ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ
|
|
- Σαπφειρη Θεοδοσίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πανεπιστήμιο Θεσσαλίας Τμήμα Αρχιτεκτόνων Μηχανικών Σύγχρονες Θεωρίες και Κριτική της Αρχιτεκτονικής ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΙΣΑΓΩΓΗ ΝΙΚΟΣ ΠΑΤΣΑΒΟΣ
2
3
4
5
6
7
8
9
10
11
12
13
14
15 MATHEMATICAL SURFACES AND SERIALITY CHAOS, COMPLEXITY THEORY AND EMERGENCE PACKING AND TILING OPTIMIZATION FRACTALS TOPOLOGY DATASCAPES AND MULTI DIMENSIONALITY DIAGRAMMATIC ANALYSIS CODE GENERIC ALGORITHMS MORPHOGENESIS FOLDING
16 ΤΙ ΕίΝΑΙ όλα ΑΥΤά; Γιατί συμβαίνουν; Ποια τα ερωτήματα που τίθενται προς διερεύνηση; Γιατί εντάσσονται στην τρέχουσα αρχιτεκτονική έρευνα; Γιατί απασχολούν τόσους νέους (κυρίως) αρχιτέκτονες; Πώς παράγονται; Ποιες οι προϋποθέσεις που τα κατέστησαν δυνατά (θεωρητικές και τεχνολογικές); Με ποια κριτήρια μπορούμε να τα αξιολογήσουμε; Ποια η αφετηρία αντίστοιχων προσεγγίσεων; Ποιες οι πηγές τους; Πού οδηγείται η αρχιτεκτονική μέσα από ανάλογες διερευνήσεις; Σε ποιο σημείο βρίσκεται η αρχιτεκτονική σήμερα; Κρίση μετάβαση α/συνέχεια Συγκροτείται μια νέα αρχιτεκτονική πρωτοπορία;
17 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΠΛΟ ΤΩΝ ΘΕΩΝ Πάντοτε η αρχιτεκτονική και τα μαθηματικά είχαν μία στενή σχέση. Από τις Πυραμίδες της Αιγύπτου και τους ρυθμούς της αρχαίας ελληνικής αρχιτεκτονικής, μέχρι τον Ανθέμιο και τον Ισίδωρο, ή από τον Αλμπέρτι, τον Παλλάντιο και τον Boullée μεχρι το Μοντέρνο και το Μεταμοντέρνο, τα μαθηματικά προσέφεραν στην αρχιτεκτονική τη δυνατότητα αναπαράστασης της αρχιτεκτονικής ιδέας με στόχο αφενός τη μελέτη της από τον αρχιτέκτονα, αφετέρου την επικοινωνία με άλλους. Η στενή αυτή σχέση διέπεται όμως και από ένα παράδοξο: τα μαθηματικά έχουν σαφείς κανόνες αλλά ασαφή σκοπιμότητα, ενώ η αρχιτεκτονική έχει σαφή ( ) σκοπιμότητα αλλά ασαφείς κανόνες. Τα μαθηματικά φαινόμενα πάντοτε αναπτύσσονται μέσα από την απλή αριθμητική. Οι αριθμοί, τόσο χρήσιμοι στην καθημερινή ζωή, είναι τα όπλα των θεών: οιθεοίείναι εκεί, πίσω από τον τοίχο, και παίζουν με τους αριθμούς. Le Corbusier
18 Ποια είναι η διαφορά της σημερινής σχέσης μαθηματικών και αρχιτεκτονικής; ακόμα πιο άμεση εναλλακτικές γεωμετρίες, θεωρίες αριθμών και αλγεβρικές διαδικασίες παίρνουν τη θέση του παραδοσιακά κατοχυρωμένου στην αρχιτεκτονική καρτεσιανού συστήματος συντεταγμένων κ.λπ. μεσολάβηση των Η/Υ αν και τα λογισμικά αποκρύπτουν πολλές φορές τα πολύπλοκα μαθηματικά που κρύβονται πίσω από το user interface. προσπάθεια εντοπισμού και ελέγχου μιας νέας δυναμικής αρχιτεκτονικής με έμφαση στις μεταβλητές σχέσεις μεταξύ παραμέτρων που επιδρούν στην αρχιτεκτονική, είτε ανθρωπογενών είτε φυσικών.
19 Οι σύγχρονοι αρχιτεκτονικοί πειραματισμοί των τελευταίων 20 περίπου χρόνων, μόλις πρόσφατα άρχισαν να διερευνούν τις χωρικές και αναπαραστατικές δυνατότητες που διάνοιξαν με το έργο τους οι πρωτοπόροι μαθηματικοί του 17 ου αιώνα. Το ενδιαφέρον δεν είναι απλά μεταφορικό: αισθητική και αντίληψη του χώρου. υπολογισμοί φορέων και στοιχείων πληρώσης και επικάλυψης. μέθοδοι αναπαράστασης της πολυπλοκότητας νέως χωρικών σχέσεων. άμεση σύνδεση σχεδιασμού και παραγωγής. Bernardo_Strozzi, Αλληγορία των Μαθηματικών, 17 ος αιώνας. διαγραμματική επεξεργασία και απόδοση αναλυτικών δεδομένων. προσομοίωση συμπεριφοράς κτιρίου στη διάρκεια του χρόνου ανάλογα τόσο με ανθρωπογενείς παράγοντες όσο και φυσικούς. νέες θεωρητικές ανησυχίες των αρχιτεκτόνων.
20 Οι εννοιολογικές δυνατότητες των μαθηματικών παραδοσιακά προηγούνται των δυνατοτήτων της αρχιτεκτονικής για υλοποίηση αντίστοιχων χώρων. Αντίστοιχα εμφανίζει χρονική υστέρηση η δυνατότητα των ανθρώπων να οικειοποιηθούν τέτοιους χώρους. Κατά την Αναγέννηση, οιεμπειρικοίπειραματισμοί των αρχιτεκτόνων της εποχής, του Μπρουνελέσκι και του Αλμπέρτι, αποτέλεσαν την αφετηρία αντίστοιχων μαθηματικών ερευνών. Η περίπτωση αυτή είναι σπάνια. Ιδιαίτερα δε ο μηχανιστικός μοντερνισμός, με την έμφαση που έδωσε στην ανάγκη της εκβιομηχάνισης και την ιδέα της μηχανής, βασίστηκε σε μαθηματικά πολύ πιο γραμμικά και απλά από εκείνα της εποχής του, παρότι, αρκετά από τα μοντέρνα ρεύματα (σουρεαλισμός, οργανικισμός, κονστρουκτιβισμός) διαφοροποιηθήκαν σε αυτό. Τα ρεύματα αυτά, αν και δεν επικράτησαν τότε, αποτέλεσαν τη βάση της μετέπειτα κριτικής της «ορθής γωνίας» και της «λατρείας των νεκρών γεωμετριών». Το μέχρι πρότινος όριο έχει αρχίσει να μετακινείται. Η ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΔΗΜΙΟΥΡΓΕΙ ΧΩΡΟ (ΓΙΑ ΤΟΝ ΑΝΘΡΩΠΟ). ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΕΡΙΓΡΑΦΟΥΝ ΤΟ ΧΩΡΟ (ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΟΥ ΑΝΘΡΩΠΟΥ). Sir William Blake, ΟΝεύτων, 18 ος αι.
21 Few things have had greater historical significance for architecture than the introduction of consistent, coherent parallel projection into architectural drawing, and few things have been more transparent to critical attention than its effects. Robin Evans, The Projective Cast
ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ. 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
ΜΑΘΗΜΑ: Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ 1 η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στόχος Θεματικής Ενότητας Οι μαθητές να περιγράφουν τους βασικούς τομείς της Επιστήμης των Υπολογιστών και να μπορούν
Α. ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 6. ΧΩΡΟΣ
Α. ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 6. ΧΩΡΟΣ Ο καλλιτέχνης μπορεί να συμπεριλάβει ή να αγνοήσει τη διάσταση του χώρου στην απεικόνιση που εκτελεί. Όταν περιγράφει το βάθος του οπτικού πεδίου με διάφορους
Αρχιτεκτονική είναι η τέχνη της «ικανοποίησης των ανθρωπίνων αναγκών στο χώρο μέσω σχεδιασμού μεθόδων και υλικών κατασκευών».
Αρχιτεκτονική είναι η τέχνη της «ικανοποίησης των ανθρωπίνων αναγκών στο χώρο μέσω σχεδιασμού μεθόδων και υλικών κατασκευών». που εφαρμόζεται ευρύτερα στην οίκησε και δόμηση του χώρου, ως εφαρμοσμένη επιστήμη
Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ
ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών
Οι σπουδές στην Αρχιτεκτονική
ΓΡΑΦΕΙΟ ΔΙΑΣΥΝΔΕΣΗΣ ΣΠΟΥΔΩΝ ΚΑΙ ΣΤΑΔΙΟΔΡΟΜΙΑΣ Οι σπουδές στο ΑΠΘ Πολυτεχνική Σχολή, Τμήμα Αρχιτεκτόνων Αναστάσιος Τέλλιος, Επίκουρος καθηγητής Οι σπουδές στην Αρχιτεκτονική Ιανουάριος 2016 Αιγυπτιακός
Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.
Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)
Να φύγει ο Ευκλείδης;
Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω
ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ
ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ
ΑΘΛΗΤΙΣΜΟΣ: ΔΙΚΑΙΩΜΑ ΤΩΝ ΑΝΘΡΩΠΩΝ ΚΑΙ ΠΑΡΟΧΗ ΤΩΝ ΚΡΑΤΩΝ ΜΕ ΣΤΟΧΟ ΤΗΝ ΕΥΕΞΙΑ ΚΑΙ ΤΗΝ ΠΟΙΟΤΗΤΑ ΖΩΗΣ
ΑΘΛΗΤΙΣΜΟΣ: ΔΙΚΑΙΩΜΑ ΤΩΝ ΑΝΘΡΩΠΩΝ ΚΑΙ ΠΑΡΟΧΗ ΤΩΝ ΚΡΑΤΩΝ ΜΕ ΣΤΟΧΟ ΤΗΝ ΕΥΕΞΙΑ ΚΑΙ ΤΗΝ ΠΟΙΟΤΗΤΑ ΖΩΗΣ Οι μαθητές χωρίστηκαν σε ομάδες σχετικά με το άθλημα της αρεσκείας τους (ποδόσφαιρο, τένις, βόλεϋ, κολύμβηση,
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση Στη βασική παιδεία, τα μαθηματικά διδάσκονται με στατικά μέσα α) πίνακα/χαρτιού β) κιμωλίας/στυλού γ) χάρτινου βιβλίου.
Διάταξη Θεματικής Ενότητας ΕΠΑ70/ Εκπαιδευτική Πολιτική και Αναλυτικά Προγράμματα
Διάταξη Θεματικής Ενότητας ΕΠΑ70/ Εκπαιδευτική Πολιτική και Αναλυτικά Προγράμματα Σχολή ΣΑΚΕ Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Πρόγραμμα Σπουδών ΕΠΑ Επιστήμες της Αγωγής Θεματική Ενότητα ΕΠΑ70
Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.
9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη
Επιχειρήσεις. Έρευνα. Αρχιτεκτονική. 1
Επιχειρήσεις. Έρευνα. Αρχιτεκτονική. 1 του Νικόλαου Πατσαβού, Αρχιτέκτονα ΑΠΘ-Υπ.Δρα ΑΑ «Ίσως μια μέρα να γνωρίσουμε πως δεν υπήρξε καμία τέχνη παρά μόνο η ιατρική.» Jean-Marie Gustave Le Clézio, HAI Το
Εισαγωγή, Βασικές Έννοιες, Οφέλη και Κίνδυνοι
Εισαγωγή, Βασικές Έννοιες, Οφέλη και Κίνδυνοι Ευθύμιος Ταμπούρης tambouris@uom.gr Επιστημονική Επιχειρηματική Χρήση των Η/Υ Η επιστημονική κοινότητα ασχολείται με τη λύση πολύπλοκων μαθηματικών προβλημάτων
Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.
Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη
51 εικόνες για μικρά παιδιά Η ΜΑΚΕΤΑ ΕΡΓΑΣΙΑΣ ΣΑΝ ΑΝΑΛΥΤΙΚΟ ΚΑΙ ΣΥΝΘΕΤΙΚΟ ΕΡΓΑΛΕΙΟ 1
51 εικόνες για μικρά παιδιά Η ΜΑΚΕΤΑ ΕΡΓΑΣΙΑΣ ΣΑΝ ΑΝΑΛΥΤΙΚΟ ΚΑΙ ΣΥΝΘΕΤΙΚΟ ΕΡΓΑΛΕΙΟ 1 ΔΗΜΗΤΡΗΣ ΑΝΤΩΝΙΟΥ Επ. καθηγητής Τμ. Αρχιτεκτόνων Παν. Πατρών ΑΡΧΙΤΕΚΤΟΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ 1 2015-16 Κατά την αρχαιότητα
Το ανοργάνωτο Parking
Δημοτικό Υπαίθριο Parking Περίληψη: Σε κάθε πόλη είναι σημαντικό η δημιουργία όσο το δυνατόν περισσότερων θέσεων parking, ειδικά στο κέντρο της, ώστε να διευκολύνονται οι πολίτες και η εμπορική αγορά.
εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η
εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η μετακίνηση, περιστροφή, αυξομείωση, ανάκλαση και απόκρυψη του
Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»
Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:
1.2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας
.2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας Θέμα της δραστηριότητας Αυτή η δραστηριότητα εισάγει στην έννοια του Ορίου Ακολουθίας. Δυο φύλλα εργασίας οδηγούν τους μαθητές στον ορισμό της σύγκλισης μηδενικής
185 Πλαστικών Τεχνών και Επιστημών της Τέχνης Ιωαννίνων
185 Πλαστικών Τεχνών και Επιστημών της Τέχνης Ιωαννίνων Το Τμήμα Επιστημών της Τέχνης αποτελεί ανεξάρτητο Τμήμα του Πανεπιστημίου Ιωαννίνων και λειτουργεί από το ακαδημαϊκό έτος 2000-01. Το Τμήμα ιδρύθηκε
Ανάλυση ποιοτικών δεδομένων
Ανάλυση ποιοτικών δεδομένων Σύνοψη κεφαλαίου Σύνδεση θεωρίας και ανάλυσης Επεξεργασία ποιοτικών δεδομένων Δεοντολογία και ανάλυση ποιοτικών δεδομένων Αξιολογώντας την ποιότητα των ποιοτικών ερευνών Εισαγωγή
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για
ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ, ΕΣΠΙ 1
ΛΟΓΙΣΜΟΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ, ΕΣΠΙ 1 ΣΥΝΑΡΤΗΣΕΙΣ Η έννοια της συνάρτησης είναι θεμελιώδης στο λογισμό και διαπερνά όλους τους μαθηματικούς κλάδους. Για το φοιτητή είναι σημαντικό να κατανοήσει πλήρως αυτή
Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα
Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή Δρ. Κυριακή Τσιλίκα Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Θεσσαλίας Η απαρχή της Γεωμετρίας Οι Βαβυλώνιοι, για πρώτη φορά,
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Άρθρα - Υλικό Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Χειραπτικά εργαλεία Υλικά/εργαλεία στο νέο Πρόγραμμα σπουδών
ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ
ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό
Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)
ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ
Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).
τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο
ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ
176 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Σωτηρόπουλος Παναγιώτης 1 -
ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ - Θεμελιώδεις έννοιες - Επισκόπηση ύλης - Χρήσιμες πληροφορίες ΤΑΥΤΟΤΗΤΑ ΜΑΘΗΜΑΤΟΣ Μάθημα επιλογής
Περί της Ταξινόμησης των Ειδών
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Περί της Ταξινόμησης
Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.
Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι
ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ
ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ Δρ ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ ΤΑΞΗ Άσε το Χάος να βάλει τάξη. Fractals Πλακοστρώσεις(Penrose) Χάος Α Β Γ Λυκείου
Ψηφιακός εμπλουτισμός σχολικών εγχειριδίων: Ένα βήμα για τη νοηματοδοτημένη παιδαγωγική αξιοποίηση των ΤΠΕ
Ψηφιακός εμπλουτισμός σχολικών εγχειριδίων: Ένα βήμα για τη νοηματοδοτημένη παιδαγωγική αξιοποίηση των ΤΠΕ Τάσος Μικρόπουλος Συντονιστής ψηφιακού εμπλουτισμού βιβλίων Φυσικής H ψηφιακή στρατηγική για την
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A N A K O I N Ω Σ Η
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Θεσσαλονίκη 13-2-2015 A N A K O I N Ω Σ Η Τα μαθήματα του Προπτυχιακού Προγράμματος Σπουδών στο Τμήμα Μαθηματικών για το
Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής
Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των
A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ
1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και
το σύστηµα ελέγχει διαρκώς το µαθητή,
Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική Δέσποινα Πόταρη Πανεπιστήμιο Πατρών Η έννοια της δραστηριότητας Δραστηριότητα είναι κάθε ανθρώπινη δράση που έχει ένα κίνητρο και ένα
ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ
ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ Καθηγητής/τρια: Αρ. Μαθητών/τριών : Ημερομηνία: Χρόνος: Τμήμα: Ενότητα & Θέμα Μαθήματος: Μάθημα: ΓΕΩΓΡΑΦΙΑ Απαραίτητες προϋπάρχουσες/προαπαιτούμενες γνώσεις (προηγούμενοι/προαπαιτούμενοι
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες
ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ
ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης
þÿ ±ÁǹĵºÄ ½¹º Ä Â þÿãà Å Â Ä Â ±ÁǹĵºÄ ½¹º  Xenopoulos, Solon Neapolis University
Neapolis University HEPHAESTUS Repository School of Architecture, Land and Environmental Sciences http://hephaestus.nup.ac.cy Informative material 2005 þÿ ±ÁǹĵºÄ ½¹º Ä Â þÿ¼µä±»»±ãì¼µ½  µ¹ºì½±â º±¹
Ευρωπαίοι μαθηματικοί απέδειξαν έπειτα από 40 χρόνια τη θεωρία περί της ύπαρξης του Θεού του Γκέντελ με τη βοήθεια ηλεκτρονικού υπολογιστή
Ευρωπαίοι μαθηματικοί απέδειξαν έπειτα από 40 χρόνια τη θεωρία περί της ύπαρξης του Θεού του Γκέντελ με τη βοήθεια ηλεκτρονικού υπολογιστή Καθηγητή Χάρη Βάρβογλη 1 / 6 Υπάρχει Θεός; Το ερώτημα αυτό απασχολεί
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.
Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ
ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles
Περιβαλλοντικό άγχος. Ορισμοί και μοντέλα Πυκνότητα Αίσθημα συνωστισμού Θόρυβος
Περιβαλλοντικό άγχος Ορισμοί και μοντέλα Πυκνότητα Αίσθημα συνωστισμού Θόρυβος Περιβαλλοντικό άγχος Είναι μια κατάσταση στην οποία οι περιβαλλοντικές απαιτήσεις υπερβαίνουν την ικανότητα των ανθρώπων να
Το κτίριο περιγράφεται σχηµατικά από το τρίπτυχο: δοµή, µορφή, περιεχόµενο
Το κτίριο περιγράφεται σχηµατικά από το τρίπτυχο: δοµή, µορφή, περιεχόµενο Τύπος είναι µια επαναλαµβανόµενη αναγνωρίσιµη οργανωτική δοµή. εν έχει διαστάσεις και κλίµακα. Βρίσκεται σε διαλεκτική σχέση µε
ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ ΘΕΜΑΤΑ ΕΝΟΤΗΤΑΣ ΣΙΑΣΙΑΚΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ ΕΝΟΤΗΤΑΣ «ΠΑΙΔΑΓΩΓΙΚΗ
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.
Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.
Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)
ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013.
ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. Πρακτικές και καινοτομίες στην εκπαίδευση και την έρευνα. Άγγελος Μπέλλος Καθηγητής Μαθηματικών
Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων
Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων Στόχος Εκμάθηση τεχνικών και μεθόδων για να χρησιμοποιείται το λογισμικό φύλλων εργασίας στη διδασκαλία. Διατυπωμένες Θέσεις 1 Δε χρησιμοποιείται
ΜΑΘΗΜΑΤΑ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ ΠΑΡΑ ΟΣΕΙΣ ΑΣΚΗΣΕΙΣ ΚΑΘΗΓΗΤΕΣ/ΤΡΙΕΣ
Τεχνικές Προγραµµατισµού Εισαγωγή στον Προγραµµατισµό Γλώσσες Προγραµµατισµού, Θεωρία Γλωσσών Προγραµµατισµού 1999-2002 Θεωρία Γλωσσών 1996-2000, 2000-2002 Αρχές Γλωσσών Προγραµµατισµού 2002-2005 Τυπικές
άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου
άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα από την επίλυση εξισώσεων στη μελέτη των μεταβολών, των σχέσεων, των κανονικοτήτων και δομών, σε ένα περιβάλλον αναλυτικού συμβολικού συλλογισμού με
Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων
Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της
Με τον Αιγυπτιακό
Με ποιον πολιτισμό θα ασχοληθούμε; Με τον Αιγυπτιακό Η θέση της Αιγύπτου Τι βλέπετε; Αίγυπτος και Νείλος Η Αίγυπτος οφείλει την ύπαρξη της στον Νείλο. Το άγονο έδαφος κατέστη εύφορο χάρη στις πλημμύρες,
Πυθαγόρειο θεώρημα. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΠΥΡΙΔΩΝ ΔΟΥΚΑΚΗΣ
Πυθαγόρειο θεώρημα Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΠΥΡΙΔΩΝ ΔΟΥΚΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το
ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΗΣ ΣΚΕΨΗΣ
ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΗΣ ΣΚΕΨΗΣ Κωνσταντίνος Π. Χρήστου Ένα αρχέγονο ερώτηµα Τι είναι η γνώση; Ποια η διαδικασία του γνωρίζειν; θεωρίες, επιστημολογίες, μεταφορές και πρακτικές στην τάξη των μαθηματικών Μάθηση
Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης
Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan)
On-the-fly feedback, Upper Secondary Περιγραφή του εκπαιδευτικού/ μαθησιακού υλικού (Teaching plan) Τάξη: Β Λυκείου Διάρκεια ενότητας Μάθημα: Φυσική Θέμα: Ταλαντώσεις (αριθμός Χ διάρκεια μαθήματος): 6X90
5 -Τρόποιενσωµάτωσηςτης ΠεριβαλλοντικήςΕκπαίδευσης σταεκπαιδευτικάσυστήµατα
5 -Τρόποιενσωµάτωσηςτης ΠεριβαλλοντικήςΕκπαίδευσης σταεκπαιδευτικάσυστήµατα Μπορεί να εκπληρώσει τους σκοπούς τηςηπεστοπλαίσιοτου παραδοσιακού σχολείου; Υπάρχει δυσαρµονία ανάµεσα στην ΠΕ και το παραδοσιακό
ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία
ΕΠΙΣΤΗΜΟΝΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ: Μια ενδιαφέρουσα σταδιοδρομία N. Μισυρλής (e-mail: nmis@di.uoa.gr) Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Parallel Scientific Computing Laboratory (PSCL)
Τομέας Επιστήμης Υπολογιστών και Αριθμητικής Ανάλυσης
Τομέας Επιστήμης Υπολογιστών και Αριθμητικής Ανάλυσης Προσωπικό Καθ. Πουλάκης Δημήτριος (Δ/ντης Τομέα) Γνωστικό αντικείμενο : Θεωρία Αριθμών ή Αλγεβρική Γεωμετρία Αν. Καθ. Γουσίδου Κουτίτα Μαρία Γνωστικό
Εκλεκτισµός & Μοντερνίστικες Τάσεις
Εκλεκτισµός & Μοντερνίστικες Τάσεις (Η άρνηση των Ιστορικων ρυθµών) Ο Ιστορισµός ένα ρεύµα που αναπτύσσεται κατά το 19ο αι και χαρακτηρίζεται από υιοθέτηση και επαναδιαπραγµάτευση γνώριµων τεχνοτροπιών
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον
Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση
Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις
Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις Καθηγητής Τ. Α. Μικρόπουλος Προδιαγραφές Βασικό και αφετηριακό σημείο για τη σχεδίαση μαθησιακών δραστηριοτήτων
Μουσική και Μαθηματικά!!!
Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,
Η 6η Δέσμη ΚΑΛΩΝ ΤΕΧΝΩΝ
Η 6η Δέσμη ΚΑΛΩΝ ΤΕΧΝΩΝ Η Δέσμη Καλών Τεχνών προσφέρεται ως επιλογή στους μαθητές της Β' και Γ' λυκείου. Για την 6η Δέσμη δεν υπάρχει στην Α' λυκείου αντίστοιχη ΟΜΠ (Ομάδα Μαθημάτων Προσανατολισμού), έτσι
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα
Γ. Ραχωνης. 5-6 Μαθηματικά Λογισμικά. Σαραφόπουλος Ν. 7-8 Καραμπετάκης
ΠΡΟΓΡΑΜΜΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝ/ΚΟ ΕΤΟΣ 2015-2016 Εξάμηνο 2ο Αναλυτική Γεωμετρία Ι Μ. Μαριάς Επαναληπτικό εργαστήριο Εισαγωγή στον Προγραμματισμό Πορφυριάδης 2α Εργ. Συμβολικές Γλώσσες Προγραμματισμού
ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
Ανάλυση ποιοτικών δεδομένων
Εισαγωγή στην κοινωνική έρευνα Earl Babbie Κεφάλαιο 12 Ανάλυση ποιοτικών δεδομένων 12-1 Σύνοψη κεφαλαίου Σύνδεση θεωρίας και ανάλυσης Επεξεργασία ποιοτικών δεδομένων Προγράμματα ηλεκτρονικού υπολογιστή
Οι Τομείς (κατευθύνσεις ειδικότητας) του Τμήματος Πληροφορικής & Επικοινωνιών είναι:
Ακαδημαϊκή οργάνωση του Τμήματος Το Τμήμα Πληροφορικής και Επικοινωνιών είναι οργανωμένο ακαδημαϊκά σε τρεις Τομείς (κατευθύνσεις) με στόχο την εξειδίκευση των σπουδαστών σε ειδικότητες ανάλογες με τις
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Ο καιρός» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης. ΑΠΑΝΤΗΣΗ
Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή
Μοντεσσόρι: Ένας κόσμος επιτευγμάτων. Το πρώτο μου βιβλίο για τους ΑΡΙΘΜΟΥΣ. με πολλά φανταστικά αυτοκόλλητα
Μοντεσσόρι: Ένας κόσμος επιτευγμάτων Το πρώτο μου βιβλίο για τους ΑΡΙΘΜΟΥΣ με πολλά φανταστικά αυτοκόλλητα ΤΟ ΠΡΩΤΟ ΜΟΥ ΒΙΒΛΙΟ ΓΙΑ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Η απόκτηση μιας δεξιότητας ή η ανάπτυξη της γνώσης απαιτεί
ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (Ι.Ε.Π.)
Επιχειρησιακό Πρόγραμμα Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Δια Βίου Μάθηση ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (Ι.Ε.Π.) Πράξη: Επιμόρφωση εκπαιδευτικών/εκπαιδευτών σε θέματα Μαθητείας με κωδικό
Γεωµετρικές έννοιες και µετρήσεις µεγεθών. (ή, διαφορετικά, αντίληψη του χώρου)
Γεωµετρικές έννοιες και µετρήσεις µεγεθών (ή, διαφορετικά, αντίληψη του χώρου) αντιλήψεις παιδιών (κι όχι µόνο) τι είναι γεωµετρία; Όταν αντιμετωπίζω προβλήματα γεωμετρίας νιώθω σαν να κάνω ένα είδος μεταγνωστικής
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ. Ανάλυση Ποιότικών Δεδομένων. Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς
ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ Ανάλυση Ποιότικών Δεδομένων Καθηγητής Α. Καρασαββόγλου Επίκουρος Καθηγητής Π. Δελιάς ΕΙΣΑΓΩΓΗ Ποιοτική ανάλυση Η μη αριθμητική εξέταση και ερμηνεία παρατηρήσεων που σκοπό έχει να ανακαλύψει
Άλυτα προβλήματα μαθηματικών 1. Υπόθεση (Εικασία) του Πουανκαρέ
Άλυτα προβλήματα μαθηματικών 1. Υπόθεση (Εικασία) του Πουανκαρέ Το πρόβλημα που διατύπωσε το 1904 ο Γάλλος επιστήμονας Ανρί Πουανκαρέ αφορά την Τοπολογία, ένα κλάδο των Μαθηματικών που δεν ενδιαφέρεται
«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»
Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο
2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες 2.2.2 Ιστορική εξέλιξη τον µάνατζµεντ.
2.2 Οργάνωση και ιοίκηση (Μάνατζµεντ -Management) 2.2.1. Βασικές έννοιες Έχει παρατηρηθεί ότι δεν υπάρχει σαφής αντίληψη της σηµασίας του όρου "διοίκηση ή management επιχειρήσεων", ακόµη κι από άτοµα που
«Οι Σπουδές στην Αρχιτεκτονική»
ΓΡΑΦΕΙΟ ΔΙΑΣΥΝΔΕΣΗΣ ΣΠΟΥΔΩΝ ΚΑΙ ΣΤΑΔΙΟΔΡΟΜΙΑΣ «Οι Σπουδές στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» Πολυτεχνική Σχολή Τμήμα Αρχιτεκτόνων Καθηγητής Μιχαήλ Ε. Νομικός «Οι Σπουδές στην Αρχιτεκτονική» Δεκέμβριος
ΕΝΟΤΗΤΑ 5 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ, ΚΛΑΣΜΑΤΑ ΕΜΒΑΔΟΝ ΚΑΙ ΠΕΡΙΜΕΤΡΟΣ ΟΡΘΟΓΩΝΙΟΥ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς,
Α Ρ Χ Ι Τ Ε Κ Τ Ο Ν Ι Κ Ο Σ Σ Χ Ε Δ Ι Α Σ Μ Ο Σ 3 : Κ Α Τ Ο Ι Κ Ι Α / Α Κ Α Δ Η Μ Α Ι Κ Ο Ε Τ Ο Σ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ III ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΓΛΩΣΣΑ ΕΠΙΚΟΙΝΩΝΙΑ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ Α Ρ Χ Ι Τ Ε Κ Τ Ο Ν Ι Κ Ο Σ Σ Χ Ε Δ Ι Α Σ Μ Ο Σ 3 : Κ Α Τ Ο Ι Κ Ι Α / Α Κ Α Δ Η Μ Α Ι
Διάταξη Θεματικής Ενότητας ΕΛΠ42 / Αρχαιολογία στον Ελληνικό Χώρο
Διάταξη Θεματικής Ενότητας ΕΛΠ42 / Αρχαιολογία στον Ελληνικό Χώρο Σχολή ΣΑΚΕ Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Πρόγραμμα Σπουδών ΕΛΠΟΛ Σπουδές στον Ελληνικό Πολιτισμό Θεματική Ενότητα ΕΛΠ42
ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ
Ανάλυση - Προσομοίωση ΠΑΡΑΔΕΙΓΜΑ ΣΤΟ BIZAGI ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ 1 Προσομοίωση Η προσομοίωση είναι μέθοδος μελέτης ενός συστήματος και εξοικείωσης με τα χαρακτηριστικά του με
Β. ΚΑΝΟΝΕΣ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 3. ΚΛΙΜΑΚΑ ΚΑΙ ΑΝΑΛΟΓΙΕΣ
Β. ΚΑΝΟΝΕΣ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 3. ΚΛΙΜΑΚΑ ΚΑΙ ΑΝΑΛΟΓΙΕΣ Η κλίμακα και οι αναλογίες έχουν άμεση σχέση με το μέγεθος των αντικειμένων που περιγράφουν. Φυσικά το μεγάλο και το μικρό μέγεθος είναι σχετικοί
ΚΑΤΑΣΚΕΥΗ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΠΟΙΚΙΛΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD
1 ΚΑΤΑΣΚΕΥΗ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΠΟΙΚΙΛΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD Χρήστος Γεώργιος Κ. Γεωργακόπουλος Χανιά 2014 2 Δομή της παρουσίασης Εισαγωγή Μορφές κονδυλίων Παραγωγή κονδυλίων Γεωμετρία των κονδυλίων
ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ ΕΡΕΥΝΑΣ - ΠΕΡΙΓΡΑΜΜΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ
ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Οικονομική Επιστήμη: Η κοινωνική επιστήμη που ερευνά την οικονομική δραστηριότητα
Εφαρμοσμένα Μαθηματικά ΙΙ
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών f
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ - ΕΝΟΤΗΤΑ 1 7/4/2013 ΕΝΟΤΗΤΕΣ ΜΑΘΗΜΑΤΟΣ. Ορισμός
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΕΝΟΤΗΤΑ 1 : ΕΙΣΑΓΩΓΗ Διάλεξη 1: Γενικά για το ΓΣΠ, Ιστορική αναδρομή, Διαχρονική εξέλιξη Διάλεξη 2 : Ανάλυση χώρου (8/4/2013) Διάλεξη 3: Βασικές έννοιες των Γ.Σ.Π.. (8/4/2013)