Τεχνητή Νοημοσύνη. 14η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνητή Νοημοσύνη. 14η διάλεξη ( ) Ίων Ανδρουτσόπουλος."

Transcript

1 Τεχνητή Νοημοσύνη 14η διάλεξη ( ) Ίων Ανδρουτσόπουλος 1

2 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των S. Russel και P. Norvig, 2η έκδοση, Prentice Hall, 2003, του βιβλίου Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας Εκδοτική, 2006 και του βιβλίου Machine Learning του T. Mitchell, McGraw-Hill, Τα περισσότερα σχήματα των διαφανειών βασίζονται σε σχήματα των διαφανειών που συνοδεύουν τα πρώτα δύο βιβλία. 2

3 Τι θα ακούσετε σήμερα Είδη συλλογιστικής Παραγωγική, απαγωγική, επαγωγική συλλογιστική. Μηχανική μάθηση Εισαγωγή. Παράσταση δεδομένων και υποθέσεων. Η μάθηση ως πρόβλημα αναζήτησης. Αλγόριθμος απαλοιφής υποψηφίων. Η έννοια του επαγωγικού λογικού προγραμματισμού. 3

4 Είδη συλλογιστικής Παραγωγική συλλογιστική (deduction). Παραγωγή ορθών συμπερασμάτων με κανόνες λογικής. Π.χ. modus ponens, modus tollens, Π.χ. x 1 (Dog(x 1 ) Animal(x 1 )), Dog(Fido) Animal(Fido) Απαγωγική συλλογιστική (abduction). Προσπάθεια εύρεσης πιθανής υπόθεσης που να εξηγεί παρατηρήσεις. Η υπόθεση μπορεί να μην ισχύει. Π.χ. γνώση: x 1 (Has(x 1, Grippe) Fever(x 1, High)) Παρατήρηση: Fever(John, High) Πιθανή εξήγηση: Has(John, Grippe) Πολύ σημαντικός μηχανισμός σε συστήματα διάγνωσης. 4

5 Είδη συλλογιστικής (συνέχεια) Επαγωγική συλλογιστική (induction). Προσπάθεια εύρεσης γενίκευσης. Π.χ. Has(Patient323, Grippe), Fever(Patient323, High), Has(Patient357, Pneumonia), Fever(Patient357, High), Has(Patient389, Grippe), Fever(Patient389, High), Has(Patient456, Grippe), Fever(Patient456, High), Has(Patient498, Grippe), Fever(Patient498, Medium). Γενίκευση (αγνοώντας σπάνιες περιπτώσεις): x 1 (Has(x 1, Grippe) Fever(x 1, High)) Ιδιαίτερα σημαντική στη μηχανική μάθηση. 5

6 Μηχανική μάθηση Η χειρωνακτική εισαγωγή γνώσεων σε ένα σύστημα είναι συχνά δύσκολη. Δυσκολία/κόστος εκμαίευσης γνώσης από ειδικούς. Δυσκολία προσδιορισμού των απαιτούμενων γνώσεων. Αλγόριθμοι μηχανικής μάθησης: εξάγουν αυτόματα νέες γνώσεις από εμπειρικά δεδομένα, βελτιώνοντας έτσι τη συμπεριφορά ενός συστήματος. Π.χ. πρόγραμμα που μαθαίνει να κάνει ιατρικές διαγνώσεις από προηγούμενες διαγνώσεις ιατρών και τα αντίστοιχα αποτελέσματα εργαστηριακών εξετάσεων. Π.χ. πρόγραμμα που μαθαίνει να κατατάσσει τις λέξεις ενός κειμένου σε μέρη του λόγου (part-of-speech tagging). 6

7 Μερικές από τις πολλές εφαρμογές της ΜΜ Αναγνώριση χαρακτήρων σε χειρόγραφα. Προγράμματα οπτικής αναγνώρισης χαρακτήρων (OCR). Προγράμματα αναγνώρισης χαρακτήρων για κινητά. Αναγνώριση φωνής. Αναγνώριση προφορικών εντολών (π.χ. στο αυτοκίνητο). Μετατροπή συνεχούς ομιλίας σε γραπτή μορφή (υπαγόρευση). Προγράμματα που παίζουν τάβλι, σκάκι, Go, TD-GAMMON (Tesauro 1992, 95): εκπαιδεύτηκε παίζοντας πάνω από 1 εκατομμύριο παρτίδες με τον εαυτό του. AlphaGo (Google DeepMind, Οδήγηση αυτοκινήτου. ALVINN (Pomerlau 1989): μετά από εκπαίδευση οδήγησε σε αυτοκινητόδρομο επί 90 μίλια με ταχύτητα 70 μιλίων/ώρα. Google self-driving cars ( 7

8 Επιβλεπόμενη/μη επιβλεπόμενη μάθηση Αλγόριθμοι επιβλεπόμενης μάθησης. Προϋποθέτουν ότι υπάρχουν παραδείγματα εκπαίδευσης για τα οποία είναι γνωστές (ή μπορούν να αποκτηθούν) οι ορθές απαντήσεις. Π.χ. σύστημα που μαθαίνει να κάνει ιατρικές διαγνώσεις από προηγούμενες περιπτώσεις ασθενών και διαγνώσεων. Αλγόριθμοι μη επιβλεπόμενης μάθησης. Προσπαθούν να ανακαλύψουν νέες γνώσεις από δεδομένα που δεν περιέχουν τις επιθυμητές απαντήσεις. Π.χ. οργάνωση πελατών ή ειδήσεων σε ομάδες (clusters) ή εύρεση συσχετισμών της μορφής «οι πελάτες που αγοράζουν το Χ την Παρασκευή αγοράζουν και...». Πολλές εφαρμογές στην εξόρυξη γνώσεων από βάσεις δεδομένων (παρακολουθήστε το σχετικό μάθημα...). 8

9 Παραδείγματα εκπαίδευσης Τραπεζικό σύστημα που θα αποφασίζει αν πρέπει να δοθεί δάνειο σε έναν πελάτη. ιδιότητες Πελάτης Οφειλές Εισόδημα Παντρεμένος Καλός; 1 Υψηλές (1) Υψηλό (1) Ναι (1) Καλός (1) 2 Χαμηλές (0) Υψηλό (1) Όχι (0) Κακός (0) 3 Χαμηλές (0) Υψηλό (1) Ναι (1) Καλός (1) 4 Υψηλές (1) Χαμηλό (0) Ναι (1) Κακός (0) 5 Χαμηλές (0) Χαμηλό (0) Ναι (1) Κακός (0) Διανυσματική παράσταση εμπειρίας: { <1, 1, 1, 1>, <0, 1, 1, 1>, <0, 1, 0, 0>, <1, 0, 1, 0>, <0, 0, 1, 0> } επιθυμητές απαντήσεις 9

10 Η μάθηση ως πρόβλημα αναζήτησης Αναζήτηση μιας συνάρτησης («υπόθεσης»). h(x, y, z) =? h: {0, 1} {0, 1} {0, 1} {0, 1} γενικότερα h: D 1 D 2 D n C D i : οι δυνατές τιμές της i-στής ιδιότητας. C: οι δυνατές απαντήσεις. Αναζήτηση σε ένα χώρο συναρτήσεων. Θεωρούμε ότι τα δεδομένα εκπαίδευσης είναι ένα δείγμα από έναν πληθυσμό που παράγεται σύμφωνα με μια συγκεκριμένη άγνωστη συνάρτηση. Αναζητούμε αυτή τη συνάρτηση μέσα σε ένα χώρο συναρτήσεων. 10

11 Χώρος αναζήτησης Ο χώρος αναζήτησης εξαρτάται από τις ιδιότητες. Ποιες ιδιότητες θα χρησιμοποιήσουμε; Αντιστοιχούν στα ορίσματα των υποθέσεων. Π.χ. οικογ. κατάσταση, οφειλές, ηλικία, επάγγελμα, ύψος; Τιμές από πεπερασμένο σύνολο, πραγματικοί αριθμοί; Και από το μοντέλο παράστασης των υποθέσεων. Π.χ. γραμμική συνάρτηση των ιδιοτήτων; Περιορίζουμε την αναζήτηση στις (π.χ. γραμμικές) υποθέσεις που μπορεί να παραστήσει το μοντέλο. Δεν μπορούμε να μάθουμε μια υπόθεση που δεν μπορεί να παρασταθεί από το μοντέλο που διαλέξαμε. Οι περιορισμοί του μοντέλου, όμως, μειώνουν το μέγεθος του χώρου αναζήτησης. Δυστυχώς συχνά δεν ξέρουμε τι περιορισμούς να επιβάλουμε. 11

12 Μοντέλο παράστασης υποθέσεων Απλοϊκό παράδειγμα για το πρόβλημα των δανείων: Παριστάνουμε κάθε συνάρτηση-υπόθεση με μια τριάδα που αντιστοιχεί στις περιπτώσεις που δίνουμε δάνειο. Π.χ. h 1 = <0,?, 1>, h 2 = <1, 1, 1> «?» σημαίνει για οποιαδήποτε τιμή. Αν χαμηλές οφειλές και παντρεμένος/η, δώσε δάνειο ανεξαρτήτως εισοδήματος. Διαφορετικά μη δώσεις Αν υψηλές οφειλές και υψηλό εισόδημα και παντρεμένος/η, δώσε δάνειο. Διαφορετικά μη δώσεις. Αδύνατον, όμως, να μάθουμε την (h 1 h 2 ), γιατί δεν περιλαμβάνεται στο χώρο αναζήτησης. 12

13 Συνεπείς υποθέσεις και γενίκευση Οι τελείες αντιστοιχούν σε δεδομένα εκπαίδευσης. Εδώ έχουμε μία ιδιότητα και οι τιμές των υποθέσεων είναι πραγματικοί. Έστω ότι αναζητούμε πολυωνυμικές υποθέσεις. Συνεπείς υποθέσεις: συμφωνούν με τα δεδομένα εκπαίδευσης. (a): πολυώνυμο 1ου βαθμού. (b): πολυώνυμο μεγαλύτερου βαθμού. Ξυράφι του Ockham: Προτιμότερη είναι η απλούστερη συνεπής υπόθεση, εδώ το πολυώνυμο μικρότερου βαθμού. Απλούστερες υποθέσεις είναι ευκολότερο να κατασκευαστούν (π.χ. γραμμική παρεμβολή) και οι αποκρίσεις τους υπολογίζονται ευκολότερα. Ικανότητα γενίκευσης: Να δίνει σωστές απαντήσεις και για νέες περιπτώσεις που δεν ανήκουν στα παραδείγματα εκπαίδευσης. Απλούστερες υποθέσεις συνήθως γενικεύουν καλύτερα τις παρατηρήσεις. 13

14 Ασυνεπείς υποθέσεις ίσως είναι προτιμότερες Τα δεδομένα εκπαίδευσης ακολουθούν μια συνάρτηση της μορφής a x + b + c sinx (διάγραμμα d), που είναι αδύνατον να παρασταθεί ως πολυώνυμο πεπερασμένου βαθμού. Αν περιορίσουμε την αναζήτηση σε πολυώνυμα πεπερασμένου βαθμού (έστω k), η συνάρτηση-στόχος του (d) δεν περιλαμβάνεται στο χώρο αναζήτησης. Αν επιμείνουμε στην εξεύρεση συνεπούς υπόθεσης, καταλήγουμε στο πολυώνυμο 6ου βαθμού της κόκκινης γραμμής του (c), που δεν επιτυγχάνει καλή γενίκευση. Μας ενδιαφέρει οι προβλέψεις να είναι καλές για όλα τα x. Οι προβλέψεις της ευθείας γραμμής (c) είναι εν γένει πιο κοντά στις επιθυμητές τιμές (d), αν και η (c) είναι ασυνεπής. 14

15 Γενικότερες/ειδικότερες υποθέσεις Επιστρέφουμε στην περίπτωση της τράπεζας, όπου οι τιμές των υποθέσεων είναι 0 ή 1 και οι ιδιότητες έχουν διακριτές τιμές. Η h 2 είναι ειδικότερη της h 1 ανν h 1 h 2 (διαφορετικές συναρτήσεις) και: αν h 2 (x 1,..., x n ) = 1, τότε h 1 (x 1,..., x n ) = 1. Π.χ. αν δίνει δάνειο η h 2, τότε δίνει και η h 1. Η h 1 είναι γενικότερη της h 2 ανν η h 2 είναι ειδικότερη της h 1. <Χ, Υ, Ζ> Η γενικότερη υπόθεση: απαντά πάντα «ναι» <0, Υ, Ζ> <1, Υ, Ζ> <Χ, Υ, 0> Αμέσως ειδικότερες υποθέσεις. Εδώ χρησιμοποιούμε μεταβλητές αντί για «?». 15

16 Χώρος αναζήτησης <Χ, Υ, Ζ> Η γενικότερη υπόθεση: απαντά πάντα «ναι» <0, Υ, Ζ> <1, Υ, Ζ> <Χ, Υ, 0> Αμέσως ειδικότερες υποθέσεις. <0, 1, Ζ> <0, 0, Ζ> <0, Υ, 0> <0, Υ, 1> <0, 1, 1> <0, 1, 0> <,, > Η ειδικότερη υπόθεση: απαντά πάντα «όχι». 16

17 Αλγόριθμος απαλοιφής υποψηφίων Σύνολα G και S: περιέχουν υποθέσεις. Αρχικά G = { <X 1, X 2,, X n > }, S = { <,, > } Κρατάμε στο G τις πιο γενικές υποθέσεις που είναι συνεπείς με τα παραδείγματα εκπαίδευσης. Κρατάμε στο S τις πιο ειδικές υποθέσεις που είναι συνεπείς με τα παραδείγματα εκπαίδευσης. 17

18 Εξέλιξη των G και S <Χ, Υ, Ζ> G <0, Υ, Ζ> <1, Υ, Ζ> <X, 0, Z> <Χ, Υ, 0> <Χ, Υ, 1> G <0, 1, Ζ> <0, 0, Ζ> <0, Υ, 0> <0, Υ, 1> <0, 1, 1> <0, 1, 0> <1, 1, 0> S <,, > S 18

19 Όλες οι υποθέσεις εδώ είναι ασυνεπείς. G πιο γενικές S πιο ειδικές Όλες οι υποθέσεις εδώ είναι ασυνεπείς. 19

20 Αλγόριθμος απαλοιφής υποψηφίων Για κάθε νέο θετικό παράδειγμα d: Αφαίρεσε από το G τις υποθέσεις που είναι ασυνεπείς με το d. Για κάθε υπόθεση s του S που είναι ασυνεπής με το d: Αφαίρεσε την s από το S. Πρόσθεσε στο S κάθε ελάχιστη γενίκευση h της s, για την οποία ισχύει ότι: Η h είναι συνεπής με το d. Η h είναι ειδικότερη ή ίδια με μια υπόθεση του G. (Ξέρουμε ότι η υπόθεση που ψάχνουμε είτε υπάρχει ήδη στο G είτε είναι ειδικότερη μιας υπόθεσης του G.) Αφαίρεσε από το S κάθε υπόθεση που είναι γενικότερη από μια άλλη υπόθεση του S. 20

21 Αλγόριθμος απαλοιφής υποψηφίων Για κάθε νέο αρνητικό παράδειγμα d: Αφαίρεσε από το S τις υποθέσεις που είναι ασυνεπείς με το d. Για κάθε υπόθεση g του G που είναι ασυνεπής με το d: Αφαίρεσε την g από το G. Πρόσθεσε στο G κάθε ελάχιστη ειδίκευση h της g, για την οποία ισχύει ότι: Η h είναι συνεπής με το d. Η h είναι γενικότερη ή ίδια με μια υπόθεση του S. (Ξέρουμε ότι η υπόθεση που ψάχνουμε είτε υπάρχει ήδη στο S είτε είναι γενικότερη μιας υπόθεσης του S.) Αφαίρεσε από το G κάθε υπόθεση που είναι ειδικότερη από μια άλλη υπόθεση του G. 21

22 Παράδειγμα χρήσης ΑΑΥ {<-, -, ->} δώσε μη δώσεις δώσε μη δώσεις μη δώσεις 22

23 Χαρακτηριστικά ΑΑΥ Σύγκλιση: G = S = { h } Αν δεν υπάρχουν ασυνεπή παραδείγματα (ίδιες τιμές ιδιοτήτων αλλά διαφορετικές «ορθές» απαντήσεις) και αν η συνάρτηση-στόχος h μπορεί να παρασταθεί με τον τρόπο που διαλέξαμε και αν υπάρχουν αρκετά παραδείγματα εκπαίδευσης, τότε τα G και S συγκλίνουν στo { h }. Τι γίνεται αν υπάρχουν ασυνεπή παραδείγματα ή η συνάρτηση στόχος δεν μπορεί να παρασταθεί με τον τρόπο που διαλέξαμε; Καταλήγουμε (με αρκετά παραδείγματα): G = S = { }. 23

24 Παράδειγμα με ένα εστιατόριο Οι περιγραφές των παραδειγμάτων εκπαίδευσης και οι αποφάσεις μπορούν να παρασταθούν σε ΠΚΛ: Τα Χ i εδώ είναι σταθερές. Alt(Χ 1 ) Bar(Χ 1 ) Fri(Χ 1 )... Pat(Χ 1, Some)... Alt(Χ 12 ) Bar(Χ 12 ) Fri(Χ 12 )... Pat(Χ 12, Some)... WillWait(X 1 ), WillWait(X 2 ),..., WillWait(X 12 ) 24

25 Μάθηση και λογική Γενικά, αν προσπαθούμε να μάθουμε την έννοια Q(x), τότε ψάχνουμε μία υπόθεση της μορφής: x (Q(x) φ(x)) που να προβλέπει σωστά σε ποιες περιπτώσεις αληθεύει ή όχι η Q(x). Στο παράδειγμα του εστιατορίου: x ( WillWait(x) ( Pat(x, Some) ( Pat(x, Full) Hungry(x) Type(x, French) ) ( Pat(x, Full) Hungry(x) Type(x, Thai) Fri(x) ) ( Pat(x, Full) Hungry(x) Type(x, Burger) ) )) Μια υπόθεση (υποψήφιος τύπος). 25

26 Μάθηση και λογική Γενικά ο στόχος είναι να μάθουμε μια υπόθεση, ώστε: ( Υπόθεση Περιγραφές ) Αποφάσεις περιγραφές και αποφάσεις για τα παραδείγματα εκπαίδευσης ( x (WillWait(x) (Pat(x, Some) ( Pat(x, Full) Fri(x) ))) Pat(X 1, Some) Pat(X 2, None) Pat(X 3, Full) Fri(X 3 )... ) (WillWait(X 1 ) WillWait(X 2 ) WillWait(X 3 )...) Αν δεν θέσουμε κανένα περιορισμό στη λογική μορφή της υπόθεσης, τότε κινδυνεύουμε να μάθουμε: Υπόθεση Αποφάσεις που δεν έχει καμία ικανότητα γενίκευσης. Στην πράξη περιορίζουμε το χώρο αναζήτησης (π.χ. υποσύνολο λογικής) και προτιμούμε τις απλούστερες (συντομότερες) υποθέσεις (ξυράφι του Ockham). 26

27 Τρέχουσα βέλτιστη υπόθεση Έχουμε ανά πάσα στιγμή μία μόνο υπόθεση που συμφωνεί με τα παραδείγματα που έχουμε συναντήσει. Αν κατατάξουμε ένα νέο παράδειγμα εσφαλμένα ως αρνητικό, γενικεύουμε την υπόθεση, ώστε να είμαστε συνεπείς με όλα τα παραδείγματα που έχουμε συναντήσει. Π.χ. x ( WillWait(x) ( Pat(x, Some) ( Pat(x, Full) Fri(x) ))) γενικότερη της x ( WillWait(x) Pat(x, Some) ) x (Q(x) φ 1 (x)) είναι γενικότερη από την x (Q(x) φ 2 (x)) σημαίνει x (φ 2 (x) φ 1 (x)). Αν κατατάξουμε εσφαλμένα ως θετικό, ειδικεύουμε... 27

28 Στο παράδειγμα του εστιατορίου... Μια πιθανή υπόθεση μετά το 1ο παράδειγμα: x ( WillWait(x) Alt(x) ) Μετά το 2ο παράδειγμα (εσφαλμένα ως θετικό): x ( WillWait(x) ( Alt(x) Pat(x, Some) )) Μετά το 3ο παράδειγμα (εσφαλμένα ως αρνητικό): x ( WillWait(x) Pat(x, Some) ) Μετά το 4ο παράδειγμα (εσφαλμένα ως αρνητικό): x ( WillWait(x) ( Pat(x, Some) ( Pat(x, Full) Fri(x) ))) Σε κάθε βήμα υπάρχουν εν γένει πολλές επιλογές. Μπορεί κάνοντας μια επιλογή να παγιδευτούμε σε τρέχουσα υπόθεση που να είναι αδύνατον να γίνει συνεπής με επόμενο παράδειγμα παραμένοντας συνεπής με τα προηγούμενα. Καλύτερα να εξερευνούμε ταυτόχρονα όλες τις επιλογές. 28

29 Αλγόριθμος απαλοιφής υποψηφίων Γενικότερα μπορούμε να χρησιμοποιήσουμε πάλι τον αλγόριθμο απαλοιφής υποψηφίων. Αντί να κρατάμε μία μόνο υπόθεση, κρατάμε τα άνω και κάτω «φράγματα» G και S του χώρου υποθέσεων. Οι υποθέσεις είναι τύποι της μορφής x (Q(x) φ(x)). G Όλες οι υποθέσεις εδώ είναι ασυνεπείς. πιο γενικές Δεν κινδυνεύουμε να παγιδευτούμε. Δεν χρειάζεται να επανεξετάζουμε τα προηγούμενα παραδείγματα. S Όλες οι υποθέσεις εδώ είναι ασυνεπείς. πιο ειδικές Μπορεί όμως τα G και S να είναι πολύ μεγάλα. 29

30 Επαγωγικός λογικός προγραμματισμός (ILP) Προσθέτει και το Υπόβαθρο (π.χ. γνώσεις για τον κόσμο): ( Υπόβαθρο Υπόθεση Περιγραφές ) Αποφάσεις Οι υποθέσεις (και το υπόβαθρο, οι περιγραφές, οι αποφάσεις) διατυπώνονται συνήθως σε ΠΚΛ: Οι υποθέσεις που προκύπτουν (τύποι ΠΚΛ) είναι κατανοητές από τους ανθρώπους (π.χ. βιολόγους), οι οποίου μπορούν να τις συζητήσουν, να τις επεκτείνουν, να τις δημοσιεύσουν κλπ. Ιδιαίτερα αν έχουμε τρόπο να μεταφράζουμε αυτόματα τύπους λογικής σε φυσική γλώσσα (επόμενες διαλέξεις). Είναι εύκολο να ενσωματωθεί προηγούμενη ανθρώπινη γνώση (π.χ. διατυπωμένη από ειδικούς σε ΠΚΛ). Μειονέκτημα: πολύ μεγάλος χώρος αναζήτησης. 30

31 Βιβλιογραφία Russel & Norvig: ενότητες 18.1 και 18.2, υπο-ενότητα «Αναζήτηση ελάχιστης δέσμευσης» της ενότητας Όσοι ενδιαφέρονται μπορούν να διαβάσουν προαιρετικά (εκτός εξεταστέας ύλης) και τις υπόλοιπες ενότητες του κεφαλαίου 19. (Κάποια τμήματα ίσως τα βρείτε δύσκολα. Αρκεί να κατανοήσετε τις κεντρικές έννοιες.) Βλαχάβας κ.ά: ενότητα 8.2, κεφάλαιο 18 ως και ενότητα Όσοι ενδιαφέρονται μπορούν να διαβάσουν προαιρετικά (εκτός εξεταστέας ύλης) και τις υπόλοιπες ενότητες του κεφαλαίου 8. Μπορείτε να μάθετε περισσότερα για τη ΜΜ σε άλλα μαθήματα. «Μηχανική Μάθηση», «Εξόρυξη Γνώσης από Βάσεις Δεδομένων και τον Παγκόσμιο Ιστό» και «Συστήματα Ανάκτησης Πληροφοριών». Δείτε π.χ. και το μάθημα «Machine Learning» του A. Ng στο Coursera (

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Μηχανική Μάθηση: γιατί;

Μηχανική Μάθηση: γιατί; Μηχανική Μάθηση Μηχανική Μάθηση: γιατί; Απαραίτητη για να μπορεί ο πράκτορας να ανταπεξέρχεται σε άγνωστα περιβάλλοντα Δεν είναι δυνατόν ο σχεδιαστής να προβλέψει όλα τα ενδεχόμενα περιβάλλοντα. Χρήσιμη

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 12η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 12η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 12η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Γλωσσική Τεχνολογία. Εισαγωγή. Ίων Ανδρουτσόπουλος.

Γλωσσική Τεχνολογία. Εισαγωγή. Ίων Ανδρουτσόπουλος. Γλωσσική Τεχνολογία Εισαγωγή 2015 16 Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/in/ Τι θα ακούσετε Εισαγωγή στη γλωσσική τεχνολογία. Ύλη και οργάνωση του μαθήματος. Προαπαιτούμενες γνώσεις και άλλα προτεινόμενα

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Επικοινωνία Ανθρώπου Υπολογιστή

Επικοινωνία Ανθρώπου Υπολογιστή Επικοινωνία Ανθρώπου Υπολογιστή Α1. Εισαγωγή στην ΕΑΥ και γενικές πληροφορίες για το μάθημα (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε Τι είναι η Επικοινωνία Ανθρώπου

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 10η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 10η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Σημασιολογία πρωτοβάθμιας κατηγορηματικής λογικής. Υπενθύμιση: συντακτικό ΠΚΛ τύπος ατομικός_τύπος

Διαβάστε περισσότερα

Μάθηση εννοιών. Έννοιες: συναρτήσεις που επιστρέφουν λογική τιμή

Μάθηση εννοιών. Έννοιες: συναρτήσεις που επιστρέφουν λογική τιμή Μάθηση Εννοιών Μάθηση εννοιών Έννοιες: συναρτήσεις που επιστρέφουν λογική τιμή Αληθής, για εισόδους που ανήκουν στην έννοια Ψευδής, για εισόδους που δεν ανήκουν στην έννοια. Επαγωγική μάθηση εννοιών: το

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 7: Μηχανική μάθηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 7: Μηχανική μάθηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 7: Μηχανική μάθηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2012-2013 Α Εξάμηνο 1. Εισαγωγή στην Επιστήμη των Υπολογιστών 4 6 - Εισαγωγή στον Προγραμματισμό 4 6 2E 3. Μαθηματικός Λογισμός 4 5-4. Γραμμική

Διαβάστε περισσότερα

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ Γ ΓΥΜΝΑΣΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΣΤΕΑ ΥΛΗ Γ ΓΥΜΝΑΣΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Γ ΓΥΜΝΑΣΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Τι είναι Πρόβλημα Πρόβλημα είναι κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί και πρέπει να αντιμετωπιστεί. Η λύση ενός προβλήματος

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD2520

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD2520 ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ GD2520 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Πέμπτο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Αντικειμενοστρεφής Προγραμματισμός ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) Πέτρος Ρούσσος ΔΙΑΛΕΞΗ 5 Έννοιες και Κλασική Θεωρία Εννοιών Έννοιες : Θεμελιώδη στοιχεία από τα οποία αποτελείται το γνωστικό σύστημα Κλασική θεωρία [ή θεωρία καθοριστικών

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 11 ης διάλεξης

Ασκήσεις μελέτης της 11 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2015 16 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 11 ης διάλεξης 11.1 (α) Μετατρέψτε σε κανονική συζευκτική μορφή (CNF)

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. ακαδ. έτους

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. ακαδ. έτους ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ακαδ. έτους 2015-2016 Α Εξάμηνο 1. Εισαγωγή στην Επιστήμη των Υπολογιστών 4 6 - Εισαγωγή στον Προγραμματισμό 4 6 2E 3. Μαθηματικός Λογισμός 4 6-4. Γραμμική Άλγεβρα 4 6 2Ε 5. Πληροφορική

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Θέματα Εξετάσεων Εξεταστικής Σεπτεμβρίου στο μάθημα «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΔΙΔΑΣΚΩΝ: Δρ. Ηλ. Μηχ. & Τ.Υ. Αριστομένης Θανόπουλος Ημερομηνία: 12 / 2 / 2015

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα Διαφοροποιημένη Διδασκαλία Ε. Κολέζα Τι είναι η διαφοροποιημένη διδασκαλία; Είναι μια θεώρηση της διδασκαλίας που βασίζεται στην προϋπόθεση ότι οι δάσκαλοι πρέπει να προσαρμόσουν τη διδασκαλία τους στη

Διαβάστε περισσότερα

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 8 Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αναπαράσταση Γνώσης Σύνολο συντακτικών

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)

Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη Σάββας Νικολαΐδης 1 ο

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ

Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ 1 ο ΓΥΜΝΑΣΙΟ ΘΕΡΜΗΣ Τάξη: Γ Μάθημα: Πληροφορική Εξεταστέα ύλη: Παρ11.1 & 11.2 Σύνοψη Θεωρίας ΟΡΙΣΜΟΣ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΑΛΓΟΡΙΘΜΩΝ Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών που περιγράφει τη διαδικασία

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 1o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Θεωρία Παιγνίων Μαρκωβιανά Παιχνίδια Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Μερική αρατηρησιµότητα POMDPs

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence)

Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence) Εργαστήριο Προγραμματισμού και τεχνολογίας Ευφυών συστημάτων (intelligence) http://www.intelligence.tuc.gr Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Το εργαστήριο Ένα από τα 3 εργαστήρια του

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού

Πληροφοριακά Συστήματα Διοίκησης. Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Πληροφοριακά Συστήματα Διοίκησης Επισκόπηση μοντέλων λήψης αποφάσεων Τεχνικές Μαθηματικού Προγραμματισμού Σημασία μοντέλου Το μοντέλο δημιουργεί μια λογική δομή μέσω της οποίας αποκτούμε μια χρήσιμη άποψη

Διαβάστε περισσότερα

Γ) Χρήση Λογισμικού για την υλοποίηση πρακτικών εφαρμογών της Ασαφούς Λογικής

Γ) Χρήση Λογισμικού για την υλοποίηση πρακτικών εφαρμογών της Ασαφούς Λογικής Γ) Χρήση Λογισμικού για την υλοποίηση πρακτικών εφαρμογών της Ασαφούς Λογικής Η διαδικασία δόμησης εφαρμογών γίνεται με τη χρήση γλωσσών προγραμματισμού όπως η C, η Pascal, η Basic ή με τη χρήση άλλων

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΓΕΝΙΚΑ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

Εισαγωγή Συμβόλαιο Μαθήματος

Εισαγωγή Συμβόλαιο Μαθήματος ΗΜΥ 212 Οργάνωση Υπολογιστών και Μικροεπεξεγραστές Εαρινό Εξάμηνο 2007 Συμβόλαιο Μαθήματος 1 Γενικές Πληροφορίες Διαλέξεις: Διδάσκων: Βοηθός Μαθήματος: Δευτέρα και Πέμπτη, 16:30 18:00 μ.μ. Πανεπιστημιούπολη,

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 20 Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση - 1 - Ανακάλυψη Γνώσης σε

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Τι είναι; Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα Συμβολισμός S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων) Τι σημαίνει: Αν

Διαβάστε περισσότερα

Τίτλος: Αεροπλοΐα- Ανάγκες Αεροσκαφών σε καύσιμα

Τίτλος: Αεροπλοΐα- Ανάγκες Αεροσκαφών σε καύσιμα Τίτλος: Αεροπλοΐα- Ανάγκες Αεροσκαφών σε καύσιμα Θέματα: ποσοστά, μοντελοποίηση, ταχύτητα, απόσταση, χρόνος, μάζα, πυκνότητα Διάρκεια: 90 λεπτά Ηλικία: 13-14 Διαφοροποίηση: Ανώτερο επίπεδο: αντίσταση αέρα

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Επικοινωνία Ανθρώπου Υπολογιστή

Επικοινωνία Ανθρώπου Υπολογιστή Επικοινωνία Ανθρώπου Υπολογιστή Β1. Εισαγωγή στη γλωσσική τεχνολογία, γλωσσικά μοντέλα, διόρθωση και πρόβλεψη κειμένου (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ Οι διαφάνειες αυτές βασίζονται

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την 1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας

Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Αφαίρεση του Φαινομένου του Μικροφωνισμού σε Ακουστικά Βαρηκοΐας Νιαβής Παναγιώτης Επιβλέπων: Καθ. Γ. Μουστακίδης Περιεχόμενα Εισαγωγή Μικροφωνισμός σε ακουστικά βαρηκοΐας Προσαρμοστική αναγνώριση συστήματος

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 13η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 13η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 13η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στα βιβλία: (α) «Τεχνητή Νοημοσύνη» των Βλαχάβα κ.ά., 3

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤOΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤOΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΙΣΑΓΩΓΗ ΣΤOΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Στόχοι του μαθήματος Μετά το τέλος του μαθήματος οι μαθητές πρέπει να είναι σε θέση: Να περιγράφουν τι είναι πρόγραμμα Να εξηγούν την αναγκαιότητα για τη δημιουργία γλωσσών

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Εισαγωγή στην πληροφορική Ενότητα 5: ΑΛΓΟΡΙΘΜΟΙ Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΑΛΙΕΣ ΜΕΘΟΔΟΙ ΔΙΔΑΣΚΑΛΙΑΣ

ΔΙΔΑΚΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΑΛΙΕΣ ΜΕΘΟΔΟΙ ΔΙΔΑΣΚΑΛΙΑΣ ΔΙΔΑΚΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΑΛΙΕΣ ΜΕΘΟΔΟΙ ΔΙΔΑΣΚΑΛΙΑΣ Κέντρο και άξονας αυτών των μεθόδων διδασκαλίας είναι ο δάσκαλος. Αυτός είναι η αυθεντία μέσα στην τάξη που καθοδηγεί και προσφέρει. Γι αυτό οι μέθοδοι αυτές

Διαβάστε περισσότερα

Βασικές έννοιες προγραμματισμού

Βασικές έννοιες προγραμματισμού Κεφάλαιο 7 Βασικές έννοιες προγραμματισμού 7.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να συντάσσουν και να εκτελούν σε δομημένη γλώσσα προγραμματισμού

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη ΙΙ. Εργαστηριακή Άσκηση 6. Μουστάκας Κωνσταντίνος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων

Τεχνητή Νοημοσύνη ΙΙ. Εργαστηριακή Άσκηση 6. Μουστάκας Κωνσταντίνος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων Τεχνητή Νοημοσύνη ΙΙ Εργαστηριακή Άσκηση 6 Μουστάκας Κωνσταντίνος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΕΧΝΗΤΗ

Διαβάστε περισσότερα

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2

Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2 Υπολογιστική Νοημοσύνη Μάθημα 12: Παραδείγματα Ασκήσεων 2 Δίκτυα Πολλών Επιπέδων Με μη γραμμικούς νευρώνες Έστω ένα πρόβλημα κατηγοριοποίησης, με δύο βαθμούς ελευθερίας (x, y) και δύο κατηγορίες (A, B).

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Προτεινόμενα θέματα εξετάσεων Εργαστήριο. Μέρος 1 ό. ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής

Προγραμματισμός Η/Υ. Προτεινόμενα θέματα εξετάσεων Εργαστήριο. Μέρος 1 ό. ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής Προγραμματισμός Η/Υ Προτεινόμενα θέματα εξετάσεων Εργαστήριο Μέρος 1 ό ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής Ιανουάριος 2011 Καλογιάννης Γρηγόριος Επιστημονικός/ Εργαστηριακός

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Αλγόριθμος (algorithm) λέγεται μία πεπερασμένη διαδικασία καλά ορισμένων βημάτων που ακολουθείται για τη λύση ενός προβλήματος. Το διάγραμμα ροής

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Κεφάλαιο Τέσσερα Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Copyright 2009 Cengage Learning 4.1 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής Δείκτες Κεντρικής Θέσης [Αριθμητικός] Μέσος, Διάμεσος, Επικρατούσα

Διαβάστε περισσότερα

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων

Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ. Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων Σχολή Μηχανολόγων Μηχανικών ΕΜΠ 4 ο Εξάμηνο ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Πρώτη Ενότητα Αριθμητική Επίλυση Μη-Γραμμικών Εξισώσεων ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, Κ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Σχ. Μηχ. Μηχ. ΕΜΠ 1 Αριθμητική Επίλυση Μη-Γραμμικών

Διαβάστε περισσότερα

Μάθηση με παραδείγματα Δέντρα Απόφασης

Μάθηση με παραδείγματα Δέντρα Απόφασης Μάθηση με παραδείγματα Δέντρα Απόφασης Μορφές μάθησης Επιβλεπόμενη μάθηση (Ταξινόμηση Πρόβλεψη) Παραδείγματα: {(x, t )} t κατηγορία ταξινόμηση t αριθμός πρόβλεψη Μη-επιβλεπόμενη μάθηση (Ομαδοποίηση Μείωση

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης 1 Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης Έστω ότι έχουμε την συνάρτηση: f(x) = x + 3x 1 H γραφική της παράσταση είναι: Και την συνάρτηση f(x) = x + 3x + η οποία έχει προκύψει από την προηγούμενη αφού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

Επαγωγικός Λογικός Προγραμματισμός και Aσαφείς Λογικές Περιγραφής

Επαγωγικός Λογικός Προγραμματισμός και Aσαφείς Λογικές Περιγραφής .. και Aσαφείς Λογικές Περιγραφής Άγγελος Χαραλαμπίδης Στασινός Κωνσταντόπουλος ΕΚΕΦΕ «Δημόκριτος» {acharal,konstant}@iit.demokritos.gr .. Σκελετός Ομιλίας Εισαγωγή .. Ορισμός Προβλήματος Γενικότερο πλαίσιο

Διαβάστε περισσότερα

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Ακολούθως αναπτύσσονται ορισμένα διευκρινιστικά σχόλια για το Σχέδιο Μαθήματος. Αφετηρία για τον ακόλουθο σχολιασμό υπήρξαν οι σχετικές υποδείξεις που μας

Διαβάστε περισσότερα

ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ.

ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. ΙΙΙ. ΙΔΙΑΙΤΕΡΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΩΝ ΞΕΝΩΝ ΜΑΘΗΤΩΝ. Είδαμε πως το 4.2% των μαθητών στο δείγμα μας δεν έχουν ελληνική καταγωγή. Θα μπορούσαμε να εξετάσουμε κάποια ειδικά χαρακτηριστικά αυτών των ξένων μαθητών

Διαβάστε περισσότερα