοποίησης των πιθανοτήτων. Εποµένως ν=1 F p ν = 0, (15) k B(ln p ν + 1) λ = 0 (16) k B ln p ν = (λ + k B) (17) p ν = exp[ (λ + k B)/k B] (18) ν = 1,..., n. Παρατηρούµε ότι όλες οι καταστάσεις έχουν την ίδια πιθανότητα.

14 Μικροκανονική Συλλογή Από τη συνθήκη κανονικοποίησης της πιθανότητας υπολογίζουµε ότι p ν = 1 Ω(U, V, N), (19) όπου Ω(U, V, N) είναι ο αριθµός όλων των δυνατών µικροκαταστάσεων που αντιστοιχούν στην εσωτερική ενέργεια U, στον όγκο V και στον αριθµό µορίων N. Γνωρίζουµε ήδη ότι η εντροπία ορίσθηκε από τον Ludwig Boltzmann ως S = k B ln(ω). Αποδείξτε την ισοδυναµία των δύο ορισµών της εντροπίας, κατά Gibbs και κατά Boltzmann

15 Κανονική Συλλογή ΠΕΙΡΑΜΑ Α3 : Θερµοχωρητικότητα αερίων Εάν επιλέξουµε µια κανονική Συλλογή για το σύστηµα µας τότε αποδείκνυεται µε ανάλογο τρόπο όπως και για τη Μικροκανονική Συλλογή ότι, η πιθανότητα το µόριο να ϐρίσκεται στη µικροκατάσταση ν δίνεται από το γνωστό τύπο του Boltzmann [ 1 p ν (E ν ) = exp A(T, V, N) k BT ] exp [ ] Eν. (20) k BT A(T, V, N) είναι το Θερµοδυναµικό υναµικό Helmholtz. Ορίζουµε τη ΣΥΝΑΡΤΗΣΗ ΕΠΙΜΕΡΙΣΜΟΥ Z = [ ] exp Eν, (21) k ν BT και από τη συνθήκη κανονικοποίησης των πιθανοτήτων των µικροκαταστάσεων παίρνουµε [ ] 1 p ν = exp A(T, V, N) Z = 1. (22) k ν BT Επίσης γράφεται και ως εξής όπου β = 1/k BT. p ν = exp [βa(t, V, N)] Z = 1, (23) ν

16 Η Θερµοχωρητικότητα υπό σταθερό όγκο ως η τυπική απόκλιση της εσωτερικής ενέργειας από τη µέση τιµή της για µια Κανονική Συλλογή. Γνωρίζοντας τη συνάρτηση Επιµερισµού µπορούµε να υπολογίσουµε A = k BT ln Z (24) = β 1 ln Z (25) U = < E ν >= ν E ν p ν (26) = ν E ν e βeν /Z (27) < (E ν U) 2 > = ν = (ln Z)/ β (28) = (βa)/ β (29) ( ) ln Z = k BT 2 (30) T = ν = β = U β V,N (E ν U) 2 e β(a Eν ) (31) (E ν U) β eβ(a Eν ) (32) ν (E ν U)e β(a Eν ) U β (33) (34) = k BT 2 C V (35)

17 Υπολογισµός της Εντροπίας, της Πίεσης και του Χηµικού υναµικού S = k B ln Z + k BT P = k BT µ = k BT ( ) ln Z V T,N ( ) ln Z ( ) ln Z N T,V T V,N (36) (37) (38) ΣΥΜΠΕΡΑΣΜΑ Η Στατιστική Μηχανική καταστάσεων ϑερµοδυναµικής ισορροπίας υπολογίζει τη συνάρτηση κατανοµής πιθανοτήτων για µια συγκεκριµένη συλλογή και παράγει από τις µικροκαταστάσεις των µορίων τη συνάρτηση Επιµερισµού (Κατανοµής). Τότε, όλες οι µακροσκοπικές ιδιότητες µπορούν να υπολογισθούν από τη συνάρτηση Επιµερισµού.

18 Συνάρτηση Επιµερισµού για ένα ιδανικό αέριο Η Κανονική Συνάρτηση Επιµερισµού στην Κλασική Μηχανική N ατόµων (µορίων) γράφεται Z = 1 e βe(xi,yi,zi,pxi,pyi,pzi) Π N h 3N i dxidyidzidpxidpyidpzi (39) h είναι η σταθερά του Planck, E = K(p xi, p yi, p zi) + V (x i, y i, z i) η ολική ενέργεια του συστήµατος (κινητική + δυναµική) ως συνάρτηση των ϑέσεων (x i, y i, z i) και των ορµών (p xi, p yi, p zi) των N ατόµων (µορίων). Για ένα άτοµο (µόριο) µε µόνο κινητική ενέργεια η συνάρηση επιµερισµού γράφεται Z µεταφορική = 1 dxdydz dp xdp ydp ze β(p2 x +p2 y +p2 z )/2m. (40) h 3 Άρα Z µεταφορική = V h 3 [2πmkBT]3/2. (41) Για ένα σύστηµα N οµοίων ατόµων (µορίων) έχουµε Z µεταφορική = V N N!h 3N [2πmkBT]3N/2. (42)

19 Μακροσκοπικές καταστατικές συναρτήσεις για ένα ιδανικό αέριο Μπορούµε τώρα να υπολογίσουµε την εσωτερική ενέργεια και την καταστατική εξίσωση των ιδανικών αερίων ( ) (ln Zµεταφορική ) U =< E >= = 3N ( β) 2β = 3 NkBT, (43) 2 V ( ) (ln Zµεταφορική ) βp = = N V V, (44) β ή PV = Nk BT. (45)

20 Υπολογισµός ϑερµοχωρητικοτήτων Ιδανικών Αερίων Από την εξίσωση της εσωτερικής ενέργειας ανά µόριο U = 3 kbt, (46) 2 µπορούµε να υπολογίσουµε τη ϑερµοχωρητικότητα ανά µόριο ( U ) c V = = 3 kb (47) T V,N 2 ΣΥΜΠΕΡΑΣΜΑ [1] Για κάθε µόριο οι τρεις µεταφορικοί ϐαθµοί ελευθερίας συνεισφέρουν 3 kbt στην εσωτερική 2 ενέργεια και 3 kb στη ϑερµοχωρητικότητα. 2 [2] Η ενέργεια της περιστροφικής ( κίνησης των µορίων ) επίσης γράφεται ως άθροισµα τετραγωνικών όρων της στροφορµής, E r = 1 L x 2 + L 2 y + L2 z, και εποµένως συµπεραίνουµε ότι, η συνάρτηση 2 Ix Iy Iz επιµερισµού ϑα δίνεται από ανάλογους τύπους όπως αυτών της µεταφορικής ενέργειας. Άρα, ϑα έχουµε συνεισφορά στην εσωτερική ενέργεια 3 2 kbt και στη ϑερµοχωρητικότητα 3 kb για µη γραµµικά 2 µόρια και k BT και k B για γραµµικά µόρια αντιστοίχως. [3] Για τις δονήσεις των µορίων και εφ όσον αυτές περιγράφονται ως αρµονικοί ταλαντωτές η ενέργεια είναι το άθροισµα της κινητικής και δυναµικής ενέργειας, (E v = 1 2 (p2 + ω 2 q 2 ), επίσης τετραγωνικοί όροι. Άρα, ϑα έχουµε για κάθε ταλαντωτή συνεισφορά στη ϑερµοχωρητικότητα k B και στην εσωτερική ενέργεια k BT. Συνολικά ϑα έχουµε για κάθε µόριο µε n-άτοµα, 3n 6 δονητικούς ϐαθµούς ελευθερίας (ή 3n 5 για γραµµικά µόρια) και εποµένως, η συνεισφορά στην εσωτερική ενέργεια λόγω ταλαντώσεων είναι (3n 6)k BT και στη ϑερµοχωρητικότητα (3n 6)k B για µη-γραµµικά µόρια. Αντιστοίχως, για γραµµικά µόρια έχουµε (3n 5)k BT και (3n 5)k B.

21 Ο Νόµος της Ισοκατανοµής ΣΥΝΟΛΙΚΟ ΣΥΜΠΕΡΑΣΜΑ Κάθε ανεξάρτητη µεταβλητή στην ολική ενέργεια του συστήµατος και µορφής, E(xi 2, y2 i, z2 i, p2 xi, p2 yi, p2 zi ), αποτελούµενο από N σωµατίδια συνεισφέρει στην εσωτερική ενέργεια 1 2 kbt και στη ϑερµοχωρητικότητα 1 2 kb.

22 ΕΡΩΤΗΣΕΙΣ ΠΕΙΡΑΜΑ Α3 : Θερµοχωρητικότητα αερίων 1 Περιγράψτε τη συµπεριφορά της εντροπίας ως συνάρτηση του όγκου κατά την αλλαγή ϕάσης. 2 Περιγράψτε τη µεθοδολογία της Στατιστικής Μηχανικής 3 Αναπαράξτε την απόδειξη για την εύρεση της συνάρτησης κατανοµής πιθανοτήτων για µια µικροκανονική συλλογή 4 Αποδείξτε τις Εξισώσεις 42, 43, 44, 45

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤΑ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων

ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων ΜΑΘΗΜΑ - VII ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΙΙ (ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Β8 - Θερµοχωρητικοτήτες µετάλλων Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ-1 ΟΡΙΣΜΟΙ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-IV ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-IV ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-IV ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΥΝΑΜΙΚΑ - ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας,

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υγρού Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) ώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT

ΕΝΤΡΟΠΙΑ-2ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNOT ΕΝΤΡΟΠΙΑ-ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ-ΚΥΚΛΟΣ CARNO Η εντροπία είναι το φυσικό µέγεθος το οποίο εκφράζει ποσοτικά το βαθµό αταξίας µιας κατάστασης ενός θερµοδυναµικού συστήµατος. ΣΤΑΤΙΣΤΙΚΟΣ ΟΡΙΣΜΟΣ Η εντροπία

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΝΟΤΗΤΑ - 5 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΧΗΜΙΚΩΝ ΑΝΤΙ ΡΑΣΕΩΝ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας,

Διαβάστε περισσότερα

Μικροκανονική- Kανονική κατανομή (Boltzmann)

Μικροκανονική- Kανονική κατανομή (Boltzmann) Κεφάλαιο 2: Βασικές αρχές της στατιστικής φυσικής- Μικροκανονική- Kανονική κατανομή (Boltzmann) Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Δώσαμε τις έννοιες της μακροκατάστασης, της μικροκατάστασης και του στατιστικού

Διαβάστε περισσότερα

ΕΝΕΡΓΟΠΟΙΗΣΗΣ ΙΞΩ ΟΥΣ ΡΟΗΣ ΕΝΟΣ ΡΕΥΣΤΟΥ (ΙΞΩ ΟΜΕΤΡΙΑ)

ΕΝΕΡΓΟΠΟΙΗΣΗΣ ΙΞΩ ΟΥΣ ΡΟΗΣ ΕΝΟΣ ΡΕΥΣΤΟΥ (ΙΞΩ ΟΜΕΤΡΙΑ) ΜΑΘΗΜΑ - IX ΚΙΝΗΤΙΚΗ ΡΕΥΣΤΩΝ ΑΣΚΗΣΗ Β13 - ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΟΠΟΙΗΣΗΣ ΙΞΩ ΟΥΣ ΡΟΗΣ ΕΝΟΣ ΡΕΥΣΤΟΥ (ΙΞΩ ΟΜΕΤΡΙΑ) Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής 1 Γεώργιος Φανουργάκης 2 Κεφάλαιο 1 Εισαγωγή στη Στατιστική Θερμοδυναμική H Στατιστική θερμοδυναμική ή Στατιστική μηχανική είναι η εφαρμογή της θεωρίας πιθανοτήτων,

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ ΚΕΝΤΡΟ ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Λεωφ Κηφισίας 56, ΕΔΟΥΑΡΔΟΥ Αμπελόκηποι, ΛΑΓΑΝΑ Αθήνα PhD Τηλ: 10 69 97 985, e-mail: edlag@otenetg, wwwedlagg Λεωφ Κηφισίας 56, Τηλ: 10 69 97 985, wwwedlagg ΛΥΜΕΝΑ

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 0 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"

Διαβάστε περισσότερα

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009 Τμήμα Χημείας Πανεπιστήμιο Κρήτης Εργαστήριο Φυσικοχημείας Ι Στοιχεία Στατιστικής Θερμοδυναμικής Εαρινό εξάμηνο 9 Διδάσκων : Δ. Άγγλος Υπευθ. Εργαστηρίου : Ν. Στρατηγάκης Μεταπτυχιακοί : Ν. Διαμαντοπούλου,

Διαβάστε περισσότερα

Ελεύθερη ενέργεια. Ελεύθερη ενέργεια Gibbs. Αποτελείται από δύο όρους: την ενθαλπία H και την εντροπία S.

Ελεύθερη ενέργεια. Ελεύθερη ενέργεια Gibbs. Αποτελείται από δύο όρους: την ενθαλπία H και την εντροπία S. Κεφάλαιο 5: Θερµοδυναµικές και κινητικές έννοιες Οι µεταβολές στα στερεά άρα και στα κεραµικά, κυρίως αυτές που προέρχονται από θέρµανση ή ψύξη, προκύπτουν επειδή οδηγούν σε µείωση της ελεύθερης ενέργειας

Διαβάστε περισσότερα

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Κινητική θεωρία ιδανικών αερίων

Κινητική θεωρία ιδανικών αερίων Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

Υπό Γεωργίου Κολλίντζα

Υπό Γεωργίου Κολλίντζα ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ Υπό Γεωργίου Κολλίντζα

Διαβάστε περισσότερα

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας.

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας. Φυσικοχηµεία / Β. Χαβρεδάκη Ασκήσεις Θερµοδυναµικής Εργο. Θερµότητα. Τέλεια µη τέλεια διαφορικά. Αρχη διατήρησης της ενέργειας.. α) όσετε την γενική µορφή της καταστατικής εξίσωσης τριών θερµοδυναµικών

Διαβάστε περισσότερα

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell

Διαβάστε περισσότερα

Ασκήσεις Κεφαλαίου 2

Ασκήσεις Κεφαλαίου 2 Άνοιξη 2010 4/3/2010 Ασκήσεις Κεφαλαίου 2 1. Για να κερδίσουμε το ΛΟΤΤΟ πρέπει να διαλέξουμε 6 διαφορετικούς αριθμούς από τους 49 διαθέσιμους. Η σειρά επιλογής των αριθμών δεν παίζει κανέναν ρόλο. Αν θέλουμε

Διαβάστε περισσότερα

Έργο παραγώμενο στο τοίχωμα

Έργο παραγώμενο στο τοίχωμα Έργο παραγώμενο στο τοίχωμα δw =F x dx= p S dx= pdv Εξαρτάται από την αρχική κατάσταση, την τελική κατάσταση και από το είδος της μεταβολής C:\Users\Nicholas\Documents\PhysicsIV-Lectures\Thermodynamics\gas-properties_en.jar

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ος θερμοδυναμικός νόμος 1. α. Αέριο απορροφά θερμότητα 2500 και παράγει έργο 1500. Να υπολογισθεί η μεταβολή της εσωτερικής του ενέργειας. β. Αέριο συμπιέζεται ισόθερμα και αποβάλλει

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΙΣΑΓΩΓΗ

ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΙΣΑΓΩΓΗ ΚΛΑΣΙΚΗ (ΧΗΜΙΚΗ) ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΕΙΣΑΓΩΓΗ Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007

The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 The 38 th International Physics Olympiad Iran Theory Competition Sunday, 15 July 2007 1. Αυτός ο φάκελος περιέχει 3 φύλλα Ερωτήσεων (Q), 3 φύλλα Απαντήσεων (Α) και έναν αριθμό φύλλων Γραψίματος (W) 2.

Διαβάστε περισσότερα

Κλασική και στατιστική Θερμοδυναμική

Κλασική και στατιστική Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική και στατιστική Θερμοδυναμική Θεμελίωση της στατιστικής θερμοδυναμικής - μικροκανονική κατανομή Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006 ΘΕΡΜΟΔΥΝΑΜΙΚΗ Χαροκόπειο Πανεπιστήμιο 11 Μαΐου 2006 Κλάδοι της Θερμοδυναμικής Χημική Θερμοδυναμική: Μελετά τις μετατροπές ενέργειας που συνοδεύουν φυσικά ή χημικά φαινόμενα Θερμοχημεία: Κλάδος της Χημικής

Διαβάστε περισσότερα

υναµική ισορροπία Περιορισµένη περιστροφή Αναστροφή δακτυλίου Αναστροφή διάταξης Ταυτοµέρεια

υναµική ισορροπία Περιορισµένη περιστροφή Αναστροφή δακτυλίου Αναστροφή διάταξης Ταυτοµέρεια υναµική ισορροπία Η φασµατοσκοπία MR µπορεί να µελετήσει φυσικές και χηµικές διεργασίες, οι οποίες µεταβάλλονται µε το χρόνο. Μπορεί, για παράδειγµα, να µελετήσει την αλληλοµετατροπή δύο ή περισσότερων

Διαβάστε περισσότερα

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at Δύναμη F F=m*a kgm/s 2 1 kg*m/s 2 ~ 1 N 1 N ~ 10 5 dyn Ισχύς Ν = Έργο / χρόνος W = F*l 1 N*m = 1 Joule ( J ) N = W / t 1 J / s = 1 Watt ( W ) 1 1 kp*m / s 1 HP ~ 76 kp*m / s ~ 746 W 1 PS ~ 75 kp*m / s

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Αδιαβατικές μεταβολές στην ατμόσφαιρα - Ασκήσεις Αδιαβατικών μεταβολών (2ο φυλλάδιο) Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 B ΛΥΚΕΙΟΥ ΘΕΜΑ A Σελίδα 1 από 6 ΛΥΣΕΙΣ Στις ημιτελείς προτάσεις Α 1 -Α 4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

ΕΥΣΤΑΘΗΣ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΤΗΣ (ΕΛΕΥΘΕΡΗΣ) ΕΝΕΡΓΕΙΑΣ

ΕΥΣΤΑΘΗΣ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΤΗΣ (ΕΛΕΥΘΕΡΗΣ) ΕΝΕΡΓΕΙΑΣ 43 ΚΕΦΑΛΑΙΟ 3 ΕΥΣΤΑΘΗΣ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΤΗΣ (ΕΛΕΥΘΕΡΗΣ) ΕΝΕΡΓΕΙΑΣ Στο ανώτατο βάθρο των φυσικών εννοιών και νόμων διεκδικεί ασφαλώς μια θέση και η ακόλουθη βασική αρχή. Οι ευσταθείς δομές της

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Διδάσκοντες: Κώστας Περράκης, Δημοσθένης Γεωργίου http://eclass.upatras.gr/ p Βιβλιογραφία Advanced Thermodynamics for Engineers, Kenneth, Jr. Wark Advanced thermodynamics engineering

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το [1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 10 Μάη 2015 Βολή/Θερµοδυναµική/Ηλεκτρικό Πεδίο Ενδεικτικές Λύσεις Θέµα Α Α.1. Στην άκρη ενός τραπεζιού ϐρίσκονται δύο σφαίρες Σ 1 και Σ 2. Κάποια χρονική

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ- ΠΑΠΑΤΣΑΚΩΝΑΣ ΗΜΗΤΡΗΣ ΘΕΜΑ 1 ο Επιλέξτε τη σωστή απάντηση

Διαβάστε περισσότερα

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ ΜΕΛΕΤΗ ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΣΕ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) H 298 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 4-5 (Α. Χημική Θερμοδυναμική) η Άσκηση Από τα δεδομένα του πίνακα που ακολουθεί και δεχόμενοι ότι όλα τα αέρια είναι ιδανικά, να υπολογίσετε: α)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ»

ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ» ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ «ΣΤΑΤΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ» 1. Βασικές αρχές της θερμοδυναμικής: οι 4 νόμοι της θερμοδυναμικής, η έννοια του θερμοδυναμικού συστήματος, προσδιορισμός και ιδιότητες εντροπίας. 2. Μαθηματικός

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ ΛΥΣΕΙΣ 26/10/2011 1) Θεωρούµε ένα σύστηµα που αποτελείται από ένα σωµατίδιο µε σπιν ½ και µε µαγνητική ροπή

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19)

( J) e 2 ( ) ( ) x e +, (9-14) = (9-16) ω e xe v. De = (9-18) , (9-19) Ασκήσεις Φασµατοσκοπίας Η φασµατική περιοχή στην οποία βρίσκεται µια φωτεινή ακτινοβολία χαρακτηρίζεται από την συχνότητα ν (Hz) µε την οποία ταλαντώνεται το ηλεκτρικό και το µαγνητικό πεδίο του φωτός.

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

PV=nRT : (p), ) ) ) : :

PV=nRT  : (p), ) ) ) :     : Μιχαήλ Π. Μιχαήλ 1 ΘΕΡΜΟ ΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ 1.Τι ονοµάζουµε σύστηµα και τι περιβάλλον ενός φυσικού συστήµατος; Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται από τον υπόλοιπο κόσµο µε πραγµατικά

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

Παππάς Χρήστος. Επίκουρος καθηγητής

Παππάς Χρήστος. Επίκουρος καθηγητής Παππάς Χρήστος Επίκουρος καθηγητής 1 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΧΗΜΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ Η χημική θερμοδυναμική ασχολείται με τις ενεργειακές μεταβολές που συνοδεύουν μια χημική αντίδραση. Προβλέπει: ΠΛΕΟΝΕΚΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο

Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Κεφάλαιο : Σύστημα με μεταβλητό αριθμό σωματιδίων (Μεγαλοκανονική κατανομή) Ιδανικό κβαντικό αέριο Ανακεφαλαίωση (Με τι ασχοληθήκαμε) Ασχοληθήκαμε με συστήματα με μεταβλητό αριθμό σωματιδίων. Τον τρίτο

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ 1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός

Διαβάστε περισσότερα

Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt

Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt Η χρησιμοποιούμενη διάταξη φαίνεται στο ακόλουθο σχήμα: Το μεγάφωνο του σωλήνα Kundt συνδέεται στην έξοδο SIGNAL OUT της γεννήτριας συχνοτήτων.

Διαβάστε περισσότερα

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια. Ενδεικτικές Λύσεις. Θέµα Α

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια. Ενδεικτικές Λύσεις. Θέµα Α 3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Θερµοδυναµική/Ιδανικά Αέρια Ενδεικτικές Λύσεις Θέµα Α Α.1 Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί ισοβαρή ϑέρµανση κατά την διάρκεια της οποίας η ϑερµοκρασία

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Ένα σώμα εκτοξεύεται κατακόρυφα προς τα πάνω και όταν φτάνει στο μέγιστο ύψος διασπάται σε

ΘΕΜΑ Α. Α1. Ένα σώμα εκτοξεύεται κατακόρυφα προς τα πάνω και όταν φτάνει στο μέγιστο ύψος διασπάται σε ΘΕΜΑ Α Οδηγία: Στις ( πολλαπλής επιλογής) ερωτήσεις Α-Α4, να γράψετε στο φύλλο απαντήσεών σας τον αριθμό της ερώτησης και δεξιά του το γράμμα που αντιστοιχεί στη (μία και μοναδική) σωστή απάντηση. Α. Ένα

Διαβάστε περισσότερα

du đ Q đw đ E m (1) και στον 2 ο Νόμο, (2) Συνήθως χρησιμοποιείται η γνωστή από τη Μηχανική

du đ Q đw đ E m (1) και στον 2 ο Νόμο, (2) Συνήθως χρησιμοποιείται η γνωστή από τη Μηχανική KΕΦΑΛΑΙΟ 3 Aπό τις διαλέξεις το τελευταίο μέρος της δίωρης της 17/10 (4 ο VIDEO) και όλη η διάλεξη της 18/10 (5 ο VIDEO) αφορούν στο τρίτο κεφάλαιο με περισσότερες λεπτομέρειες και διευκρινήσεις από τα

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 02/2015

ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 02/2015 ΣΥΝΟΠΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ 02/2015 ΘΕΜΑ 1 Ι. α) Κύκλος λειτουργίας στο επίπεδο P-V. P 1 1-2, 3-4: αδιαβατικές (εν γένει σχεδιάζονται ως καμπύλες γραμμές) 4 3 0 V 1 V 2 V 2 4-1, 2-3: ισόχωρες (ευθείες)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ο ΝΟΜΟΙ ΑΕΡΙΩΝ -ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ Τι γνωρίζετε για την καταστατική εξίσωση των ιδανικών αερίων; Η καταστατική εξίσωση των αερίων είναι µια σχέση που συνδέει µεταξύ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου ευτέρα 2 Μάρτη 2015 Θερµοδυναµική/Ιδανικά Αέρια

3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου ευτέρα 2 Μάρτη 2015 Θερµοδυναµική/Ιδανικά Αέρια 3ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου ευτέρα 2 Μάρτη 2015 Θερµοδυναµική/Ιδανικά Αέρια Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή

Διαβάστε περισσότερα

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Η Εντροπία Δρ. Αθανάσιος Χρ. Τζέμος Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Θερμοδυναμική +Στατιστική Μηχανική= Θερμική Φυσική Η Θερμοδυναμική ασχολείται με τις μακροσκοπικές

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «Κινητική Θεωρία των Αερίων» ο κεφάλαιο: «O 1 ος θερµοδυναµικός νόµος» ΘΕΜΑ 1 Ο 1Α Ερωτήσεις πολλαπλής επιλογής. Σηµειώστε τη σωστή από τις προτάσεις που ακολουθούν. 1) Κατά την

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 23 ΝΟΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA. Άσκηση 1 Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο διάγραμμα p V του σχήματος. (α) Αν δίνονται Q ΑΒΓ = 30J και W BΓ = 20J, να βρεθεί η μεταβολή της εσωτερικής

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων ή μορίων) του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Σχολικό Έτος 016-017 67 ΚΕΦΑΛΑΙΟ Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΕΡΙΑ 1. Σχετικές Ατομικές και Μοριακές Μάζες Σχετική Ατομική Μάζα (Α r) του ατόμου ενός στοιχείου, ονομάζεται ο αριθμός

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ + +

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ + + Επαναληπτικά Θέµατα ΟΕΦΕ 00 ΘΕΜΑ ο. β. γ. γ 4. γ. α. Λ β. Σ γ. Σ δ. Λ ε. Λ ΘΕΜΑ ο. Α. Σωστή η απάντηση () A B' ΤΑΞΗ ΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΙΚΗ ΚΑΤΕΥΘΥΝΣΗ B l w ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ F L Ε επ, K Λ - - F

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

u u u u u u u u u u u x x x x

u u u u u u u u u u u x x x x Βασικοί συµβολισµοί και σχέσεις ϕ ϕ ui & ϕ=, ϕ, i=, ui, j= t x x u1 u1 u1 x1 x2 x u 3 1, 1 ui, j ui, j u1, 1 ui, j ui, j u u u u u u u u u u u i 2 2 2 i, j= = i, j 2, 2 i, j = i, j 2, 2 i, j = x j x1 x2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 15 Μάη 2015 Μηχανική/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 15 Μάη 2015 Μηχανική/Θερµοδυναµική/Ηλεκτρικό Πεδίο. Θέµα Α. Ενδεικτικές Λύσεις Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Παρασκευή 15 Μάη 2015 Μηχανική/Θερµοδυναµική/Ηλεκτρικό Πεδίο Ενδεικτικές Λύσεις Θέµα Α Α.1. Στην άκρη ενός τραπεζιού ϐρίσκονται δύο σφαίρες Σ 1 και Σ 2. Κάποια χρονική

Διαβάστε περισσότερα

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής Θερμοδυναμική 1. Η εσωτερική ενέργεια ορισμένης ποσότητας ιδανικού αερίου α) Είναι αντιστρόφως ανάλογη της απόλυτης θερμοκρασίας του αερίου. β) Είναι ανάλογη της απόλυτης θερμοκρασίας

Διαβάστε περισσότερα

ΤΜΗΜΑ ΧΗΜΕΙΑΣ Θέµατα εξετάσεων Σεπτέµβριος 2009 ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΚΑΤΑΣΤΑΣΕΩΝ ΤΗΣ ΥΛΗΣ ΚΑΙ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΤΜΗΜΑ ΧΗΜΕΙΑΣ Θέµατα εξετάσεων Σεπτέµβριος 2009 ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΚΑΤΑΣΤΑΣΕΩΝ ΤΗΣ ΥΛΗΣ ΚΑΙ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Θέµατα εξετάσεων Σεπτέµβριος 2009 1) α) Ανηγµένη εξίσωση van der Waals. Παραγωγή της εξίσωσης και θεώρηµα των αντίστοιχων καταστάσεων. β) Μοριακή επιφανειακή ενέργεια υγρών και εξάρτηση αυτής από τη θερµοκρασία

Διαβάστε περισσότερα

Κλασική και στατιστική Θερμοδυναμική

Κλασική και στατιστική Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική και στατιστική Θερμοδυναμική Κανονική Κατανομή oltzma- Μεγαλοκανονική Κατανομή Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΘΕΜΑ A. 4. Η πρόταση «Δε μπορεί να κατασκευαστεί θερμική μηχανή με συντελεστή απόδοσης = 1» ισοδυναμεί με. α. Την αρχή της ανεξαρτησίας των κινήσεων.

ΘΕΜΑ A. 4. Η πρόταση «Δε μπορεί να κατασκευαστεί θερμική μηχανή με συντελεστή απόδοσης = 1» ισοδυναμεί με. α. Την αρχή της ανεξαρτησίας των κινήσεων. ΘΕΜΑ Α. Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Ποιο από τα πιο κάτω χαρακτηριστικά μπορεί να αποδοθεί

Διαβάστε περισσότερα