Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1"

Transcript

1 Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1

2 Παραβίαση της CP Συµµετρίας στο πρώιµο Σύµπαν αναµένεται ίσος αριθµός βαρυονίων και αντί-βαρυονίων σήµερα, στο παρατηρούµενο Σύµπαν η Ύλη υπερέχει συντριπτικά της Αντιύλης Πως παρήχθει αυτή η ασυµµετρία? Θα πρέπει να δηµιουργήθηκε µία µικρή ασυµµετρία µεταξύ βαρυονίων και αντιβαρυονίων στις αρχές εξέλιξης του Κόσµου Για κάθε 10 9 αντιβαρυόνια υπήρξαν βαρυόνια τα βαρυόνια/αντιβαρυόνια εξαϋλώνονται 1 βαρυόνιο + ~10 9 φωτόνια + καθόλου αντιβαρυόνια Για να δηµιουργηθεί αυτή η ασυµµετρία προτάθηκαν οι εξείς συνθήκες(sakharov, 1967): Παραβίαση του βαρυονικού αριθµού, Παραβίαση της C και CP συµµετρίας, Εάν η CP διατηρείται σε αλληλεπιδράσεις που παράγουν βαρυόνια και αντιβαρύονια ασυµµετρικά τότε θα πραγµατοποιείται η CP συζυγής αλληλεπίδραση που θα παράγει την αντίθετη ασυµµετρία Απόκληση από την θερµική ισορροπία, σε θερµική ισορροπία κάθε φαινόµενο που παράγει περισσότερα βαρυόνια από αντιβαρυόνια θα αντισταθµίζεται από το αντίστροφό του Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 2

3 Η CP Παραβίαση αποτελεί θεµελιώδες φαινόµενο για την κατανόηση του Σύµπαντος Μπορεί το Καθιερωµένο Πρότυπο (SM) της σωµατιδιακής φυσικής να προσφέρει τους µηχανισµούς γι αυτή την παραβίαση ; Υπάρχουν δύο µηχανισµοί στο SM όπου υπεισέρχεται η CP παραβίαση: οι PMNS και CKM πίνακες Μέχρι σήµερα η παραβίαση της CP έχει παρατηρηθεί µόνο στον τοµέα των quarks Τα quarks παρατηρούνται ως δέσµιες καταστάσεις (σωµάτια), συνεπώς η µελέτη της παραβίασης της CP αποτελεί πολύπλοκη διαδικασία. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 3

4 Η Ασθενής Αλληλεπίδραση των Quarks Διαφορετικές (ελαφρώς) τιµές του G F µετρούνται σε µ και β διασπάσεις: Επιπλέον, κάποιοι τρόποι διάσπασης αδρονίων φαίνονται υποβαθµισµένοι, δηλαδή συγκρίνωντας και. Ο ρυθµός διάσπασης του Κ είναι 20 φορές µικρότερος από ότι αναµένεται, θεωρώντας την ίδια ασθενή ισχύ για όλα τα quarks. Cabibbo Υπόθεση (1963): οι ιδιοκαταστάσεις της ασθ. αλληλεπίδρασης είναι διαφορετικές από τις ιδιοκαταστάσεις µάζας. Οι ασθενείς αλληλεπιδράσεις των quarks έχουν την ίδια ισχύ όπως και στα λεπτόνια αλλά τα u-quark αντιδρούν µε συνδυασµό των s και d Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 4

5 Ο Μηχανισµός GIM Η Ασθενής Αλληλεπίδραση προβλέπει συζεύξεις µεταξύ και, συνεπώς το Κ 0 µπορεί να διαπάται ως ( box diagrams) d" s" Οι πρώτες µετρήσεις κατέληξαν σε πολύ µικρότερο ρυθµό από ότι προβλέπεται Οι Glashow, Illiopoulos και Maiani πρότειναν την ύπαρξη ενός ακόµη quark - πριν την ανακάλυψη του charm quark του Σύµφωνα µε αυτή την πρόταση: και συνεπώς συµµετέχει στην διάσπαση και το διάγραµµα: d" s" Επειδή καταλήγουν στις ίδιες τελικές καταστάσεις Δεν είναι ακριβώς µηδέν, διότι Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 5

6 Η ασθενής αλληλεπίδραση συζεύγνει διαφορετικές οικογένειες quarks (Το ίδιο συµβαίνει στα λεπτόνια. e - ν 1, e - ν 2, e- ν 3 συζεύξεις συνδέουν διαφορετικές οικογένειες) Πειραµατρικές µετρήσεις µπορούν να εξηγηθούν µε: Ο ρυθµός διάσπασης του Κ υποβαθµίζεται µε ένα παράγοντα συγκριτικά µε τον ρυθµό διάσπασης του π Οµοίως προβλέπεται Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 6

7 Ο Πίνακας CKM Επεκτείνοντας αυτές τις ιδέες για τρεις οικογένειες quarks Σύµβαση: Ο CKM πίνακας Ορίζεται ως να δρα σε quarks µε φορτίο Δηλαδή: Ιδιοκαταστάσεις Α.Α. Πίνακας CKM Ιδιοκαταστάσεις Μάζας ( Cabibbo, Kobayashi, Maskawa ) Τα CKM στοιχεία πίνακα είναι µιγαδικές φυσικές σταθερές Ο CKM πίνακας είναι µοναδιαίος Τα δεν προβλέπονται από την θεωρία (SM) αποτελούν φυσικές σταθερές που θα πρέπει να εκτιµηθούν πειραµατικά Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 7

8 Κανόνες Feynman Ανάλογα µε το εισερχόµενο quark στον κόµβο, ή, το CKM στοιχείο πίνακα είναι ή, αντίστοιχα Γράφοντας την αλληλεπίδραση µε όρους των ιδιοκαταστάσεων της Α.Α. u είναι ο adjoint spinor και όχι το αντι-up quark Το ασθενές ρεύµα Για είναι: το ρεύµα πιθανότητας είναι: και µε όρους των ιδιοκαταστάσεων µάζας Ώστε το ρεύµα είναι: Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 8

9 Έτσι όταν το quark συµµετέχει ως adjoint spinor (φεύγει από τον κόµβο), χρησιµοποιούµε το µιγαδικό συζυγές του CKM στοιχείου πίνακα Επί παραδείγµατι: και αντίστοιχα: Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 9

10 Πειραµατικός Προσδιορισµός του CKM Πειραµατικά, τα στοιχεία του CKM πίνακα προσδιορίζονται κυρίως από µετρήσεις των λεπτονικών διασπάσεων αδρονίων. Είναι εύκολο να παρατηρηθούν διασπάσεις αδρονίων (µεσονίων) σε άλλα αδρόνια, αλλά υπάρχουν σηµαντικές θεωρητικές ασάφειες που αφορούν στο γεγονός πως τα quarks εµφανίζονται ως δέσµιες καταστάσεις σε σωµατίδια. V ud Από πυρηική β-διάσπαση Υπέρ-επιτρεπτές β-διασπάσεις είναι σχετικά απηλαγµένες από θεωρητικές ανακρίβιες Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 10

11 V us Από ηµι-λεπτονικές διασπάσεις Καονίων V cd Από σκέδαση νετρίνων Μέτρηση γεγονότων µε δύο µιόνια events σε διασπάται µεσόνιο σκέδαση όπου παράγεται και Ζεύγος µ + µ - Measured in various collider experiments Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 11

12 V cs από ηµι-λεπτονικές διασπάσεις charmed µεσονίων π.χ. Θεωρητικές ασάφειες στην δηµιουργία Κ 0 experimental error theory uncertainty V cb από ηµι-λεπτονικές διασπάσεις B αδρονίων π.χ. V ub από ηµι-λεπτονικές διασπάσεις B αδρονίων π.χ. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 12

13 Πειραµατικά, προσδιορίζονται: Περιορισµένη πειραµατική πληροφορία για: Χρησιµοποιώντας την unitarity του CKM πίνακα, π.χ. καταλήγουµε: Cabibbo matrix Περίπου διαγώνιος πίνακας Σύµφωνα µε το SM οι «charged current»,, της ασθενούς αλληλεπίδρασης: Προσφέρει τον µόνο τρόπο για αλλαγή φορτίου! Ο µόνος τρόπος αλλαγής από µία οικογένεια quarks σε άλλη! Ωστόσο, τα µη-διαγώνια στοιχεία του CKM πίνακα είναι σχετικά µικρά. Α.Α.: Συµβαίνει κυρίως µεταξύ quarks της ίδιας οικογένειας. Η σύζευξη µεταξύ της πρώτης και τρίτης οικογένειας είναι πολύ µικρή! ΑΛΛΑ ο CKM πίνακας επιτρέπει παράβαση της CP στο SM (όπως η µίξη νετρίνων) Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 13

14 Το Σύστηµα των Ουδετέρων Καονίων Ουδέτερα Καόνια παράγονται εύκολα µε ισχυρές αλληλεπιδράσεις, δηλαδή Τα ουδέτερα Καόνια διασπώνται µε ασθενή αλληλεπίδραση Η Α.Α. επιτρέπει την σύζευξη των ουδετέρων Καονίων µε box diagrams d" s" d" s" s" d" s" d" Επιτρέπει µεταπτώσεις µεταξύ των δύο ιδιοκαταστάσεων της Ισχυρής Αλλ., Συνεπώς, τα ουδέτερα καόνια διαδίδονται ως ιδιοκαταστάσεις της Ισχυράς και της Ασθενούς Αλληλεπίδρασης, δηλαδή ως γραµµικός συνδυασµός των Αυτές οι «συνδυασµένες» καταστάσεις καλούνται K-short Έχουν περίπου την ίδια µάζα Αλλά πολύ διαφορετικούς χρόνους ζωής: και K-long Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 14

15 CP Ιδιοκαταστάσεις Τα και είναι στενά συνδεδεµένα µε τις κοινές ιδιοκαταστάσεις των charge conjugation και parity τελεστών: CP Οι ισχυρές ιδιοκαταστάσεις και έχουν Δηλ. Ο τελεστής charge conjugation αλλάζει το σωµάτιο σε αντισωµάτιο και vice-versa οµοίως Το + πρόσηµα είναι σύµβαση Συνεπώς Δηλαδή τα και ΔΕΝ είναι CP ιδιοκαταστάσεις Δηµιουργούνται CP καταστάσεις ως γραµµικοί συνδυασµοί: Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 15

16 Διασπασεις των CP Ιδιοκαταστάσεων Τα ουδέτερα Καόνια διασπώνται συχνά σε πιόνια (τα ελαφρύτερα αδρόνια) Η µάζα των Καονίων είναι περίπου 498 MeV και οι µάζες των πιονίων είναι περίπου140 MeV. Άρα τα ουδέτερα Καόνια µπορούν να διασπασθούν σε 2 ή 3 πιόνια Διασπάσεις σε 2 πιόνια: Διατήρηση της στροφορµής επιβάλει Το είναι ιδιοκατάσταση του όπως προηγουµένως Οι C και P τελεστές έχουν ακριβώς το ίδιο αποτέλεσµα και ο συνδυασµός αφήνει το σύστηµα χωρίς αλλαγή Διασπασεις ουδετέρων Καονίων σε ΔΥΟ πιόνια γίνεται σε CP even (+1) ιδιοκατάσταση Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 16

17 Διασπασεις σε τρία πιόνια Διατήρηση της στροφορµής οµοίως Συνεπώς: Η µικρή διαθέσιµη ενέργεια στην διάσπαση, σηµαίνει ότι L>0 διασπασεις είναι σχεδόν απίθανο να συµβούν Διασπασεις ουδετέρων Καονίων σε 3 πιόνια γίνεται σε CP odd (-1) ιδιοκατάσταση Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 17

18 EAN CP δεν παραβιάζεται στις ασθενείς διασπασεις των ουδετέρων καονίων, αναµένεται οι διασπάσεις σε πιόνια να συµβαίνουν από καθορισµένες CP ιδιοκαταστάσεις (δηλαδή από τις CP ιδιοκαταστάσεις, ) CP EVEN CP ODD Αναµένεται οι CP ιδιοκαταστάσεις να έχουν πολύ διαφορετικούς χρόνους ζωής για διάσπαση σε δύο πιόνια η διαθεσιµη ενέργεια είναι: για διάσπαση σε δύο πιόνια η διαθεσιµη ενέργεια είναι: Συνεπώς οι διασπάσεις σε 2 πιόνια αναµένεται να είναι περισσότερο συχνές λόγω του µεγαλύτρου διαθέσιµου χώρου φάσεων Αυτό ακριβώς παρατηρείται: µία βραχύβια κατάσταση K-short η οποία διασπάται (κυρίως) σε δύο πιόνια και µία µακρόβια K-long που διασπάται σε τρία πιόνια Εάν δεν υπήρχε παραβίαση της CP θα ταυτοποιούσαµε µε διασπάσεις: µε διασπάσεις: Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 18

19 Διασπάσεις των Ουδετέρων Καονίων σε πιόνια Σε µία δέσµη Καονίων, Οι διασπάσεις συµβαίνουν από καταστάσεις ορισµένου CP Εάν CP διατηρείται στις διασπάσεις, πρέπει να εκφράσουµε τα µε όρους και Δηλαδή, όσον αφορά τις διασπάσεις σε πιόνια, µία δέσµη είναι συνδιασµός των CP ιδιοκαταστάσεων: µία CP-even συνιστώσα που διασπάται γρήγορα και µία µακρόβια CP-odd συνιστώσα Συνεπώς, αναµένουµε να δούµε διασπάσεις σε 2 πιόνια, κυρίως, στην αρχή και κυρίως διασπάσεις σε 3 πιόνια σε αργότερους χρόνους Log Intensity Σε µεγάλες αποστάσεις έχουµε δέσµη, αµιγώς µε K L Απόσταση από τον στόχο παραγωγής K 0 Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 19

20 Αναλυτικότερα: Σε χρόνο t=0 δηµιουργούµε δέσµη αµιγώς µε Η χρονοεξαρτηµένη κυµατοσυνάρτηση K S µάζα: K S ρυθµός διάσπασης: Όπου ο όρος περιγράφει την K S πυκνότητα πιθανότητας διάσπασης δηλ. Η κυµατοσυνάρτηση εξελίσεται χρονικά ως: µε και Ο ρυθµός διάσπασης σε 2 πιόνια από µία κατάσταση που παρήχθει Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 20

21 Διασπάσεις του Ουδετέρου Καονίου σε Λεπτόνια Ουδέτερα Καόνια διασπώνται επίσης σε λεπτόνια Επειδή οι τελικές καταστάσεις δεν είναι CP ιδιοκαταστάσεις εκφράζουµε αυτές τις διασπάσεις µε όρους Τα ουδέτερα Καόνια διαδίδονται ως ιδιοκαταστάσεις των ασθενών και ισχυρών αλληλεπιδράσεων, Τα κύρια κανάλια διάσπασης είναι: Οι λεπτονικές διασπάσεις του K-long είναι πιο πιθανές διότι έχει µικρότερο ρυθµό διάσπασης σε πιόνια από ότι έχει το K-short Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 21

22 Παραβίαση της CP στο Σύστηµα του Καονίου Στα προηγούµενα, θεωρήσαµε το K-short ως την CP-even κατάσταση και το K-long ως την CP-odd κατάσταση διασπάται σε: διασπάται σε: CP = +1 CP = -1 Σε µεγάλες αποστάσεις από το σηµείοπαραγωγής µία δέσµη Καονίων θα αποτελείται κατά 100% από K-long. Συνεπώς, εάν η CP διατηρείται, αναµένουµε να δούµε µόνο διασπάσεις σε 3 πιόνια Το 1964 οι Fitch & Cronin (Nobel prize) παρατήρησαν 45 διασπάσεις σε ένα δείγµα από διασπάσεις καονίων, µακριά από το σηµείο παραγωγής Ασθενής Αλληλεπίδραση παραβιάζει CP CP παραβιάζεται στις αδρονικές ασθενείς αλληλεπιδράσεις, σε επίπεδο 2 στα 1000 Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 22

23 Δύο πιθανές εξηγήσεις της CP παραβίασης στο σύστηµα Καονίων : i) Τα K S και K L δεν αντιστοιχούν ακριβώς στις CP ιδιοκαταστάσεις K 1 και K 2 µε Σε αυτή την περίπτωση CP = +1 ii) και/ή CP παραβιάζεται στην διάσπαση CP = -1 CP = -1 CP = +1 CP = -1 Παραµετροποιείται ως Πειραµατικά γνωρίζουµε πως και οι δύο µηχανισµοί συνυπάρχουν στο σύστηµα καονίων : NA48 (CERN) KTeV (FermiLab) Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 23

24 Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 24

25 CP Παραβίαση σε Ηµι-Λεπτονικές Διασπάσεις Παρατηρώντας µία δέσµη ουδετέρων Καονίων αρκετό χρόνο µετά την παραγωγή τους (σε µεγάλες αποστάσεις), θα αποτελείται απολέιστικά από K L Διασπάσεις σε προέχονται από την συνιστώσα και διασπάσεις σε πρέπει να προέρχονται από την συνιστώσα Παραβίαση της CP θα πρέπει να εµφανίζεται ως : η διάσπαση σε είναι (0.7 %) πιο πιθανή από την Αυτή η διαφορά επαληθεύεται πειραµατικά προσφέροντας άµεση ένδειξη ΑΠΟΛΥΤΟΥ ΔΙΑΦΟΡΑΣ µεταξύ ύλης και αντι-ύλης. Παρέχει την δυνατότητα απόλυτης περιγραφής της σύστασης του Κόσµου µας από Ύλη Τα ηλεκτρόνια των ατόµων που µας συγκροτούν έχουν το ίδιο φορτίο µε εκείνο που εµφανίζεται ΛΙΓΟΤΕΡΟ ΣΥΧΝΑ στις διασπάσεις των µακρόβιων Καονίων Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 25 is

26 Εάν η CP ΔΕΝ παραβιάζεται CP και Time Reversal Εάν υπάρχει παραβίαση της CP συµµετρίας Η παραβίαση της CP επιβάλει Παράγεται παραβίαση της Τ συµµετρίας! Επειδή η CPT διατηρείται, CP παραβίαση παράγει T παραβίαση Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 26

27 Παραβίαση της CP και ο Πίνακας CKM Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 27

28 Παραβίαση της CP και ο Πίνακας CKM Η σύζευξη πραγµατοποιείται µε διαγράµατα του τύπου: d" s" s" d" d" s" s" d" where Όπου πρέπει να αθροίσουµε για την συνεισφορά όλων των quarks. Για απλότητα ας θεωρήσουµε ένα µόνο διάγραµµα d" c t s" s" d" Σταθερά που αντιστοιχεί στην ολοκλήρωση της ορµής των υπερβατικών σωµατίων Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 28

29 Ας συγκρίνουµε τα box diagrams για d" c t s" s" d" και s" c t d" d" s" Η διαφορά στους ρυθµούς Συνεπώς οι ρυθµοι σύζευξης θα είναι διαφορετικοί εάν υπάρχει µιγαδική συνιστώσα Στο σύστηµα των Καονίων, αθροίζοντας για όλα τα quarks, καταλήγουµε: Η παραβίαση της CP σχετίζεται µε τα µιγαδικά στοιχεία του CKM Πίνακα Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 29

30 Ανακεφαλαίωση Οι ασθενείς αλληλεπιδράσεις των quarks περιγράφονται µε τον CKM πίνακα Παρόµοια δοµή συναντάµε στον λεπτονικό τοµέα (ταλαντώσεις νετρίνων), αλλά ο PMNS πίνακας δεν είναι (σχεδόν διαγώνιος) όπως ο CKM Η παραβίαση της CP εισέρχεται ως µιγαδική φάση στα στοιχεία του CKM πίνακα Πειραµατική επιβεβαίωση της CP παράβίασης στις ασθενείς αλληλεπιδράσεις των quarks Η CP παραβίαση χρειάζεται για να περιγραφεί η ασυµµετρία ύλής-αντιύλης που παρατηρείται στο Σύµπαν Ωστόσο, η προβλεπόµενη παραβίαση της CP από το SM ΔΕΝ είναι αρκετή να ερµηνεύσει την ασυµµετρία ύλης-αντιύλης. Θα πρέπει να υπάρχει και άλλος µηχανισµός που να ευθύνεται για περισσότερη παραβίαση. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 30

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων

Διαβάστε περισσότερα

ΒΡΥΩΝΗΣ ΧΑΡΑΛΑΜΠΟΥΣ Α.Ε.Μ : Θεωρία Cabibbo CKM Matrix (Πίνακας) «εργασία στα πλαίσια του µαθήµατος ΦΥΣΙΚΗ ΣΤΟΙΧΕΙΟ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΙΙ»

ΒΡΥΩΝΗΣ ΧΑΡΑΛΑΜΠΟΥΣ Α.Ε.Μ : Θεωρία Cabibbo CKM Matrix (Πίνακας) «εργασία στα πλαίσια του µαθήµατος ΦΥΣΙΚΗ ΣΤΟΙΧΕΙΟ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΙΙ» ΒΡΥΩΝΗΣ ΧΑΡΑΛΑΜΠΟΥΣ Α.Ε.Μ :1781 Θεωρία Cabibbo CKM Matrix (Πίνακας) «εργασία στα πλαίσια του µαθήµατος ΦΥΣΙΚΗ ΣΤΟΙΧΕΙΟ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΙΙ» Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Μάιος 011 ΠΕΡΙΕΧΟΜΕΝΑ Θεωρία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης 1 Stathis STILIARIS,

Διαβάστε περισσότερα

Θεωρία Cabibbo - CKM Πίνακας

Θεωρία Cabibbo - CKM Πίνακας Θεωρία Cabibbo - CKM Πίνακας Στοιχεώδη Σωµατίδια ΙΙ Αχιλλέως Νικολέττα Α.Ε.Μ: 12521 Εξάµηνο : 8 ο : Yπ.καθηγητής: κ.κώστας Κορδάς Αριστοτέλειο Πανεπιστήµιο Θεσ/νίκης Τι θα παρουσιάσω σήµερα? Θεωρία Cabibbo

Διαβάστε περισσότερα

Μάθημα 9o' 12/5/2014

Μάθημα 9o' 12/5/2014 Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Μάθημα 9o' 12/5/2014! Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων Τύπος VanRoyen Weisskopf για το επιµέρους πλάτος διάσπασης

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια

Διαβάστε περισσότερα

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια Περιεχόµενα Διαγράµµατα Feynman Δυνητικά σωµάτια Οι τρείς αλληλεπιδράσεις Ηλεκτροµαγνητισµός Ισχυρή Ασθενής Περίληψη Κ. Παπανικόλας, Ε. Στυλιάρης, Π. Σφήκας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική Ελευθερία

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική Ελευθερία ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 2η Πετρίδου Χαρά Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 10-Jan-11 Πετρίδου Χαρά Στοιχειώδη Σωµάτια

Διαβάστε περισσότερα

Ομοτιμία Parity Parity

Ομοτιμία Parity Parity Ομοτιμία Parity Ο μετασχηματισμός της Parity, αντιστρέφει κάθε χωρική συντεταγμένη. P(t,x) (t,-x), ή Pψ(r) ψ(-r) που αντιστοιχεί σε ανάκλαση και μετά στροφή 18 ο. αν επαναλάβουμε την διαδικασία προφανώς

Διαβάστε περισσότερα

1 ΣΤΟΙΧΕΙΑ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑΣ Στοιχειώδη σωµατίδια 1) Τι ονοµάζουµε στοιχειώδη σωµατίδια και τι στοιχειώδη σωµάτια; Η συνήθης ύλη, ήταν γνωστό µέχρι το 1932 ότι αποτελείται

Διαβάστε περισσότερα

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων V Q Q V " l l ( : e, µ ) l ( V : #,", ) l l, 0 0 0 6# " Q &( V % l l ' ) $

Διαβάστε περισσότερα

Παραβίαση της συμμετρίας CP

Παραβίαση της συμμετρίας CP CP ΠΑΡΑΒΙΑΣΗ Καόνια Ονοματεπώνυμο: Φλωρεντία Κωνσταντίνου ΑΕΜ: 12527 Εξάμηνο: 8o Μάθημα: Στοιχειώδη Σωμάτια ΙΙ Διδάσκων: Κώστας Κορδάς Ημερομηνία: 11.5.2010 Παραβίαση της συμμετρίας CP Είναι οι νόμοι της

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά Στοιχειώδη Σωματίδια II Διάλεξη 11η Πετρίδου Χαρά Η εξίσωση Dirac Οι Ασθενείς Αλληλεπιδράσεις 29-5-2014 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Η κυματική εξίσωση ελεύθερου σωματιδίου 3 Η σχετικιστική εξίσωση

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (19-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Τα Θεμελιώδη Φερμιόνια απο τα οποία αποτελείται η Ύλη:

Διαβάστε περισσότερα

Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017

Το Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017 Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Το Ισοτοπικό σπιν Μαθηµα 5ο 3/3/217 Ισοσπίν 3/3/217 Τι θα συζητήσουµε σήµερα Ισοσπίν 3/3/217 2 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (14-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω

Διαβάστε περισσότερα

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15

Σύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15 Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων

Διαβάστε περισσότερα

Εξαϋλωση Ηλεκτρονίου-Ποζιτρονίου

Εξαϋλωση Ηλεκτρονίου-Ποζιτρονίου Εξαϋλωση Ηλεκτρονίου-Ποζιτρονίου Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1 Υπολογισµοί στην QED! Υπολογισµός ενεργούς διατοµής στην QED (π.χ. e + e ): Σχεδιάζουµε όλα τα δυνατά Feynman Diagrams Για e

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ PhD Τηλ: 1 69 97 985, wwwdlaggr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ: 1 69 97 985, E-mail: dlag@ottgr, wwwdlaggr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, PhD KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ: 1 69

Διαβάστε περισσότερα

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ ΜΑΘΗΜΑ 4ο Αλληλεπιδράσεις αδρονίου αδρονίου Μελέτη χαρακτηριστικών των ισχυρών αλληλεπιδράσεων (αδρονίων-αδρονίων) Σε θεµελιώδες επίπεδο: αλληλεπιδράσεις µεταξύ quark

Διαβάστε περισσότερα

Αλληλεπιδράσεις µε Ανταλλαγή Σωµατιδίων

Αλληλεπιδράσεις µε Ανταλλαγή Σωµατιδίων Αλληλεπιδράσεις µε Ανταλλαγή Σωµατιδίων X! g! g! X! g! g! Σπύρος Ευστ. Τζαµαρίας 2016 1 Θα αναπτύξουµε υπολογιστικές µεθόδους για ενεργές διατοµές σκέδασης Θα αρχίσουµε µε: e + µ + e e e + e µ + µ γ e

Διαβάστε περισσότερα

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 1γ Μια ματιά στα Στοιχειώδη Σωμάτια και τους κβαντικούς αριθμούς τους Κώστας

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα Τ3: Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα Τ3: Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 21η Πετρίδου Χαρά Τμήμα Τ3: Χ. Πετρίδου Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 14/12/2017 Πετρίδου Χαρά Στοιχειώδη Σωμάτια 2 Τα Θεμελιώδη Φερμιόνια απο τα

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 21η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2016 Πετρίδου Χαρά Στοιχειώδη Σωμάτια 2 Τα Θεμελιώδη Φερμιόνια

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Συντεταγμένες Κ. Βελλίδη (Στοιχειώδη Σωμάτια): Τομέας ΠΦΣΣ: β όροφος, 10-77-6946 ΙΕΣΕ: β όροφος,

Διαβάστε περισσότερα

www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html

www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική Στοιχειώδη Σωµατίδια Σωµατίδια Επιταχυντές Ανιχνευτές Αλληλεπιδράσεις Συµµετρίες Νόµοι ιατήρησης Καθιερωµένο Πρότυπο www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική: Στοιχειώδη

Διαβάστε περισσότερα

Charge Conjuga,on. Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε. ελεύθερου σωματίδιου ως:

Charge Conjuga,on. Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε. ελεύθερου σωματίδιου ως: Charge Conjuga,on Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε ηλεκτρομαγνητικό πεδίο αντικαθιστώντας την ορμή και την ενέργια του ελεύθερου σωματίδιου ως: χρησιμοποιώντας τους τελεστές

Διαβάστε περισσότερα

ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ

ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ ΚΕΝΤΡΙΚΗ ΙΔΕΑ ΤΗΣ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Όλα στη φύση αποτελούνται από στοιχειώδη σωματίδια τα οποία είναι φερμιόνια

Διαβάστε περισσότερα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16 Διάλεξη 15: Νετρίνα Νετρίνα Τα νετρίνα τα συναντήσαμε αρκετές φορές μέχρι τώρα: Αρχικά στην αποδιέγερση β αλλά και αργότερα κατά την αποδιέγερση των πιονίων και των μιονίων. Τα νετρίνα αξίζει να τα δούμε

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (18-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης

Διαβάστε περισσότερα

Στοιχειώδη σωμάτια. Τα σωμάτια ύλης

Στοιχειώδη σωμάτια. Τα σωμάτια ύλης Στοιχειώδη σωμάτια Γύρω στο 1930 η εικόνα που είχαν οι φυσικοί για τα στοιχειώδη σωμάτια- σωμάτια που τότε πίστευαν ότι δεν είχαν συστατικά φαίνεται στον παρακάτω πίνακα: Σωμάτια Σύμβολο Μάζα ΜeV/c 2 Τα

Διαβάστε περισσότερα

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο

Το Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο 1 Το Μποζόνιο Higgs 29/05/13 Σκοποί: I. Να απαντήσει στο ερώτημα του τι είναι ακριβώς το σωματίδιο Higgs. II. Να εισάγει τους διάφορους τρόπους παραγωγής και μετάπτωσης του Higgs. III. Να δώσει μία σύντομη

Διαβάστε περισσότερα

Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1

Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1 Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1 Parity Εφαρµόζοντας τον δύο φορές : άρα Αλλά θα πρέπει να διατηρείται και η κανονικοποίηση της κυµατοσυνάρτησης

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (8-1- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική

Διαβάστε περισσότερα

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16 Διάλεξη 20: Διαγράμματα Feynman Ισχυρές αλληλεπιδράσεις Όπως στην περίπτωση των η/μ αλληλεπιδράσεων έτσι και στην περίπτωση των ισχυρών αλληλεπιδράσεων υπάρχει η αντίστοιχη αναπαράσταση μέσω των διαγραμμάτων

Διαβάστε περισσότερα

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 23-24 Στοιχειώδη Σωμάτια και κβαντικοί αριθμοί τους - Αλληλεπίδραση σωματιδίων

Διαβάστε περισσότερα

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος

Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Παράδοξα σωματίδια Μετά την ανακάλυψη του μεσονίου που είχε προβλέψει ο Yukawa, την ανακάλυψη των αντισωματιδίων του Dirac και την κοπιώδη αλλά αποτελεσματική

Διαβάστε περισσότερα

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι I,S: SU() group I : SU() group ΠΡΟΤΥΠΟ ΤΩΝ ΑΔΡΟΝΙΩΝ ΜΕ ΣΤΑΤΙΚΑ QUARKS QUARK ATOMS Πλήθος Βαρυονίων & Μεσονίων ~ 96 - αρχικά οι κανονικότητες (patterns) των αδρονικών

Διαβάστε περισσότερα

Μάθημα 7 Διαγράμματα Feynman

Μάθημα 7 Διαγράμματα Feynman Στοιχειώδη Σωμάτια (M.Sc Υπολογιστικής Φυσικής) Μάθημα 7 Διαγράμματα Feynman Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη M.Sc. Υπολ. Φυσ., AΠΘ, 2 Δεκεμβρίου 2013 Κουάρκ και Λεπτόνια

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος

Διαβάστε περισσότερα

Πυρηνική Επιλογής. Τα νετρόνια κατανέμονται ως εξής;

Πυρηνική Επιλογής. Τα νετρόνια κατανέμονται ως εξής; Πυρηνική Επιλογής 1. Ποιος είναι ο σχετικός προσανατολισμός των σπιν που ευνοεί τη συνδεδεμένη κατάσταση μεταξύ p και n; Η μαγνητική ροπή του πρωτονίου είναι περί τις 2.7 πυρηνικές μαγνητόνες, ενώ του

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Κλασσική-Κβαντική Εικόνα Πεδίου Εικονικά σωµάτια Διαγράµµατα Feynman Ηλεκτροµαγνητικές και Ασθενείς

Διαβάστε περισσότερα

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4)

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4) ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 8 Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Η θεωρία των μαγνητικών μονοπόλων προβλέπει οτι αυτά αντιδρούν με πρωτόνια και δίνουν M + p M + e + + π 0 (1) με ενεργό διατομή σ 0.01 barn. Το

Διαβάστε περισσότερα

Διάλεξη 18: Καθιερωμένο πρότυπο (1978-?)

Διάλεξη 18: Καθιερωμένο πρότυπο (1978-?) Διάλεξη 18: Καθιερωμένο πρότυπο (1978-?) Φορείς αλληλεπίδρασεων Αλληλεπίδραση Ισχύς Εμβέλεια Φορέας Ισχυρή 1 ~fm g-γλουόνιο Η/Μ 10-2 1/r 2 γ-φωτόνιο Ασθενής 10-9 ~fm W ±,Z μποζόνια Βαρυτική 10-38 1/r 2

Διαβάστε περισσότερα

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας

Διαβάστε περισσότερα

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,

Διαβάστε περισσότερα

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων 1) Ποιες από τις πιο κάτω αντιδράσεις επιτρέπονται και ποιες όχι βάσει των αρχών διατήρησης που ισχύουν για τις ασθενείς αλληλεπιδράσεις ν μ + p μ + +n ν e +

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο. Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο. Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθµός

Διαβάστε περισσότερα

CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ

CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ CP VIOLATION in b system ΜΑΑΝΤΗΣ ΑΛΕΞΑΝΔΟΣ --ΣΑΒΒΙΔΗΣ ΓΙΩΓΟΣ PARITY (ΟΜΟΤΙΜΙΑ) P & ΣΥΖΥΓΙΑ ΦΟΤΙΟΥ C Τι είναι θ parity; Τι είναι θ ςυηυγία φορτίου; Το C αντιςτρζφει και τον λεπτονικό και βαρυονικό αρικμό.

Διαβάστε περισσότερα

Φερμιόνια & Μποζόνια

Φερμιόνια & Μποζόνια Φερμιόνια & Μποζόνια Φερμιόνια Στατιστική Fermi-Dirac spin ημιακέραιο 1 3 5,, 2 2 2 Μποζόνια Στατιστική Bose-Einstein 0,1, 2 spin ακέραιο δύο ταυτόσημα φερμιόνια, 1 & 2 δύο ταυτόσημα μποζόνια, 1 & 2 έχουν

Διαβάστε περισσότερα

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β διάσπαση II Δήμος Σαμψωνίδης (28-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Spin και πάριτυ ενός πυρήνα (J και πάριτυ: J p ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν

Διαβάστε περισσότερα

Two boson production on Fermilab and LHC. Σκορδά Ελένη Α.Ε.Μ Εξάμηνο 8o

Two boson production on Fermilab and LHC. Σκορδά Ελένη Α.Ε.Μ Εξάμηνο 8o Two boson production on Fermilab and LHC Σκορδά Ελένη Α.Ε.Μ 12474 Εξάμηνο 8o Εισαγωγή Από τις πιο σημαντικότερες συνέπειες της θεωρίας βαθμίδας SU(2) U(1) οι αύτο-αλληλεπιδράσεων των μποζονίων W, Z και

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος

Διαβάστε περισσότερα

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1

Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Μη- Σχετικιστική Κβαντομηχανική Η μη- σχετικιστική έκφραση για την ενέργεια: Στην QM αντιστοιχούμε την ενέργεια και την ορμή με Τελεστές:

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Τι θα μάθουμε (1) Εισαγωγή: Το Απειροστό και το Άπειρο Που βρίσκεται ο κλάδος αυτός της βασικής έρευνας σήμερα? Γιατί μας ενδιαφέρει?

Διαβάστε περισσότερα

Η εξίσωση Dirac (ΙI) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1

Η εξίσωση Dirac (ΙI) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Η εξίσωση Dirac (ΙI) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Συναλλοίωτη Μορφή: οι Dirac γ Matrices Η εξίσωση Dirac μπορεί να γραφεί σε συναλλοίωτη μορφή χρησιμοποιώντας τις 4 Dirac γ matrices: Πολλαπλασιάζοντας

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman. Λέκτορας Κώστας Κορδάς

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman. Λέκτορας Κώστας Κορδάς Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 18 Μαϊου 2010 Λίγο

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

Το Καθιερωμένο Πρότυπο. (Standard Model)

Το Καθιερωμένο Πρότυπο. (Standard Model) Το Καθιερωμένο Πρότυπο (Standard Model) Αρχαίοι Ίωνες φιλόσοφοι Αρχικά οι αρχαίοι Ίωνες φιλόσοφοι, θεώρησαν αρχή των πάντων το νερό, το άπειρο, τον αέρα, ή τα τέσσερα στοιχεία της φύσης, ενώ αργότερα ο

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 3η Πετρίδου Χαρά Τα Λεπτόνια 2 Δεν έχουν Ισχυρές Αλληλεπιδράσεις Spin 1/2 Παρατηρούνται ως ελεύθερα σωματίδια Είναι σημειακά (r < 10-17 cm) H δομή των οικογενειών... Γιατί

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 25η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 23η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 ΔΥΟ Μεγάλες, απλές κατηγοριοποιήσεις σωματίων, Ι. Φερμιόνια Μποζόνια Στατιστική Συμπεριφορά Νόμοι διατήρησης. Τα φερμιόνια δεν «καταστρέφονται»

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 24η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 24η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 24η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

Στοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Στοιχειώδη Σωματίδια Διάλεξη 11η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική 2 Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς

Διαβάστε περισσότερα

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

Εξαιρετικά σπάνια διάσπαση στο CMS, CERN 19 Ιουλίου 2012

Εξαιρετικά σπάνια διάσπαση στο CMS, CERN 19 Ιουλίου 2012 Εξαιρετικά σπάνια διάσπαση στο CMS, CERN 19 Ιουλίου 2012 Οι ερευνητές του πειράματος Compact Muon Solenoid (CMS) στο Μεγάλο Επιταχυντή Αδρονίων (LHC) θα παρουσίασουν αποτελέσματα πανω σε μια εξαιρετικά

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (16-12- 2014) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 016 Κλασική Κβαντική Κβαντική Εικόνα Πεδίου Θεωρία Yukawa Διαγράμματα Feynman

Διαβάστε περισσότερα

ΕΣΧΑΤΑ ΣΥΣΤΑΤΙΚΑ ΤΗΣ ΥΛΗΣ

ΕΣΧΑΤΑ ΣΥΣΤΑΤΙΚΑ ΤΗΣ ΥΛΗΣ ΤΑ ΕΣΧΑΤΑ ΣΥΣΤΑΤΙΚΑ ΤΗΣ ΥΛΗΣ ΣΤΟΧΟΙ ΤΗΣ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΗΜΕΡΑ Αναγνώριση των έσχατων συστατικών της Ύλης ιατύπωση µιας Ενοποιηµένης Θεωρίας για την περιγραφή των Αλληλεπιδράσεων µεταξύ

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος

Διαβάστε περισσότερα

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Δήμος Σαμψωνίδης (29-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας

Διαβάστε περισσότερα

ΟΙ ΔΟΜΙΚΟΙ ΛΙΘΟΙ. Τα στοιχειώδη σωµάτια και οι αλληλεπιδράσεις τους. Θεόδωρος Ν. Τοµαράς

ΟΙ ΔΟΜΙΚΟΙ ΛΙΘΟΙ. Τα στοιχειώδη σωµάτια και οι αλληλεπιδράσεις τους. Θεόδωρος Ν. Τοµαράς ΟΙ ΔΟΜΙΚΟΙ ΛΙΘΟΙ Τα στοιχειώδη σωµάτια και οι αλληλεπιδράσεις τους Θεόδωρος Ν. Τοµαράς Χρήσιµη βιβλιογραφία Concepts of Modern Physics by A. Beiser (McGraw Hill, 1987). Κεφάλαιο 14. (Το βιβλίο αυτό έχει

Διαβάστε περισσότερα

Διάλεξη 17: Το μοντέλο των κουάρκ

Διάλεξη 17: Το μοντέλο των κουάρκ Διάλεξη 17: Το μοντέλο των κουάρκ Από την επιτυχία της αναπαράστασης των σωματιδίων σε οκταπλέτες ή δεκαπλέτες προκύπτει ένα πολύ εύλογο ερώτημα. Τι συμβαίνει και οι ιδιότητες των σωματιδίων που έχουν

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο;

Φυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο; Εκεί, κάτω στον μικρόκοσμο... Από τί αποτελείται ο κόσμος και τί τον κρατάει ενωμένο; Αθανάσιος Δέδες Τμήμα Φυσικής, Τομέας Θεωρητικής Φυσικής, Πανεπιστήμιο Ιωαννίνων 5 Οκτωβρίου 2015 Φυσική Στοιχειωδών

Διαβάστε περισσότερα

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β διάσπαση II Δήμος Σαμψωνίδης (30-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Fermi- Kurie plot (μάζα ν) Διάγραμμα της ρίζας του αριθμού των σωματίων β με ορμή

Διαβάστε περισσότερα

Ενοποίηση της Ηλεκτροµαγνητικής και Ασθενούς Αλληλεπίδρασης τα W και Z Μποζόνια. Σ. Ε. Τζαµαρίας Σωµατιδιακή Φυσική

Ενοποίηση της Ηλεκτροµαγνητικής και Ασθενούς Αλληλεπίδρασης τα W και Z Μποζόνια. Σ. Ε. Τζαµαρίας Σωµατιδιακή Φυσική Ενοποίηση της Ηλεκτροµαγνητικής και Ασθενούς Αλληλεπίδρασης τα W και Z Μποζόνια Σ. Ε. Τζαµαρίας Σωµατιδιακή Φυσική 2016 1 Ας θυµηθούµε τον Ηλεκτροµαγνητισµό... Σε Heaviside-Lorentz µοναδες στο κενό, γράφονται

Διαβάστε περισσότερα

To CERN (Ευρωπαϊκός Οργανισµός Πυρηνικών Ερευνών) είναι το µεγαλύτερο σε έκταση (πειραµατικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωµατιδι

To CERN (Ευρωπαϊκός Οργανισµός Πυρηνικών Ερευνών) είναι το µεγαλύτερο σε έκταση (πειραµατικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωµατιδι To CERN (Ευρωπαϊκός Οργανισµός Πυρηνικών Ερευνών) είναι το µεγαλύτερο σε έκταση (πειραµατικό) κέντρο πυρηνικών ερευνών και ειδικότερα επί της σωµατιδιακής φυσικής στον κόσµο. Η ίδρυσή του το έτος 1954

Διαβάστε περισσότερα

Διάλεξη 22: Παραβίαση της κατοπτρικής συμμετρίας στις ασθενείς αλληλεπιδράσεις

Διάλεξη 22: Παραβίαση της κατοπτρικής συμμετρίας στις ασθενείς αλληλεπιδράσεις Διάλεξη 22: Παραβίαση της κατοπτρικής συμμετρίας στις ασθενείς αλληλεπιδράσεις Το 1956 ο Lee και ο Yang σε μια εργασία τους θέτουν το ερώτημα αν η πάριτη δηλαδή η κατοπτρική συμμετρία παραβιάζεται ή όχι

Διαβάστε περισσότερα

ΑΠΟΔΙΕΓΕΡΣΗ (ΔΙΑΣΠΑΣΗ)

ΑΠΟΔΙΕΓΕΡΣΗ (ΔΙΑΣΠΑΣΗ) ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ6932 946778 ΑΠΟΔΙΕΓΕΡΣΗ (ΔΙΑΣΠΑΣΗ) β Η αποδιέγερση β, κατά την οποία έχουμε μεταστοιχείωση (αλλαγή ατομικού αριθμού Ζ Ζ ± 1) με ταυτόχρονη εκπομπή ηλεκτρονίου

Διαβάστε περισσότερα

Πειραµατική Θεµελείωση της Φυσικής

Πειραµατική Θεµελείωση της Φυσικής Πειραµατική Θεµελείωση της Φυσικής Στοιχειωδών Σωματιδίων (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 23 Μαρτίου 2017

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου

Διαβάστε περισσότερα

Η ΒΑΣΙΚΗ ΕΡΕΥΝΑ ΣΤΗ ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ

Η ΒΑΣΙΚΗ ΕΡΕΥΝΑ ΣΤΗ ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ Η ΒΑΣΙΚΗ ΕΡΕΥΝΑ ΣΤΗ ΣΩΜΑΤΙΔΙΑΚΗ ΦΥΣΙΚΗ ΠΗΓΗ ΝΕΑΣ ΓΝΩΣΗΣ ΤΗΣ ΓΕΝΕΣΗΣ ΤΟΥ ΣΥΜΠΑΝΤΟΣ ΕΥΑΓΓΕΛΟΣ Ν. ΓΑΖΗΣ Καθηγητής Πειραµατικής Φυσικής Στοιχειωδών Σωµατιδίων, ΕΜΠ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ

Διαβάστε περισσότερα

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες διασπάσεις)

Διαβάστε περισσότερα

1929 Dirac: Πρώτη αναφορά στην αντιύλη ως λύση της Σχετικιστικής Δ. Εξίσωση Schrödinger, ύλη με αντίθετο φορτίο από το γνωστό.

1929 Dirac: Πρώτη αναφορά στην αντιύλη ως λύση της Σχετικιστικής Δ. Εξίσωση Schrödinger, ύλη με αντίθετο φορτίο από το γνωστό. Ù ØÓ Õ Û ôò ÛÑ Ø ÛÒ Â ÛÖ Ø Û Ã Ð ÛÖ Ø ØÓ Õ ô ÛÑ Ø Ö Ø ØÓ ÑÔÐ ÐÓ ÕÖÓÒ Ù ØÓÙ Sharewayµ Δομήτουκόσμου: ΥληκαιΦώς(γ, e, u, v e ) 1929 Dirac: Πρώτη αναφορά στην αντιύλη ως λύση της Σχετικιστικής Δ. Εξίσωση

Διαβάστε περισσότερα

Νουκλεόνια και ισχυρή αλληλεπίδραση

Νουκλεόνια και ισχυρή αλληλεπίδραση Νουκλεόνια και ισχυρή αλληλεπίδραση Πρωτόνια και νετρόνια. Το πρότυπο των κουάρκ για τα νουκλεόνια. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Κουάρκ: τα δομικά στοιχεία των αδρονίων ΑΣΚΗΣΗ Διασπάσεις σωματιδίων

Διαβάστε περισσότερα

Ενεργός Διατοµή (Cross section)

Ενεργός Διατοµή (Cross section) Ενεργός Διατοµή (Cross section) σ = # αλληλεπδράσεων / µ. Χρ. / σωµάτιο στόχου προσπίπτουσα ροή σ, µπορεί να θεωρηθεί ως η ενεργός επιφάνεια του στόχου, δηλ. το άθροισµα των ενεργών επιφανειών των σωµατίων

Διαβάστε περισσότερα

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή

Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Πυρηνική Σταθερότητα Ο πυρήνας αποτελείται από πρωτόνια και νετρόνια τα οποία βρίσκονται συγκεντρωμένα σε έναν πάρα πολύ μικρό χώρο. Εύκολα καταλαβαίνουμε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, Ιδιότητες των Σωματίων Ισοτοπικό Σπιν

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, Ιδιότητες των Σωματίων Ισοτοπικό Σπιν ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 206 Ιδιότητες των Σωματίων Ισοτοπικό Σπιν Stathis STILIARIS, UoA 206 Ιδιότητες

Διαβάστε περισσότερα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη

Διαβάστε περισσότερα

Η ασφάλεια στον LHC Ο Μεγάλος Επιταχυντής Συγκρουόµενων εσµών Αδρονίων (Large Hadron Collider, LHC) είναι ικανός να επιτύχει ενέργειες που κανένας άλλος επιταχυντής έως σήµερα δεν έχει προσεγγίσει. Ωστόσο,

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Τα άτομα ως στοιχειώδη σωματίδια Φυσική των στοιχειωδών

Διαβάστε περισσότερα

Και τα τρία σωμάτια έχουν σπιν μονάδα.

Και τα τρία σωμάτια έχουν σπιν μονάδα. Καθιερωμένο Πρότυπο W και Z μποζόνια Στη φυσική, τα W και Z μποζόνια είναι τα στοιχειώδη σωμάτια που μεταδίδουν την ασθενή αλληλεπίδραση. Η ανακάλυψή τους στο CERN το 1983 αντιμετωπίστηκε ως μια σπουδαία

Διαβάστε περισσότερα

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά

Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόµοι Διατήρησης στις Θεµελειώδεις Αλληλειδράσεις 14-Jan-13 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 3

Διαβάστε περισσότερα

s (spin) -s s αξονικό διάνυσμα r p

s (spin) -s s αξονικό διάνυσμα r p Συμμετρία αναστροφής του χρόνου Τ Με την αναστροφή του χρόνου Τ έχουμε t -t, p p, J J. Γι αυτό το λόγο ο Τ δεν έχει ιδιοτιμές δοτμές όπως οι C και P. Παρόλα αυτά σε συνδυασμό με την P, PT σημαίνει ότι

Διαβάστε περισσότερα