Keyframing can be tedious - especially to get realism Using physics to define the animation, Subset of procedural animation Provide the physical
|
|
- Καλλιόπη Αλεξίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Dynamics-Physics based animation Keyframing can be tedious - especially to get realism Using physics to define the animation, Subset of procedural animation Provide the physical rules-laws that govern the motion, let the system evaluate the positions/shape Animator gives up control, gets realistic motion automatically. Can use augmented laws of physics Reusable code, autonomous agents, automatically captures compleity Ice skater, child on a swing
2 Dynamics-Physics based animation Point masses (particle systems), rigid bodies, deformable bodies, articulated objects One should specify forces, material properties, initial conditions, constraints Solving ordinary differential equations, inclusion of constraints Collision detection and handling
3 A Canonical Differential Equation 1 f(,t) = f(,t) (t): a moving point. f(,t): 's velocity. 2 SIGGRAPH 97 COURSE NOTES SB2 PHYSICALLY BASED MODELING
4 Vector Field The differential equation = f (,t) defines a vector field over. SIGGRAPH 97 COURSE NOTES SB3 PHYSICALLY BASED MODELING
5 Integral Curves Start Here Pick any starting point, and follow the vectors. SIGGRAPH 97 COURSE NOTES SB4 PHYSICALLY BASED MODELING
6 Initial Value Problems Given the starting point, follow the integral curve. SIGGRAPH 97 COURSE NOTES SB5 PHYSICALLY BASED MODELING
7 Solving ODE &( t) = f (, t) Given the differential equations and a starting point ( t i ) (known as an initial value problem) find (t) Interest in numerical solutions (discrete time steps (t 0 ), (t 0 +h), (t 0 +2h)) not analytical ones. We need to integrate to find the new position/state t+ h t+ h t '( τ ) dτ = ( t+ h) ( t) = f(, τ) dτ t
8 Euler method Assumes that the derivative f is constant over the timestep ( t+ h) ( t) + hf( ( t), t) First order approimation given Taylor epansion gives ( t ( t ( t i i i + dt) + dt) + dt) &( t) = f (, t) and t ) = ( t ( t ( t i i i ) ) ) + & ( t i + & ( t i ) ) + f ( ( t dt dt i ), t i ) dt ( i + O( dt 2 )
9 Euler's Method Simplest numerical solution method Discrete time steps Bigger steps, bigger errors. (t + t) = (t) + t f(,t) SIGGRAPH 97 COURSE NOTES SB6 PHYSICALLY BASED MODELING
10 Euler method Inaccurate smaller timesteps only slow the problems down Unstable f (, t) = k reasonable if dt <1/ Instability if dt > 2 / k k
11 Method performance Compleity depends on the number of derivative function calculations per time step. However performance is also related to the number of time steps required to obtain a certain accuracy and stability Sophisticated methods: more evaluations per step but they allow bigger steps
12 Midpoint Method Second order approimation 2 dt ( ti + dt) = ( ti ) + & ( ti ) dt + & ( ti ) + with f ( dt 2 2 f d &&(t i ) = = f dt f 2 O( dt 2 f ( ) f ( ) f i + = i + ( i ) + O( ) dt dt + f ( )) ( ) ( ) ( ) ( 2 i = f i + f 2 i f i O dt 3 dt && + O dt ) = dt ( f ( + f ( )) f ( )) i + ( i 2 i i 2 ) 3 ) dt ( ti + dt) = ( ti ) + dt ( f ( i + f ( 2 i ))) i = ( t i )
13 Midpoint Method Requires 2 derivative evaluations per step Geometric Interpretation dt ( ti + dt) = ( ti ) + dt ( f ( i + f ( 2 i Euler result ))) + i i f ( dt 2 i ) dt f ( i + f ( )) 2 i Midpoint result we can use higher orders (e: runge-kutta 4)
14 Adaptive Timestepping Fied timestep: proceed only as fast as worst section of (t) allows. Allow the timestep to change over the course of the solution e = a b 1 timestep 2 timesteps Scale the timestep based on the error s e e desired = current 1/ errororder See: Numerical recipes in C
15 ODE solver For(time=t0; time<t1; time+=delta){ derivative=derivative_function(time, ); =ode(derivative, time,, delta); } The user should provide derivative_function. Alternatively, derivative_function is fed to ode.
16 Particles Particles are objects modeled as point masses Particle systems are collections of particles Particle systems can represent: fire smoke/clouds flow of fluids debris/shrapnel soft bodies flocks/crowds etc.
17 Particles Particles respond to forces (Newtonian particles) We represent this using differential equations Newton s second law && = f m & v& = = v f m 2 nd order ODE 1 st order ODEs
18 Particle Systems The state of the system is fully determined by, v. Phase space Particle properties: mass position velocity total forces age, lifespan rendering properties etc.
19 Newtonian συστήµατα σωµατιδίων Ησυµπεριφορά του συστήµατος προσδιορίζεται από τις χρονοµεταβλητές δυνάµεις που ασκούνται. Εσωτερικές δυνάµεις (σύστηµα ελατηρίων) ή/και εξωτερικές δυνάµεις (βαρύτητα) Καθορίζοντας κατάλληλα τις δυνάµεις πετυχαίνουµε να µοντελοποιήσουµε την επιθυµητή συµπεριφορά.
20 Particle Systems Separate the data structures and integration Particle System particles time state send data as 6n vectors state/derivatives Solver state derivatives Particle v f m v f m v f m L v f m
21 Particle Motion (t) v(t) SIGGRAPH 97 COURSE NOTES SD2 PHYSICALLY BASED MODELING
22 Particle State Y = (t) v(t) (t) v(t) Y = SIGGRAPH 97 COURSE NOTES SD3 PHYSICALLY BASED MODELING
23 Particle Dynamics (t) v(t) F(t) SIGGRAPH 97 COURSE NOTES SD4 PHYSICALLY BASED MODELING
24 State Derivative d dt Y = d dt (t) = v(t) v(t) F(t)/m d dt Y = v(t) F(t)/m SIGGRAPH 97 COURSE NOTES SD5 PHYSICALLY BASED MODELING
25 Multiple Particles SIGGRAPH 97 COURSE NOTES SD6 PHYSICALLY BASED MODELING
26 State Derivative d dt Y = d dt 1 (t) v 1 (t) M n (t) v n (t) = v 1 (t) F 1 (t)/m 1 M v n (t) F n (t)/m n d dt Y = n elements SIGGRAPH 97 COURSE NOTES SD7 PHYSICALLY BASED MODELING
27 ODE solution d dt Y(t 0 + t)... Y(t 1 ) d dt Y(t 0) Y(t 0 + t) Y(t 0 ) SIGGRAPH 97 COURSE NOTES SD8 PHYSICALLY BASED MODELING
28 Y(t 0 ) len t 0 t 1 dydt ODE solver Y(t 1 ) void dydt(double t, double y[], double ydot[]) SIGGRAPH 97 COURSE NOTES SD9 PHYSICALLY BASED MODELING
29 Y(t) = 1 (t) v 1 (t) n (t) v n (t) dydt d dt Y(t) = v 1 (t) F 1 (t)/ m 1 v n (t) F n (t)/m n SIGGRAPH 97 COURSE NOTES SD10 PHYSICALLY BASED MODELING
30 v f m v f m v f m Clear Force Accumulators 1 2 Deriv Eval Loop F F F F Invoke apply_force functions v f m v f m v f m 3 Return [v, f/m, ] to solver. SIGGRAPH 97 COURSE NOTES SC17 PHYSICALLY BASED MODELING
31 Forces Unary forces :forces that only depend on 1 particle. O(n) compleity f drag v Gravity Dampening Wind Fields f mg f = k = drag d f = k v wind v
32 Forces Binary forces - forces that only depend on 2 particles f a f b ) ( 0 b a b a b a s a l k f = ) ( ) ( b a b a b a b a b a k d v v f b =- f a Springs Generalizes to n-ary forces
33 υνάµεις από σύστηµα ελατηρίων Χρήση σωµατιδίων για µοντελοποίηση επιφάνειας που µεταβάλλεται µε το χρόνο: ύφασµα στον άνεµο Κάθε σωµατίδιο κόµβος σε πλέγµα Εξωτερικές δυνάµεις (βαρύτητα, άνεµος) υνάµεις µεταξύ σωµατιδίων που τα καθιστούν συνεκτική επιφάνεια
34 υνάµεις από σύστηµα ελατηρίων Θεώρηση ότι τα σωµατίδια συνδέονται µε ελατήρια. Πολυπλοκότητα O(n) (επίδραση µόνο από γειτονικά σωµατίδια)
35 Ελκτικές-απωθητικές δυνάµεις Spatial interaction forces Οι δυνάµεις σε σύστηµα ελατηρίων κρατούν τα σωµατίδια στην ίδια τοπολογική διάταξη, Επιδρούν πάντα στο ίδιο ζεύγος. Οι ελκτικές ή απωθητικές δυνάµεις τα φέρνουν κοντά ή τα αποµακρύνουν. Απωθητικές δυνάµεις για να κατανείµουµε σωµατίδια σε επιφάνεια ή να τα αποτρέψουµε να συγκρουστούν Ελκτικές δυνάµεις: µοντέλο ηλιακού
36 Ελκτικές-απωθητικές δυνάµεις ρουν στην κατεύθυνση d = p -q και είναι αντιστρόφως ανάλογες της απόστασης Απωθητική αντίστροφου τετράγωνου f = k r d d 3 Στη γενική περίπτωση ο υπολογισµός των δυνάµεων είναι O(n 2 ).
37 Ελκτικές-απωθητικές δυνάµεις Χωρισµός του χώρου σε υποχώρους και υπόθεση ότι δυνάµεις από σωµατίδια σε γειτονικούς υποχώρους αµελητέες. Κόστος για αρχική διαµοίραση των σωµατιδίων και υπολογισµό µετάβασης σωµατιδίων σε άλλο υποχώρο για κάθε
38 Forces Controlled particles: motion not controlled by forces Fied particles (anchors and pivots) Procedurally controlled particles (e.g. particles moving in a circle) User Interaction forces (for interactive animation) : forces applied to particles by the user f user Usually just use springs
39 Soft Constraints Forces: provided by the user to specify the desired behavior (e.g. spring forces keep particles together) It is often easier to specify a condition that we want to be true rather than a force to make it true Constraint (or behavior) functions: specify a condition that we wish to have fulfilled C (, = 0 a b) = a b or C(, ) = r = a b a b 0 C: vector Constraint functions But how do we make it true? Convert constraints to force laws
40 Energy Functions Minimize the energy of the constraint The smaller the energy the more the constraint is satisfied ks E = C C 2 Force the particle towards the constraint E C fi = = ks C i i Add damping in order to avoid oscillations around the constraint dampening C f = k C& i d i Jacobian matri
41 Energy Functions Eample b a C = I C = a I C = b v a v b C = & a derivative b derivative time derivative Plug into the force equation C C C C f & i d i s i k k = ) ( ) ( b a d b a s a k k v v f = Just a damped spring
42 Collisions What should we do when there is a collision? Usually an interpenetration, not the eact collision is detected. t ) ( 0 ( t 1 ) ( t 2 ) ( t 3 )
43 Collision Detection Checked at every step, should be done efficiently Some collisions might be missed (collisions with thin objects)
44 Collision Detection Determine when a particle has collided (simple case) N N ( p) < 0 N ( p) = 0 Particle has collided iff p: point on the surface N ( p) < 0
45 Collision Response What should we do when a particle has collided? The correct thing to do is rollback the simulation to the eact point of contact Restart the simulation at the time of the collision On collision the state changes discontinuously
46 Rolling Back the Simulation ( t 0 ) ( t 1 ) ( t 2 ) ( t c ) ( t 3 ) Collision time, position can be found by interpolation, bisection, etc.
47 Rolling Back the Simulation: Bisection Bisect the time interval between the positions before and after the collision Run the simulation to evaluate position at the mid-time and check if this position is legal or not Bisect one of the two new time intervals depending on the previous step and repeat until the position is close to the surface
48 Collision Detection
49 Rolling Back the Simulation: Linear interpolation Assume that the particle follows linear constant velocity motion between the two positions (prior and after the detected collision) Evaluate collision time and position using this assumption.
50 Collision Response After finding the eact collision time and position: Kinematic response: negate (and perhaps modify) the perpendicular velocity. v n Run the simulation again from this point using the new initial velocity. v t v N new v After the collision: new v = ε vn + v t ε=1 elastic collision coefficient of restitution
51 Collision Response After finding the eact collision time and position: Dynamic response (more accurate): apply an instant impulse force on the particle in one step of the simulation Continue normally afterwards
52 Collision Response Easier handling: do not rollback the simulation Evaluate the new direction of the particle from the collision point onwards Evaluate the new velocity Place the particle on the new direction and in a distance equal to the one traveled after the real collision
53 Συγκρούσεις Ανελαστική σύγκρουση: το σωµατίδιο δεν χάνει ενέργεια, το µέτρο της ταχύτητας σταθερό Η πορεία µετά τη σύγκρουση ίδια µε αυτή φωτός ανακλώµενου σε επιφάνεια. Κατεύθυνση ανάκλασης: r = 2( p p ) nn ( p p ) 0 c 0 c
54 Συγκρούσεις Το σωµατίδιο σε απόσταση από το σηµείο σύγκρουσης όση και αν αυτή δεν συνέβαινε
55 Contact Forces Contact: the particle is on the collision surface with zero normal velocity A contact force resists penetration c ( N f ) < 0 f = ( N f ) N Contact forces do not resist leaving the surface f c = 0 Simple friction can be modeled f f f t ( N f ) > = k ( N f ) v ( N f ) < 0 0
Keyframing can be tedious - especially to get realism Using physics to define the animation, Subset of procedural animation Provide the physical
Dynamics-Physics based animation Keyframing can be tedious - especially to get realism Using physics to define the animation, Subset of procedural animation Provide the physical rules-laws that govern
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook
Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.
Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
1) Formulation of the Problem as a Linear Programming Model
1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.
Numerical Metods for Civil Engineers Lecture Ordinar Differential Equations -Basic Ideas -Euler s Metod -Higer Order One-step Metods -Predictor-Corrector Approac -Runge-Kutta Metods -Adaptive Stepsize
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade
Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What