Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής"

Transcript

1 Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής

2 Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς και μεταξύ της μέσης και στιγμιαίας επιτάχυνσης, Διαγράμματα θέσης σε σχέση με το χρόνο, ταχύτητας σε σχέση με το χρόνο και επιτάχυνσης σε σχέση με το χρόνο στην ευθύγραμμη κίνηση. Κατανόηση ευθύγραμμης κίνησης με σταθερή επιτάχυνση. Ελεύθερη πτώση σωμάτων.

3 Μετατόπιση, Χρόνος και Μέση Ταχύτητα Ένα σωματίδιο που κινείται σε ευθεία γραμμή, πάνω στον άξονα x έχει συντεταγμένη x. Η μεταβολή στις συντεταγμένες του σωματιδίου είναι x = x 2 x 1. Ορίζουμε τη μέση ταχύτητα του αυτοκινήτου-σωματιδίου, στο χρονικό διάστημα Δt, ως μια διανυσματική ποσότητα, της οποίας η συνιστώσα x είναι η μεταβολή του x, Δx, μέσα σ αυτό το χρονικό διάστημα Δt,διαιρεμένη με το Δt. Η μέση ταχύτητα του σωματιδίου στον άξονα x είναι v av-x = x/ t.

4 Αρνητική ταχύτητα Η μέση ταχύτητα στον άξονα x είναι αρνητική σε ένα χρονικό διάστημα αν το σωματίδιο κινείται προς την αρνητική κατεύθυνση του άξονα x γι αυτό το χρονικό διάστημα.

5 Διάγραμμα θέσης-χρόνου Το διάγραμμα θέσης-χρόνου (x-t) δείχνει τη θέση του σωματιδίου x για κάθε χρονική στιγμή t. Στο παρακάτω διάγραμμα φαίνεται πώς σχετίζεται η μέση ταχύτητα στον άξονα x με τη κλίση στο διάγραμμα x-t.

6 Στιγμιαία ταχύτητα Στιγμιαία ταχύτητα είναι η ταχύτητα σε μια χρονική στιγμή ή σε μια συγκεκριμένη θέση της διαδρομής. Δίνεται από τη σχέση: υ x = lim Δt 0 Δx = dx Δt dt Χρησιμοποιούμε τον όρο μέτρο ταχύτητας για να δηλώσουμε τη διανυμένη απόσταση διαιρεμένη με το χρόνο που χρειάστηκε να διανυθεί, τόσο για την περίπτωση της μέσης όσο και της στιγμιαίας εκδοχής. Το μέτρο της στιγμιαίας ταχύτητας μετρά το πόσο γρήγορα κινείται ένα σωματίδιο, ενώ η στιγμιαία ταχύτητα μετρά το πόσο γρήγορα και προς ποια κατεύθυνση κινείται. Για παράδειγμα ένα σωματίδιο με στιγμιαία ταχύτητα υ x = 25 m και να δεύτερο σωματίδιο με s υ x = 25 m κινούνται σε αντίθετες διευθύνσεις με το ίδιο μέτρο s στιγμιαίας ταχύτητας 25 m/s. Το μέτρο της στιγμιαίας ταχύτητας, όπως και το μέτρο της ταχύτητας δεν μπορεί ποτέ να είναι αρνητικά.

7 Παράδειγμα: Μέση και στιγμιαία ταχύτητα Ένας κυναίλουρος παραφυλάει συσπειρωμένος 20 m ανατολικά από τη γρίλια ενός παρατηρητή. Τη χρονική στιγμή t=0 o κυναίλουρος επιτίθεται στην αντιλόπη, που βρίσκεται σε ξέφωτο 50 m ανατολικά από τον παρατηρητή. Ο κυναίλουρος τρέχει σε ευθεία γραμμή. Η ανάλυση της βιντεοταινίας, αργότερα, δείχνει πως μέσα στα δυο πρώτα δευτερόλεπτα της επίθεσης η συντεταγμένη x του κυναίλουρου μεταβάλλεται με το χρόνο σύμφωνα με την εξίσωση x = 20 m + 5,0 m/s 2 t 2. (Σημειώστε ότι οι αριθμοί 20 και 5,00 σ αυτή την έκφραση πρέπει να έχουν τις μονάδες που βάλαμε ώστε η έκφραση να είναι συνεπής ως προς τις διαστάσεις). Α) Βρείτε τη μετατόπιση του κυναίλουρου κατά το χρονικό διάστημα από t 1 =1,0 s ως t 2 =2,0 s. Β) Βρείτε τη μέση ταχύτητα κατά το ίδιο χρονικό διάστημα. Γ) Βρείτε τη στιγμιαία ταχύτητα τη χρονική στιγμή t 1 =1,0 s παίρνοντας Δt=0,1 s, μετά Δt=0,01 s και μετά Δt=0,001 s. Δ) Να αποδείξετε μια γενική έκφραση για τη στιγμιαία ταχύτητα συναρτήσει του χρόνου και από αυτή να βρείτε την υ x τις στιγμές t=1,0 s και t=2,0 s.

8 Α) Τη στιγμή t 1 =1,0 s η θέση του κυναίλουρου x 1 είναι: x 1 = 20 m + 5,0 m/s 2 1,0 s 2 = 25 m Τη στιγμή t 2 =2,0 s η θέση του x 2 είναι: x 2 = 20 m + 5,0 m/s 2 2,0 s 2 = 40 m Η μετατόπιση κατά τη διάρκεια αυτού του χρονικού διαστήματος είναι: Δx = x 2 x 1 = 40 m 25 m = 15 m.

9 B) Η μέση ταχύτητα κατά τη διάρκεια αυτού του χρονικού διαστήματος είναι: υ av x = x 2 x 1 40 m 25 m 15 m = = = 15 m/s t 2 t 1 2,0 s 1,0 s 1,0 s Γ) Με το Δt=0,1 s, το χρονικό διάστημα είναι από t 1 =1,0 s έως t 2 =1,1 s. Τη στιγμή t 2 =1,1 s. Τη στιγμή t 2, η θέση είναι: x 2 = 20 m + 5,0 m/s 2 1,1 s 2 = 26,05 m Η μέση ταχύτητα κατά τη διάρκεια αυτού του διαστήματος είναι: 26,05 m 25 m υ av x = = 10,5 m 1,1 s 1,0 s s Αν ακολουθηθεί η ίδια διαδικασία και για τα χρονικά διαστήματα 0,01 s και 0,001 s, η μέση ταχύτητα είναι 10,05 m/s και 10,005 m/s, αντίστοιχα. Καθώς το Δt γίνεται μικρότερο, η μέση ταχύτητα πλησιάζει το 10,0 m/s.συμπεραίνουμε ότι η στιγμιαία ταχύτητα τη στιγμή t=1,0 s είναι 10 m/s.

10 Δ) Η στιγμιαία ταχύτητα δίνεται από την παράγωγο: υ x = dx dt = 5,0 m/s2 2t = 10 m/s 2 t Τη χρονική στιγμή t=1,0 s, υ x =10 m/s, όπως βρήκαμε στο Γ. Τη χρονική στιγμή t=2,0 s, υ x =20 m/s.

11 Εύρεση της ταχύτητας σε διάγραμμα x-t. Σε οποιοδήποτε σημείο της καμπύλης x-t η στιγμιαία ταχύτητα είναι η κλίση της εφαπτομένης στο σημείο αυτό. Στο πιο κάτω διάγραμμα παρατηρούμε ότι η μέση ταχύτητα μεταξύ των σημείων P 1 και P 2, δηλ. μεταξύ των σημείων p 1 και p 2 της καμπύλης τείνει στη στιγμιαία ταχύτητα όταν το P 2 πλησιάζει το P 1 και Δt 0. Όταν η εφαπτομένη της καμπύλης κλίνει πάνω προς τα δεξιά τότε η κλίση είναι θετική και η κίνηση είναι στη θετική διεύθυνση του άξονα x. Όταν κλίνει κάτω προς τα δεξιά είναι αρνητική και η κλίση και η ταχύτητα είναι αρνητική και επομένως η κίνηση είναι προς την αρνητική διεύθυνση του x. Όταν η εφαπτόμενη είναι οριζόντια, τότε η κλίση και η ταχύτητα είναι μηδενική.

12 Διάγραμμα x-t και διάγραμμα κίνησης. Ένα διάγραμμα κίνησης δείχνει τη θέση του σωματιδίου σε διάφορους χρόνους κατά τη διάρκεια της κίνησης καθώς και τα βέλη που παριστούν την ταχύτητα σε κάθε χρονική στιγμή. Είναι δηλ. ένα στιγμιότυπο.

13 Μέση και Στιγμιαία Επιτάχυνση. Επιτάχυνση είναι ο ρυθμός μεταβολής της ταχύτητας με το χρόνο. Είναι διανυσματικό μέγεθος και στην ευθύγραμμη κίνηση έχει τη μόνη μη μηδενική συνιστώσα της κατά μήκος του άξονα της κίνησης. Μέση Επιτάχυνση Ας θεωρήσουμε ένα σωματίδιο ότι κάνει ευθύγραμμη κίνηση και ότι στο σημείο P 1 έχει στιγμιαία ταχύτητα υ 1x και τη χρονική στιγμή που βρίσκεται στο σημείο P 2 έχει στιγμιαία ταχύτητα υ 2x. Άρα η ταχύτητα μεταβάλλεται κατά Δυ x = υ 2x υ 1x στο χρονικό διάστημα Δt = t 2 t 1. Η μέση επιτάχυνση είναι το διανυσματικό μέγεθος : Η επιτάχυνση σε μονάδες SI είναι m/s 2. a av x = Δυ x Δt x

14 Παράδειγμα: Μέση επιτάχυνση. Μια αστροναύτης βγαίνει από διαστημικό λεωφορείο για να ελέγξει μια νέα συσκευή ατομικών ελιγμών. Καθώς αυτή κινείται σε ευθεία γραμμή, ο συνεργάτης της στο διαστημικό λεωφορείο παίρνει τις παρακάτω μετρήσεις της ταχύτητάς της κάθε 2,0 s αρχίζοντας την στιγμή t= 1s, ως ακολούθως: t υ x t υ x 1,0 s 0,8 m/s 9,0 s -0,4 m/s 3,0 s 1,2 m/s 11,0 s -1,0 m/s 5,0 s 1,6 m/s 13,0 s -1,6 m/s 7,0 s 1,2 m/s 15,0 s -0,8 m/s Βρείτε τη μέση επιτάχυνση, και περιγράψτε εάν η ταχύτητα της αστροναύτου αυξάνει ή ελαττώνεται για κάθε ένα από τα παρακάτω χρονικά διαστήματα: α) από t 1 =1,0 εως t 2 =3,0 s, β) από t 1 =5,0 εως t 2 =7,0 s, γ) από t 1 =9,0 εως t 2 =11,0 s, δ) από t 1 =13,0 εως t 2 =15,0 s.

15 α) a av x = 1,2m s 0,8m s = 0,2 m/s 2. Η 3,0 s 1,0 s ταχύτητα αυξάνει από 0,8 σε 1,2 m/s. β) -0,2 m/s 2. Η ταχύτητα ελαττώνεται από 1,6 σε 1,2 m/s. γ) -0,3 m/s 2. Η ταχύτητα αυξάνει από 0,4 σε 1,0 m/s. δ) 0,4 m/s 2. Η ταχύτητα ελαττώνεται από 1,6 σε 0,8 m/s.

16 Στιγμιαία Επιτάχυνση Ο πιλότος του αγωνιστικού περνά από το σημείο P 1 με ταχύτητα υ 1x τη χρονική στιγμή t 1. Ενώ από το σημείο P 2 περνά με ταχύτητα υ 2x τη χρονική στιγμή t 2. Για να βρούμε τη στιγμιαία επιτάχυνση στο σημείο P 1 υπολογίζουμε τη μέση επιτάχυνση μεταξύ των δύο σημείων παίρνοντας το σημείο P 2 όλο και πιο κοντά στο P 1, για όλο και πιο μικρά χρονικά διαστήματα Δt, έτσι ώστε το Δt να τείνει στο μηδέν. Δυ x a x = lim Δt 0 Δt = dυ x dt

17 Παράδειγμα: Μέση και στιγμιαία επιτάχυνση. Υποθέστε ότι η ταχύτητα υ x του αυτοκινήτου στο πιο κάτω σχήμα για κάθε χρονική στιγμή t δίνεται από την εξίσωση: υ x = 60 m s + 0,50 m/s3 t 2 α) Να βρείτε τη μεταβολή στην ταχύτητα του αυτοκινήτου για το χρονικό διάστημα μεταξύ t 1 =1,0 s και t 2 =3,0 s. β) Να βρείτε τη μέση επιτάχυνση σ αυτό το χρονικό διάστημα. γ) Να βρείτε την στιγμιαία επιτάχυνση τη στιγμή t 1 =1,0 s παίρνοντας το Δt να είναι πρώτα 0,1 s, μετά 0,01 s και τέλος 0,001 s. δ) Να αποδείξετε μια έκφραση για την στιγμιαία επιτάχυνση για κάθε χρονική στιγμή και να την χρησιμοποιήσετε για να βρείτε την επιτάχυνση στο t=1,0 s και t=3,0 s.

18 α) Βρίσκουμε πρώτα την ταχύτητα σε κάθε χρονική στιγμή αντικαθιστώντας την τιμή του t στην εξίσωση. υ 1x = 60 m s + 0,50 m/s3 1,0s 2 = 60,5 m s Την στιγμή t 2 =3,0 s, υ 2x = 60 m s + 0,50 m/s3 3,0s 2 = 64,5 m s Η μεταβολή στην ταχύτητα Δυ x είναι: Δυ x = υ 2x υ 1x = 4,0 m s To χρονικό διάστημα είναι: Δt = 3,0 s 1,0 s = 2,0 s. β) Η μέση επιτάχυνση κατά τη διάρκεια αυτού του διαστήματος είναι: α av x = υ 2x υ 1x 4,0 m/s = = 2,0 m/s 2 t 2 t 1 2,0 s Κατά το χρονικό διάστημα από t 1 =1,0 s έως t 2 =3,0 s και η μέση ταχύτητα και η μέση επιτάχυνση έχουν το ίδιο πρόσημο (σ αυτή την περίπτωση θετικό), οπότε το αυτοκίνητο επιταχύνεται.

19 γ) Όταν Δt=0, 1 s, t 2 =1,1 s και υ 2x = 60 m s + 0,50 m/s3 1,1s 2 = 60,605 m s α av x = υ 2x υ 1x t 2 t 1 = Δυ x = υ 2x υ 1x = 0,105 m s 0,105 m/s 0,1 s = 1,05 m/s 2 Αν επαναλάβουμε την ίδια διαδικασία και για τα υπόλοιπα χρονικά διαστήματα βρίσκουμε, για Δt=0,01 s α av-x =1,005 m/s 2 και για Δt=0,001 s α av-x =1,0005 m/s 2. Παρατηρούμε δηλ. όσο το Δt πλησιάζει στο μηδέν η μέση επιτάχυνση πλησιάζει το 1,0 m/s 2. Επομένως η στιγμιαία επιτάχυνση για t=1,0 s είναι 1,0 m/s 2. δ) Η στιγμιαία επιτάχυνση είναι: Όταν t=1,0 s, α av-x =1,0 m/s 2 Όταν t=3,0 s, α av-x =3,0 m/s 2 α x = dυ x dt = d dt 60 m s + 0,50 m/s3 t 2 = 0,50 m/s 3 2t = 1,0 m/s 3 t

20 Εύρεση της επιτάχυνσης σε Διάγραμμα υ x -t ή σε Διάγραμμα x-t. Η μέση επιτάχυνση μεταξύ των σημείων P 1 και P 2 της διαδρομής του σωματιδίου που αντιστοιχούν στα σημεία p 1 και p 2 στο διάγραμμα υ x -t είναι η κλίση της γραμμής που ενώνει τα σημεία p 1 και p 2. Ενώ η στιγμιαία επιτάχυνση στο σημείο p 1 είναι η εφαπτομένη της καμπύλης στο σημείο αυτό.

21 Διάγραμμα υ x -t και διάγραμμα κίνησης. Όταν το υ x και το α x έχουν το ίδιο πρόσημο, το σώμα επιταχύνεται. Εάν και οι δύο είναι θετικές, το σώμα κινείται στην θετική κατεύθυνση με αυξανόμενο μέτρο ταχύτητας. Εάν και οι δύο είναι αρνητικές, το σώμα κινείται στην αρνητική κατεύθυνση με ταχύτητα που γίνεται όλο και πιο αρνητική, αλλά πάλι το μέτρο αυξάνει. Όταν το υ x και το α x έχουν αντίθετα πρόσημα, το σώμα επιβραδύνεται. Εάν το υ x είναι θετικό και το α x αρνητικό, το σώμα κινείται στη θετική κατεύθυνση με μειούμενο μέτρο ταχύτητας. Εάν το υ x είναι αρνητικό και το α x θετικό, το σώμα κινείται στην αρνητική κατεύθυνση με ταχύτητα που γίνεται λιγότερο αρνητική, όμως πάλι το σώμα επιβραδύνεται.

22 Διάγραμμα x-t και διάγραμμα κίνησης. Μπορούμε να μάθουμε επίσης για την επιτάχυνση ενός σώματος από ένα διάγραμμα της θέσης του συναρτήσει του χρόνου. Η επιτάχυνση α x είναι η δεύτερη παράγωγος της θέσης x ως προς το χρόνο: α x = dυ x dt = d dt dx dt = d2 x d 2 t. Η δεύτερη παράγωγος οποιασδήποτε συνάρτησης σχετίζεται με την καμπυλότητα ή κοιλότητα της γραφικής παράστασης της συνάρτησης. Σ ένα σημείο που το διάγραμμα x-t καμπυλώνεται προς τα πάνω, η επιτάχυνση είναι θετική και η ταχύτητα αυξάνεται, όταν η καμπυλότητα είναι προς τα κάτω η επιτάχυνση είναι αρνητική και η ταχύτητα ελαττώνεται. Τέλος σε σημείο που δεν υπάρχει καμπυλότητα η επιτάχυνση είναι μηδενική και η ταχύτητα σταθερή.

23 Κίνηση με Σταθερή Επιτάχυνση. Στην κίνηση με σταθερή επιτάχυνση ο ρυθμός μεταβολής της ταχύτητας είναι σταθερός. Τότε στο διάγραμμα υ x -t η ταχύτητα παριστάνεται με ευθεία με κλίση α x. Για κάθε χρονική στιγμή t η ταχύτητα υ x δίνεται από τη σχέση: where υ 0x η αρχική ταχύτητα για t=0 s. υ x = υ 0x + a x t

24 Αν θεωρήσουμε το διάγραμμα υ x -t όπου η επιτάχυνση α x είναι σταθερή και η καμπύλη υ x -t ευθεία τότε η μέση ταχύτητα στο χρονικό διάστημα από 0 σε t μεταξύ των σημείων x 0 και x αντίστοιχα είναι : υ av x = x x 0 t Η μέση ταχύτητα από το πιο κάτω διάγραμμα είναι: υ av x = υ 0x+υ x 2 Επίσης ισχύει: υ x = υ 0x + a x t Άρα x = x 0 + υ 0x t a xt 2 Το άθροισμα του εμβαδού του ορθογωνίου και του τριγώνου στο σχήμα είναι: υ 0x t + 1 a 2 xt t Επομένως: x x 0 = υ 0x t a xt 2 υ x = dx dt = υ 0x + a x t και dυ x dx = a x Η μετατόπιση κατά τη διάρκεια ενός χρονικού διαστήματος μπορεί να βρεθεί από το εμβαδό κάτω από την καμπύλη υ x -t. Αυτό ισχύει και όταν η επιτάχυνση δεν είναι σταθερή.

25 Σε πολλά προβλήματα είναι χρήσιμο να έχουμε μια σχέση μεταξύ της θέσης, της ταχύτητας και της επιτάχυνσης που να μην εμπεριέχει το χρόνο. Έτσι από την εξίσωση: υ x = υ 0x + a x t t = υ x υ 0χ α x και από την x = x 0 + υ 0x t a xt 2 x = x 0 + υ x υ 0x a x a x υ x υ 0x a x 2 υ x 2 = υ 0x 2 + 2a x x x 0 (μόνο για σταθερή επιτάχυνση) Όταν δεν γνωρίζουμε την επιτάχυνση α x μπορούμε να υπολογίσουμε τη θέση από την ταχύτητα και το χρόνο ως εξής: από τις εξισώσεις: υ av x = x x 0 t και υ av x = υ 0x+υ x προκύπτει: 2 x x 0 = υ 0x + υ x t 2 Για μηδενική επιτάχυνση υ x είναι σταθερή και άρα στην πιο πάνω σχέση υ 0x = υ x Επομένως: x = x 0 + υ x t

26 Παράδειγμα: Μέση και στιγμιαία ταχύτητα Ένας μοτοσικλετιστής, που κατευθύνεται ανατολικά, βγαίνει από ένα χωριό της Αττικής και επιταχύνει, αφού περάσει το σήμα που ορίζει τα όρια του χωριού, στη θέση x=0. Η επιτάχυνσή του είναι σταθερή, 4,0 m/s 2. Τη χρονική στιγμή t=0 βρίσκεται 5,0 m ανατολικά από το σήμα και έχει ταχύτητα 15 m/s. α) Βρείτε τη θέση και την ταχύτητα του τη χρονική στιγμή t=2,0 s. β) Πού βρίσκεται ο μοτοσικλετιστής όταν η ταχύτητα του είναι 25 m/s; α) Θέση: x = x 0 + υ 0x t a xt 2 = 5,0 m + 15 m/s 2,0 s ,0 m/s2 2,0 s 2 = 43 m Ταχύτητα: υ x = υ 0x + a x t = 15 m s + 4,0 m/s2 2,0 s = 23 m/s β) υ x 2 = υ 0x 2 + 2a x x x 0 Λύνοντας ως προς x έχουμε: x = x 0 + υ x 2 υ 0x 2 2a x = 5,0 m + 25 m/s 2 15 m/s 2 2 4,0 m/s 2 = 55 m

27 Εναλλακτικά για υ x =25 m/s από υ x = υ 0x + a x t t = υ x υ 0x a x = 25 m s 15 m/s 4,0 m s 2 = 2,5 s από x = x 0 + υ 0x t a xt 2 = 0,5 m + 15 m/s 2,5 s ,0 m/s2 2,5 s 2 = 55 m

28 Παράδειγμα: Δυο σώματα με διαφορετικές επιταχύνσεις Ένας οδηγός που ταξιδεύει με σταθερή ταχύτητα 15 m/s περνάει μπροστά από σχολείο, όπου το όριο ταχύτητας είναι 10 m/s (περίπου 40 km/h). Ακριβώς τη στιγμή που περνά ο οδηγός, ένας τροχονόμος, που περίμενε στη γωνία με τη μοτοσικλέτα του, αρχίζει να καταδιώκει τον οδηγό με σταθερή επιτάχυνση 3,0 m/s 2. α) Πόσος χρόνος χρειάζεται για να φτάσει ο τροχονόμος τον οδηγό; β) Ποια είναι η ταχύτητα του τροχονόμου εκείνη τη στιγμή; γ) Πόση είναι η συνολική απόσταση που διάνυσε κάθε όχημα μέχρι εκείνο το σημείο; α) Θέλουμε να υπολογίσουμε την τιμή t που ο οδηγός και ο τροχονόμος είναι στην ίδια θέση x M =x p. Εφαρμόζοντας την x = x 0 + υ 0x t a xt 2 για κάθε όχημα, βρίσκουμε x M = 0 + υ M0x t t2 = υ M0x t x P = t a P x t 2 = 1 2 a P x t m/s υ M0x t = 1 a 2 P x t 2, t=0 ή t = 2υ Μ0x = a P x 3,0 m/s2 = 10 s. Δυο χρονικές στιγμές που τα δυο οχήματα έχουν την ίδια συντεταγμένη x. t=0, το αυτοκίνητο προσπερνάει την παρκαρισμένη μοτοσικλέτα στη γωνία. t=10 s, ο τροχονόμος φτάνει τον οδηγό.

29 β) Θέλουμε το μέτρο της ταχύτητας του τροχονόμου υ Px τη χρονική στιγμή που βρέθηκε στο ερώτημα α). Η ταχύτητά του για κάθε χρονική στιγμή δίνεται από: υ Px = υ P0x + a Px t = 0 + 3,0 m/s 2 t Οπότε για t=10 s, βρίσκουμε υ Px = 30 m/s. Όταν ο τροχονόμος φτάνει το αυτοκίνητο, έχει διπλάσια ταχύτητα από τον οδηγό. γ) Η απόσταση, που διανύει το αυτοκίνητο, σε 10 s είναι: x M = υ Μ0x t = 15 m/s 10 s = 150 m Ενώ η απόσταση που διάνυσε ο τροχονόμος είναι: x P = 1 2 a P x t 2 = 1 2 3,0 m/s2 10 s 2 = 150 m Αυτό επιβεβαιώνει πως όταν ο τροχονόμος φτάνει το αυτοκίνητο τα δύο οχήματα έχουν διανύσει ίσες αποστάσεις.

30 Ελεύθερη πτώση σωμάτων. Για τη μελέτη της ελεύθερης πτώσης παίρνουμε την εξιδανικευμένη περίπτωση όπου η αντίσταση του αέρα είναι μηδενική. Ελεύθερη πτώση λέγεται η πτώση ενός σώματος υπό την επίδραση της βαρύτητας. Στο διπλανό σχήμα παρατηρούμε ότι το μπαλάκι πέφτει υπό την επίδραση της βαρύτητας και αλλάζει η ταχύτητά του. Η ταχύτητά του μεταβάλλεται με σταθερό ρυθμό. Το μπαλάκι επιταχύνεται με την σταθερή επιτάχυνση ίση με g=9,8 m/s 2 =980 cm/s 2.

31 Παράδειγμα: Κέρμα που πέφτει ελεύθερο Κέρμα ενός ευρώ ρίχνεται από τον κεκλιμένο πύργο της Πίζας. Το κέρμα ξεκινάει από την ηρεμία και πέφτει ελεύθερα. Υπολογίστε τη θέση και την ταχύτητά του μετά από 1,0, 2,0 και 3,0 s. y = υ 0y t a yt 2 = g t2 = 4,9 m/s 2 t 2 υ y = υ 0y + a y t = 0 + g t = 9,8 m/s 2 t Για t=1,0 s, y = 4,9 m/s 2 1,0 s 2 = 4,9 m και υ y = 9,8 m/s 2 1,0 s = 9,8 m/s Δηλ., το κέρμα μετά από ένα δευτερόλεπτο βρίσκεται 4,9 m κάτω από την αρχή και έχει ταχύτητα με κατεύθυνση προς τα κάτω με μέτρο 9,8 m/s.

32 Παράδειγμα: Κίνηση πάνω-κάτω στην ελεύθερη πτώση. Υποθέστε ότι ρίχτετε μια μπάλα κατακόρυφα προς τα πάνω από την ταράτσα ψηλού κτιρίου. Η μπάλα φεύγει από το χέρι σας στο ύψος του κάγκελου της ταράτσας με ταχύτητα 15,0 m/s προς τα πάνω, η μπάλα είναι σε ελεύθερη πτώση. Στο δρόμο της προς τα κάτω μόλις και δεν κτυπάει το κάγκελο. Στη θέση του κτιρίου, g=9,80 m/s 2. Βρείτε α) τη θέση και την ταχύτητα της μπάλας 1,00 s και 4,00 s από τη στιγμή που άφησε το χέρι σας, β) τη ταχύτητά της, όταν βρίσκεται 5,00 m πάνω από το κάγκελο, γ) το μέγιστο ύψος, που έφτασε η μπάλα και το χρόνο που έφτασε σε αυτό, και δ) την επιτάχυνση της μπάλας όταν είναι στο μέγιστο ύψος. a) y =0, y = y 0 + υ 0y t a yt 2 = y 0 + υ 0y t ,8 m/s2 t 2 = ,0 m/s t ,8 m/s2 t 2 υ y = υ 0y + a y t = υ 0y + g t = 15,0 m s + 9,8 m/s2 t Όταν t=1,00 s, y= +10,1 m υ y =+5,2 m/s η μπάλα κατευθύνεται προς τα πάνω και τα πρόσημα είναι θετικά. Η ταχύτητα είναι μικρότερη από την αρχική.

33 t= 4 s, y = 18,4 m υ y = 24,2 m/s Η μπάλα έχει περάσει το υψηλότερο σημείο στη διαδρομή της και βρίσκεται κάτω από την αρχή (y αρνητικό). Η ταχύτητά της έχει κατεύθυνση προς τα κάτω και είναι μεγαλύτερη από την αρχική όπως περιμένουμε για σημεία κάτω από το σημείο εκτόξευσης. β) Η ταχύτητα είναι: υ y 2 = υ 0y 2 + 2a x y y 0 = υ 0y g y 0 = 15,0 m/s ,80 m/s 2 y Όταν η μπάλα βρίσκεται 5,00 m πάνω από την αρχή y=+5,00 m. υ y 2 = 15,0 m/s ,80 m/s 2 5,00 m = 127 m2 υ y = ±11,3 m/s Η μπάλα περνά από το σημείο y=5,00 m δυο φορές. Μια όταν αναεβαίνει και τότε υ y = +11,3 m/s και μια όταν καταβαίνει και τότε υ y = 11,3 m/s. s 2

34 γ) Στο ψηλότερο σημείο η μπάλα σταματάει να ανεβαίνει ( θετικές τιμές της υ y ) και αρχίζει να πέφτει ( αρνητικές τιμές του υ y ). Στο ψηλότερο σημείο υ y =0. δ) Η επιτάχυνση στο υψηλότερο σημείο παραμένει g=-9,80 m/s 2. Η ταχύτητα μηδενίζεται προς στιγμή. Αν μηδενιζόταν η επιτάχυνση η ταχύτητά του θα ήταν σταθερή. Αφού όμως μηδενίζεται η ταχύτητά του στο υψηλότερο σημείο τότε το σώμα θα έμενε πάντα σε ακινησία, πράγμα που δεν συμβαίνει. Δύο τρόποι επίλυσης. 1 ος τρόπος 0 = υ 0y g y 0 y = υ 0y 2 2g 2 ος τρόπος 15,0 m/s 2 = = +11, 5 m 2 9,80 m/s2 υ y = 0 = υ 0y + g t όπου t ο χρόνος όπου η μπάλα φτάνει στο υψηλότερο σημείο. t = υ 0y 15,0 m/s = g 9,80 m/s2 = 1,53 s οπότε: y = y 0 = υ 0y t a xt 2 = m/s 1,53 s ,80 m/s2 1,53 s 2 = + 11,5 m. Στον πρώτο τρόπο δεν χρειάζεται να υπολογίσουμε πρώτα το χρόνο.

35 Παράδειγμα: Δύο λύσεις ή μία; Να βρείτε το χρόνο που η μπάλα στο προηγούμενο παράδειγμα βρίσκεται 5,00 m κάτω από το κάγκελο. y = y 0 + υ 0y t a yt 2 = y 0 + υ 0y t g t2 Αναδιατάσσουμε την εξίσωση στη μορφή δευτεροβάθμιας εξίσωσης ως προς t. Δηλ. Ax 2 + Bx + C = g t2 + υ 0y t + y y 0 = 0 Η λύση της είναι x = ± B± B2 4AC 2A t = υ 0y± υ 2 0y 2g y y 0 g Αντικαθιστώντας τις τιμές y 0 =0, υ 0y =+15,0 m/s, g=9,80 m/s 2 και y=-5,00 m, βρίσκουμε t = 15,0 m/s ± 15,0 m/s 2 2 9,80 m/s 2 5,00 m 0 9,80 m/s 2 t = +3,36 s ή t = 0,30 s Η σωστή απάντηση είναι t = +3,36 s.

Κεφάλαιο 1. Κίνηση σε μία διάσταση

Κεφάλαιο 1. Κίνηση σε μία διάσταση Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε

Διαβάστε περισσότερα

Κίνηση σε μια διάσταση

Κίνηση σε μια διάσταση Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.

Διαβάστε περισσότερα

1 ο ΚΕΦΑΛΑΙΟ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ ΚΡΕΜΑΣΤΑΣ ΙΩΑΝΝΗΣ

1 ο ΚΕΦΑΛΑΙΟ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ ΚΡΕΜΑΣΤΑΣ ΙΩΑΝΝΗΣ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ 1 ΚΕΦΑΛΑΙΟ 1 Ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ- ΘΕΩΡΙΑ Μετατόπιση (Δx): Είναι η διαφορά μεταξύ της αρχικής και της τελικής θέσης ενός σώματος και έχει μονάδες τα μέτρα (m).

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ).

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). 1 ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΘΕΜΑ 1 Ο Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). *1. Μια κίνηση είναι

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την 1 ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ 1) Δίνεται η διπλανή γραφική παράσταση της ταχύτητας με το χρόνο. Να γίνει το διάγραμμα (θέσης χρόνου ), αν όταν o= είναι o =. Υπόδειξη Βρείτε τα εμβαδά μεταξύ της γραφικής παράστασης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 3: ΚΙΝΗΣΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Κυριακή 30 Οκτωβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε τα εξής μεγέθη. Στην παρένθεση φαίνεται η μονάδα μέτρησής τους στο S.I.

Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε τα εξής μεγέθη. Στην παρένθεση φαίνεται η μονάδα μέτρησής τους στο S.I. Σε αυτό το κεφάλαιο θα χρησιμοποιήσουμε τα εξής μεγέθη. Στην παρένθεση φαίνεται η μονάδα μέτρησής τους στο S.I. m: μάζα (kg), (χιλιόγραμμα) t: χρόνος (s), (δευτερόλεπτα) l: μήκος (m) (μέτρα) χ: θέση (m)

Διαβάστε περισσότερα

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h.

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h. ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16- - 2011 ΘΕΜΑ 1 0 Για τις ερωτήσεις 1-5, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο Κίνηση σε µία διάσταση Copyright 9 Pearson Education, Inc. Περιεχόµενα Κεφαλαίου Συστήµατα Αναφοράς και µετατόπιση Μέση Ταχύτητα Στιγµιαία Ταχύτητα Επιτάχυνση Κίνηση µε σταθερή επιτάχυνση Προβλήµατα

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις

Ευθύγραμμες Κινήσεις Ευθύγραμμες Κινήσεις Μεγέθη της Κίνησης. Η ένδειξη της ταχύτητας σε ένα αυτοκίνητο είναι 7km/h και σε μία μοτοσικλέτα 08km/h. Ποιες είναι οι ταχύτητες των δύο οχημάτων σε μονάδες του διεθνούς συστήματος

Διαβάστε περισσότερα

Λυμένες Ασκήσεις. Λύση. (βασική απλή άσκηση)

Λυμένες Ασκήσεις. Λύση. (βασική απλή άσκηση) Λυμένες Ασκήσεις (βασική απλή άσκηση) 1. Ένα μικρό σώμα εκτελεί ευθύγραμμη ομαλή κίνηση με σταθερή ταχύτητα μέτρου υ = 108 km/h και για να μεταβει το σώμα από το σημείο Α στο σημείο Β, χρειάστηκε χρόνο

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η 1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την ταχύτητα, την επιτάχυνση, τη θέση ή το χρόνο κίνησης ενός κινητού.

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1 ΘΕΜΑ 1: Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα εκτελεί ευθύγραμμη κίνηση κατά την οποία η ταχύτητά

Διαβάστε περισσότερα

1.1. Κινηµατική Η µετατόπιση είναι διάνυσµα Η µετατόπιση στην ευθύγραµµη κίνηση Μετατόπιση και διάστηµα.

1.1. Κινηµατική Η µετατόπιση είναι διάνυσµα Η µετατόπιση στην ευθύγραµµη κίνηση Μετατόπιση και διάστηµα. 1.1. 1.1.1. Η µετατόπιση είναι διάνυσµα. Ένα σώµα κινείται σε οριζόντιο επίπεδο ξεκινώντας από το σηµείο Α του σχήµατος. Μετά από λίγο φτάνει στο σηµείο Β. y 4 (m) B Γ 1 Α x 0,0 1 5 x(m) y i) Σχεδιάστε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΓΕΛ ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ Α ΓΕΛ ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ Α ΓΕΛ ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ Ευθύγραμμη Ομαλή Κίνηση Ορισμός: Είναι η ευθύγραμμη κίνηση με σταθερή σε μέτρο και φορά ταχύτητα. Εξισώσεις ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΤΑΧΥΤΗΤΑ ΣΤΑΘΕΡΗ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 24 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ Κυριακή, 25 Απριλίου 2010 Ώρα : 11:00-14:00 Προτεινόμενες Λύσεις ΘΕΜΑ 1 0 α) Όταν είμαστε σε ένα αυτοκίνητο που κινείται, κινούμαστε και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ

φυσική κεφ.2 ΚΙΝΗΣΕΙΣ φυσική κεφ. ΚΙΝΗΣΕΙΣ Επισημάνσεις από τη θεωρία του βιβλίου Διανυσματική μέση ταχύτητα: v = = ό ό ά Είναι διάνυσμα, δε χρησιμοποιείται στην καθημερινή γλώσσα. Μέση ταχύτητα: v = = ή ή ό ά Δεν είναι διάνυσμα,

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 25 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Κυριακή, 3 Απριλίου, 2011 Ώρα: 10:00-13:00 Οδηγίες: 1) Να απαντήσετε σε όλα τα θέματα. Το δοκίμιο αποτελείται από έξι (6) θέματα. 2) Να

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)

3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7) 3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΟΚΤΩΒΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 Α. Για κάθε μία από τις ερωτήσεις 1-5 να επιλέξετε το

Διαβάστε περισσότερα

Επειδή Μ>m, θα είναι: (1), (2) α 1 <α 2, δηλαδή ο πατέρας έχει μεγαλύτερη μάζα από την κόρη του και θα αποκτήσει μικρότερη επιτάχυνση από αυτήν.

Επειδή Μ>m, θα είναι: (1), (2) α 1 <α 2, δηλαδή ο πατέρας έχει μεγαλύτερη μάζα από την κόρη του και θα αποκτήσει μικρότερη επιτάχυνση από αυτήν. ΘΕΜΑ 1 ο (10 μονάδες): Λύση α) Ο πατέρας ασκεί δύναμη F στην κόρη του και η κόρη του ασκεί δύναμη F σε αυτόν. Θα ισχύει F=F (3 ος νόμος του Νεύτωνα) β) Σύμφωνα με το ο νόμο του Νεύτωνα θα ισχύει: επιτάχυνση

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 1//1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗΣ Α Λ Υ Κ Ε Ι Ο Υ 25/12/2016

ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗΣ Α Λ Υ Κ Ε Ι Ο Υ 25/12/2016 ΕΡΓΑΣΙΑ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΦΥΣΙΚΗΣ Α Λ Υ Κ Ε Ι Ο Υ 25/12/2016 1 Ασκήσεις στις κινήσεις 1. Σώμα κινείται στον άξονα x Οx με σταθερή ταχύτητα υ=2m/s. Τη χρονική στιγμή t 0 =0 βρίσκεται στη θέση x 0 =0. α. Σε

Διαβάστε περισσότερα

1. Όταν λέμε ότι κάποιος κινείται ευθύγραμμα με σταθερή επιτάχυνση 5m/s 2 εννοούμε ότι:

1. Όταν λέμε ότι κάποιος κινείται ευθύγραμμα με σταθερή επιτάχυνση 5m/s 2 εννοούμε ότι: ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΜΕΡΟΜΗΝΙΑ: 13/11/2016 ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Όταν

Διαβάστε περισσότερα

Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η

Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η Μ Α Θ Η Μ Α : Δ Ι ΑΓ Ω Ν ΙΜ Α: A Σ ΑΞ Η ΛΤ Κ Ε Ι ΟΤ Υ Τ Ι Κ Η Ε Π Ω Ν Τ Μ Ο : < < < < < <

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 04 Α Λυκείου 9 Μαρτίου 04 ΟΔΗΓΙΕΣ:. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε Τετράδιο το οποίο θα σας δοθεί και το οποίο θα παραδώσετε

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Κίνηση σε μία διάσταση

Κίνηση σε μία διάσταση Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος

Διαβάστε περισσότερα

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστημα που έχει διανύσει είναι ίσο με : α) 2πR β) πr 2 πr. υ m s

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστημα που έχει διανύσει είναι ίσο με : α) 2πR β) πr 2 πr. υ m s 1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστημα που έχει διανύσει είναι ίσο με : α) 2πR β) πr 2 πr δ) καμία από τις παραπάνω τιμές Το μέτρο της μετατόπισης που έχει υποστεί είναι

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

(1) (2) Από τις σχέσεις (1) και (2) με τη βοήθεια της σχέσης (3) προκύπτει ότι:

(1) (2) Από τις σχέσεις (1) και (2) με τη βοήθεια της σχέσης (3) προκύπτει ότι: ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 09/04/06 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. α Α. γ Α 3. α Α 4. δ Α 5 α. Σ,β. Λ, γ. Λ, δ. Σ, ε. Σ ΘΕΜΑ Β Β) α ) Σωστή απάντηση

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 8 ΣΕΛΙΔΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 09/04/06 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ ΘΕΜΑ A Α. α Α. γ Α 3. α 5μον 5μον 5μον Α 4. δ 5μον Α 5 α. Σ,β. Λ, γ. Λ, δ. Σ,

Διαβάστε περισσότερα

Κίνηση κατά μήκος ευθείας γραμμής

Κίνηση κατά μήκος ευθείας γραμμής Μελέτη κινηματικών εννοιών: Θέση, μετατόπιση, ταχύτητα, μέτρο ταχύτητας, και επιτάχυνση. Διαφορά εννοιών "μετατόπισης - " διαστήματος" και "στιγμιαία "μέση". Μελέτη κίνησης με σταθερή επιτάχυνση. Κίνηση

Διαβάστε περισσότερα

2. Δύο αυτοκίνητα Α και Β κινούνται σε προσανατολισμένη ευθεία, ομαλά. Οι ταχύτητες των αυτοκινήτων είναι αντίστοιχα, A

2. Δύο αυτοκίνητα Α και Β κινούνται σε προσανατολισμένη ευθεία, ομαλά. Οι ταχύτητες των αυτοκινήτων είναι αντίστοιχα, A ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ - 1 Ος,2 Ος ΝΟΜΟΣ ΝΕΥΤΩΝΑ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Ημερομηνία: 22/12/14 Διάρκεια διαγωνίσματος: 120 Υπεύθυνος καθηγητής: Τηλενίκης Ευάγγελος ΖΗΤΗΜΑ 1 Στις ερωτήσεις 1-6

Διαβάστε περισσότερα

Ζήτημα ) Ένα κινητό εκτελεί μεταβαλλόμενη κίνηση, αν : 2) Σώμα εκτελεί ομαλά μεταβαλλόμενη κίνηση κατά την οποία η μετατόπιση είναι

Ζήτημα ) Ένα κινητό εκτελεί μεταβαλλόμενη κίνηση, αν : 2) Σώμα εκτελεί ομαλά μεταβαλλόμενη κίνηση κατά την οποία η μετατόπιση είναι 1 Επώνυμο... Όνομα... Αγρίνιο 22-12-213 Ζήτημα 1 Α) Να επιλέξτε την σωστή απάντηση 1) Ένα κινητό εκτελεί μεταβαλλόμενη κίνηση, αν : α) Μεταβάλλεται το μέτρο της ταχύτητας. β) Μεταβάλλεται η διεύθυνση της

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014

Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014 1 Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014 Ζήτημα 1 o Α) Να επιλέξτε την σωστή απάντηση 1) Η μετατόπιση ενός κινητού που κινείται ευθύγραμμα σε άξονα Χ ΟΧ είναι ίση με μηδέν : Αυτό σημαίνει ότι: α) η αρχική

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ A ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 23 ΝΟΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΘΕΜΑ 1 Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

2 ο Μάθημα Κίνηση στο επίπεδο

2 ο Μάθημα Κίνηση στο επίπεδο ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή

Διαβάστε περισσότερα

12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α. Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α. Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α ΔΙΑΓΩΝΙΣΜΑ Α ΤΕΤΡ/ΝΟΥ ΣΤΗ ΦΥΣΙΚΗ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 17/12/2010 Ζήτηµα 1ο Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 1) Μια

Διαβάστε περισσότερα

1.1. Κινηµατική Οµάδα Γ.

1.1. Κινηµατική Οµάδα Γ. 1.1. Οµάδα Γ. 1.1.21. Πληροφορίες από το διάγραµµα θέσης-χρόνου..ένα σώµα κινείται ευθύγραµµα και στο διάγραµµα βλέπετε τη θέση του σε συνάρτηση µε το χρόνο. i) Βρείτε την κλίση στο διάγραµµα x-t στις

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΒΑΣΙΛΗΣ ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη κίνηση Δυναμική σε μία διάσταση Δυναμική στο επίπεδο Διατήρηση της μηχανικής ενέργειας Διατήρηση της ολικής ενέργειας και υποβάθμιση

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ 16114 Η σφαίρα του σχήματος εκτοξεύεται δύο φορές με διαφορετικές αρχικές ταχύτητες εκτελώντας οριζόντια

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 1 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Κ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 1 2 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΕΡΓΟΥ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΘΕΩΡΗΜΑ ΕΡΓΟΥ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΣΚΗΣΕΙΣ ΕΡΓΟΥ 7. Σε σώµα ασκείται µια δύναµη F 1 = 20 N πλάγια µε γωνία φ = 30 ενώ υπάρχει τριβή Τ = 5 N. Να βρείτε για µετατόπιση του σώµατος κατά χ = 5 m ί) το έργο κάθε δύναµης, ii) εάν το σώµα κερδίζει

Διαβάστε περισσότερα

1 / 6. Ασκήσεις Κινηματικής

1 / 6. Ασκήσεις Κινηματικής Ασκήσεις Κινηματικής 1. Ένα κινητό κινείται με σταθερή ταχύτητα 20 m/s πάνω σε μια ευθεία που έχει βαθμολογηθεί ως άξονας, ξεκινώντας από το χ ο = 400m. a) Να γραφεί η εξίσωση της θέσης χ=f(t). b) Πότε

Διαβάστε περισσότερα

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s;

2. Μια μοτοσυκλέτα τρέχει με ταχύτητα 108 km/h. α) Σε πόσο χρόνο διανύει τα 120 m; β) Πόσα μέτρα διανύει σε 5 s; 1. Αυτοκίνητο κινείται σε ευθύγραμμο δρόμο με σταθερή φορά και το ταχύμετρο του (κοντέρ) δείχνει συνεχώς 36 km/h. α) Τι είδους κίνηση κάνει το αυτοκίνητο; β) Να μετατρέψετε την ταχύτητα του αυτοκινήτου

Διαβάστε περισσότερα

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 10-Οκτωβρίου-2009

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 10-Οκτωβρίου-2009 1 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 1 η Πρόοδος: 10-Οκτωβρίου-2009 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά

Διαβάστε περισσότερα

1. Υλικό σημείο 2. Τροχιά διάνυσμα θέσης 3. Η μετατόπιση 4. ιάγραμμα θέσης χρόνου 5. Η ταχύτητα στην ευθύγραμμη κίνηση. 24-Σεπ-14.

1. Υλικό σημείο 2. Τροχιά διάνυσμα θέσης 3. Η μετατόπιση 4. ιάγραμμα θέσης χρόνου 5. Η ταχύτητα στην ευθύγραμμη κίνηση. 24-Σεπ-14. Γενική Φυσική Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 Εισαγωγή στην (ευθύγραμμη) κίνηση 1. Υλικό σημείο 2. Τροχιά διάνυσμα θέσης 3. 4. 5. στην ευθύγραμμη κίνηση

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 05 Έργο και Κινητική Ενέργεια ΦΥΣ102 1 Όταν μια δύναμη δρα σε ένα σώμα που κινείται,

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 19 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Κυριακή, 3 Απριλίου, 5 Ώρα: 1: - 13: Προτεινόµενες Λύσεις ΘΕΜΑ 1 (1 µονάδες) (α) Το διάστηµα που διανύει ο κάθε αθλητής είναι: X A = υ Α

Διαβάστε περισσότερα

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 17, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 17, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Α Λυκείου Φυσική Ευθύγραμμη Κίνηση ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 17, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 3 Κίνηση σε 2 και 3 διαστάσεις, Διανύσµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 3 Κίνηση σε και 3 διαστάσεις, Διανύσµατα Copyright 009 Pearson ducation, Inc. Περιεχόµενα 3 Διανύσµατα και Βαθµωτές ποσότητες Πράξεις Διανυσµάτων Γραφικές Παραστάσεις Μοναδιαία διανύσµατα Κινηµατική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ.

ΘΕΜΑΤΑ. Θέμα Α ΘΕΜΑΤΑ Στις παρακάτω ερωτήσεις πολλαπλής επιλογής Α-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α. Ένα σώμα εκτελεί ευθύγραμμη

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ. Φυσική Α' Λυκείου. Ευθύγραµµη οµαλή κίνηση. ΘΕΜΑ 1 ο

ΙΑΓΩΝΙΣΜΑ. Φυσική Α' Λυκείου. Ευθύγραµµη οµαλή κίνηση. ΘΕΜΑ 1 ο ΙΑΓΩΝΙΣΜΑ Εξεταζόµενο Μάθηµα Ονοµατεπώνυµο Μαθητή/τριας Τµήµα Ηµεροµηνία Ύλη Βαθµολογία Φυσική Α' Λυκείου Ευθύγραµµη οµαλή κίνηση ΘΕΜΑ ο Για τις ερωτήσεις έως 5 να σηµειώσετε το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

2 ΓΕΛ ΧΑΙΔΑΡΙΟΥ ΖΙΚΟΣ ΜΑΣΤΡΟΔΗΜΟΣ. Ευθύγραμμη ομαλή Κίνηση

2 ΓΕΛ ΧΑΙΔΑΡΙΟΥ ΖΙΚΟΣ ΜΑΣΤΡΟΔΗΜΟΣ. Ευθύγραμμη ομαλή Κίνηση Ευθύγραμμη ομαλή Κίνηση ΘΕΜΑ Β(4990) Β1) Ένα αυτοκίνητο κινείται κατά μήκος ενός ευθύγραμμου οριζόντιου δρόμου, ο οποίος θεωρούμε ότι ταυτίζεται με τον οριζόντιο άξονα x'x. Στο διπλανό διάγραμμα παριστάνεται

Διαβάστε περισσότερα

Για τις επόμενες τέσσερες ερωτήσεις ( 1η έως και 4η)) να επιλέξετε την σωστή πρόταση, χωρίς δικαιολόγηση

Για τις επόμενες τέσσερες ερωτήσεις ( 1η έως και 4η)) να επιλέξετε την σωστή πρόταση, χωρίς δικαιολόγηση ΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Σχολικό έτος 2014-14 Πέμπτη 21/5/2015 ΡΑΠΤΕΣ ΠΡΟΑΩΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 Στο μάθημα της ΦΥΣΙΚΗΣ ΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α ια τις επόμενες τέσσερες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης 2013 ΘΕΜΑ Α Για τις ερωτήσεις 1 έως 4 γράψτε τον αριθμό τις ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για ένα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ Προσοχή στα παρακάτω!!!!! 1. Σχεδιάζουμε το σώμα σε μια θέση της κίνησής του, (κατά προτίμηση τυχαία) και σημειώνουμε εκεί όλες τις δυνάμεις που ασκούνται στο σώμα.

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2006 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος A Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2006 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος A Λυκείου Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 006 A Λυκείου Θεωρητικό Μέρος Θέμα ο 8 Μαρτίου 006 α) Τρία κιβώτια με ίσες μάζες συνδέονται με σχοινί όπως φαίνεται στο παρακάτω σχήμα. Το όλο σύστημα

Διαβάστε περισσότερα