Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης
|
|
- Κύμα Δημαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Παράρτηµα Ε Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης Στο παράρτηµα αυτό περιλαµβάνεται ο πηγαίος κώδικας προγράµµατος επίλυσης της εξίσωσης δοκού-κολόνας στην ελαστική περιοχή, µε τη µέθοδο της δυναµικής χαλάρωσης. Περιλαµβάνεται επίσης και παράδειγµα αρχείου εισόδου για το πρόγραµµα. Π-47
2 Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης Π-48 PROGRAM OLUMN Description - The large-deflection equations for beam-columns are solved using Dynamic Relaxation for an axially compressed column with rotationally clamped edges. Department of Naval Architecture and Marine Engineering, National Technical University of Athens PROGRAM OLUMN IMPLIIT REAL*4 (A-H,K-Z) INTEGER P1,P,Pfin,Pmax,N,Nmax,Nout,Meshx OMMON/BEAM/Exs(25),Dtsx(25),Dsodx(25),Dtsox(25),Dsdx(25), &Stress,Exm,Ecr,Er,Sr,Sxcr,Axf(25),Axm(25),AxfB(25),Daxfdx(25), &AxfB1(25),Iout,Ks,Ks1,Ks2,Kus,Kus1,Kus2,Energy,Ub,S(25),Us(25), &Vels(25),So(25),Ds,Sp(25),Dus,Usp(25),Velus(25),Dx,Dx1,Dx2,Dx3, &Dx5,Mb,E,Nu,T,L,B,N,Nmax,Nout,P1,Pfin,Pmax,A,PI,Sma,IM,IM11,IM12, &Meshx,Load(100),P,Gu,Gup,Somax,Rs(25),Rus(25),Dudxs(25),Ucr,Iss, &Icl 31 FORMAT(5X,I2,6(1X,G12.5)) OPEN(5, file='beamdat.d') OPEN(6, file='beamout1.f') OPEN(7, file='beamout2.f') READ(5,*) E,Nu,Ks,Kus,Denfac READ(5,*) T,L,B,Somax,Q READ(5,*) Meshx,P1,Pfin,Pmax,Nmax,Nout READ(5,*) Icl,Iss READ(5,*) Iout,IRD,IRT READ(5,*) (Load(I),I=1,Pmax) Initialise arrays, variables and evaluate constants ALL INITIAL L O A D I N R E M E N T S DO 1 P=P1,Pfin Ub=Load(P)*Ucr Factorisation of displacements IF(P.EQ.1) GO TO 2 Gu=Load(P)-Load(P-1) DO 3 I=1,IM11 Ds=(S(I)-Sp(I))*Gu/Gup Dus=(Us(I)-Usp(I))*Gu/Gup Sp(I)=S(I) Usp(I)=Us(I) S(I)=S(I)+Ds 3 Us(I)=Us(I)+Dus Gup=Load(P)-Load(P-1) 2 ONTINUE
3 Π-49 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές Dynamic Relaxation ycle DO 4 N=1,Nmax Kinematic relationships, forces and moments DO 5 I=2,IM Dudxs(I)=(Us(I)-Us(I-1))/Dx Dsdx(I)=(S(I+1)-S(I-1))*Dx1 Exs(I)=Dudxs(I)+Dsdx(I)*(Dsdx(I)/2.0+Dsodx(I)) 5 Dtsx(I)=(S(I+1)-2.0*S(I)+S(I-1))*Dx2 DO 6 I=2,IM Axf(I)=E*A*Exs(I) 6 Axm(I)=-E*Sma*Dtsx(I) IF(Iss.EQ.1) Axm(2)=0.0 IF(Iss.EQ.1) Axm(IM)=0.0 Fictitious densities DO 7 I=2,IM AxfB(I)=AxfB1(I)+E*A*Dx3*ABS(Dsdx(I)) BGS=Mb+Dx5*ABS(Axf(I))+AxfB(I)*(ABS(Dtsx(I))+ABS(Dtsox(I))) 7 Rs(I)=4.0/BGS DO 8 I=2,IM12 BGu=(AxfB(I+1)+AxfB(I))*Dx3 8 Rus(I)=4.0/BGu Equations of equilibrium DO 9 I=2,IM12 Daxfdx(I)=(Axf(I+1)-Axf(I))/Dx Velus(I)=Kus2*Velus(I)+Kus1*Rus(I)*Daxfdx(I)*Denfac 9 Us(I)=Us(I)+Velus(I) DO 10 I=3,IM12 DTMDx=(Axm(I+1)-2.0*Axm(I)+Axm(I-1))*Dx2 RsV=DTMDx+Axf(I)*(Dtsx(I)+Dtsox(I))+Q Vels(I)=Vels(I)*Ks2+Ks1*Rs(I)*RsV 10 S(I)=S(I)+Vels(I) Displacements on boundaries S(1)=S(3) S(IM11)=S(IM12) IF(Iss.EQ.1) S(1)=-S(3) IF(Iss.EQ.1) S(IM11)=-S(IM12) Us(1)=2.0*Ub-Us(2) Us(IM)=-(2.0*Ub+Us(IM12)) Kinetic energy of beam column
4 Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης Π-50 Energy=0.0 ENS=0.0 ENus=0.0 DO 11 I=2,IM12 ENS=ENS+Vels(I)**2 11 ENus=ENus+Velus(I)**2 Energy=(ENS+ENus)*B*L*T/2.0 OUTPUT SUBROUTINE IF(N.EQ.N/10*10) WRITE(0,99) N,S(IM/2+1),Vels(IM/2+1),Energy 99 FORMAT(2X,I5,2X,'S ',G12.5,2X,'VelS ',G12.5,2X,'E ',G12.5) IF(Iout.EQ.1) ALL OUTPUT 4 ONTINUE Results from current load increment Smax=S(IM/2+1) DR=(S(IM/2+1)+So(IM/2+1))/T Stress=0.0 Stress=-Axf(2)/A Stress=Stress*1.0E-06 Exm=2.0*Ub/L Er=Exm/Ecr Sr=Stress/Sxcr PRINT 31,P,SmaX,Us(IM/2+1),Vels(IM/2+1),Velus(IM/2+1),Energy WRITE(7,31) P,Stress,SmaX,Exm,Sr,Er,DR 1 ONTINUE STOP END
5 Π-51 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές SUBROUTINE INITIAL IMPLIIT REAL*4 (A-H,K-Z) INTEGER P1,P,Pfin,Pmax,N,Nmax,Nout,Meshx OMMON/BEAM/ Exs(25),Dtsx(25),Dsodx(25),Dtsox(25),Dsdx(25), &Stress,Exm,Ecr,Er,Sr,Sxcr,Axf(25),Axm(25),AxfB(25),Daxfdx(25), &AxfB1(25),Iout,Ks,Ks1,Ks2,Kus,Kus1,Kus2,Energy,Ub,S(25),Us(25), &Vels(25),So(25),Ds,Sp(25),Dus,Usp(25),Velus(25),Dx,Dx1,Dx2,Dx3, &Dx5,Mb,E,Nu,T,L,B,N,Nmax,Nout,P1,Pfin,Pmax,A,PI,Sma,IM,IM11,IM1 &2,Meshx,Load(100),P,Gu,Gup,Somax,Rs(25),Rus(25),Dudxs(25),Ucr,I &ss,icl IM=Meshx+2 IM11=IM+1 IM12=IM-1 DO 1 I=1,25 So(I)=0.0 Dsodx(I)=0.0 Dtsox(I)=0.0 Dsdx(I)=0.0 Dtsx(I)=0.0 Axf(I)=0.0 Daxfdx(I)=0.0 Axm(I)=0.0 AxfB(I)=0.0 AxfB1(I)=0.0 Rs(I)=0.0 Rus(I)=0.0 Us(I)=0.0 Velus(I)=0.0 S(I)=0.0 Sp(I)=0.0 Usp(I)=0.0 Dudxs(I)=0.0 Exs(I)=0.0 1 Vels(I)=0.0 BGS=0.0 Stress=0.0 Exm=0.0 Sr=0.0 DR=0.0 Ds=0.0 Dus=0.0 Gu=0.0 Gup=Load(1) A=B*T Sma=T*(B**3)/12.0 Kus1=1.0/(1.0+Kus/2.0) Kus2=Kus1*(1.0-Kus/2.0) Ks1=1.0/(1.0+Ks/2.0) Ks2=Ks1*(1.0-Ks/2.0) PI=AOS(-1.0) Sxcr=4.0E-06*PI**2*E*Sma/(A*L**2) IF(Iss.EQ.1) Sxcr=Sxcr/4.0 Ecr=Sxcr*1.0E+06/E
6 Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης Π-52 Ucr=L*Ecr/2.0 Dx=L/FLOAT(Meshx) Dx1=0.5/Dx Dx2=1.0/(Dx*Dx) Dx3=1.0/Dx Dx5=4.0*Dx2 DO 2 I=3,IM12 2 So(I)=Somax*SIN(PI*Dx*(I-2)/L) So(1)=So(3) So(IM11)=So(IM12) IF(Iss.EQ.1) So(1)=-So(3) IF(Iss.EQ.1) So(IM11)=-So(IM12) DO 3 I=2,IM Dsodx(I)=(So(I+1)-So(I-1))*Dx1 3 Dtsox(I)=(So(I+1)-2.0*So(I)+So(I-1))*Dx2 DO 4 I=2,IM 4 AxfB1(I)=E*A*Dx3*(2.0+ABS(Dsodx(I))) Mb=16.0*E*Sma*Dx2**2 RETURN END
7 Π-53 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές SUBROUTINE OUTPUT IMPLIIT REAL*4 (A-H,K-Z) INTEGER P1,P,Pfin,Pmax,N,Nmax,Nout,Meshx OMMON/BEAM/ Exs(25),Dtsx(25),Dsodx(25),Dtsox(25),Dsdx(25), &Stress,Exm,Ecr,Er,Sr,Sxcr,Axf(25),Axm(25),AxfB(25),Daxfdx(25), &AxfB1(25),Iout,Ks,Ks1,Ks2,Kus,Kus1,Kus2,Energy,Ub,S(25),Us(25), &Vels(25),So(25),Ds,Sp(25),Dus,Usp(25),Velus(25),Dx,Dx1,Dx2,Dx3, &Dx5,Mb,E,Nu,T,L,B,N,Nmax,Nout,P1,Pfin,Pmax,A,PI,Sma,IM,IM11,IM1 &2,Meshx,Load(100),P,Gu,Gup,Somax,Rs(25),Rus(25),Dudxs(25),Ucr,I &ss,icl 9 FORMAT(1H1) 10 FORMAT(1H1,26(/)) 11 FORMAT(40X,27('* ')) 12 FORMAT(40X,'*',51X,'*') 13 FORMAT(40X, &'* L A R G E - D E F L E T I O N *') 14 FORMAT(40X, &'* E L A S T I A N A L Y S I S O F A *') 15 FORMAT(40X, &'* R E T A N G U L A R B E A M O L U M N *') 20 FORMAT(1H1,10(/),23X,'Material Properties',38X, &'Geometrical Particulars') 21 FORMAT(23X,20('"'),38X,24('"')) 22 FORMAT(///,15X,'Youngs Modulus E = ',G12.5,' N/m2',26X, &'Length a = ',G12.5,' m') 23 FORMAT(78X,'Breadth b = ',G12.5,' m') 24 FORMAT(15X,'Poissons Ratio Nu = ',G12.5,28X,'Thickness t = ', &G12.5,' m') 25 FORMAT(/,15X,'Number of iterations = ',I4,32X, &'No. of intervals = ',I2) 26 FORMAT(/,15X,'Imposed displacement Ub = ',G12.5,1X,'m') 31 FORMAT(/) 32 FORMAT(/,15X,'Ks = ',F6.3) 35 FORMAT(15X,'Kus= ',F6.3,50X,'Boundary conditions',/) 33 FORMAT(9(2X,G12.5)) 34 FORMAT(1H1,4(/),22X,'Load Increment No.',2X,I2,20X,'P/Pcr = &',&G12.5) 71 FORMAT(75X,'Rotationally lamped') 72 FORMAT(75X,'Simply Supported') 64 FORMAT(/,30X,'L O A D I N R E M E N T N O. ',I2,//, &16X,' Deflections',27X,' Velocities',17X,'Energy',/, &110('"'),/) 65 FORMAT(5X,I4,2(2X,G12.5),10X,2(2X,G12.5),5X,G12.5) 67 FORMAT(5(/),43X,' Local transverse initial imperfections',/) 66 FORMAT(7(3X,G12.5)) 68 FORMAT(//,12X,'S',11X,'Us',11X,'Axm',10X,'Axf',12X,'Exs',1 2X,'Rs',12X,'AxfB',//) IF((N.GT.1).OR.(P.GT.1)) GO TO 1 WRITE(6,10) WRITE(6,11) WRITE(6,12) WRITE(6,13) WRITE(6,12)
8 Λύση της εξίσωσης δοκού-κολόνας µε τη µέθοδο της δυναµικής χαλάρωσης Π-54 WRITE(6,14) WRITE(6,12) WRITE(6,15) WRITE(6,12) WRITE(6,11) WRITE(6,20) WRITE(6,21) WRITE(6,22) E,L WRITE(6,23) B WRITE(6,24) Nu,T WRITE(6,25) Nmax,Meshx WRITE(6,26) Ub WRITE(6,32) Ks WRITE(6,35) Kus IF(Icl.EQ.1) WRITE(6,71) IF(Iss.EQ.1) WRITE(6,72) WRITE(6,67) WRITE(6,33) (So(I),I=1,9) 1 IF(N.EQ.1) WRITE(6,9) IF(N.EQ.1) WRITE(6,64) P IF(N.EQ.N/10*10)WRITE(6,65)N,Us(IM/2),S(IM/2+1),Velus(IM/2), &Vels(IM/2+1),Energy IF(N.NE.N/Nout*Nout) RETURN WRITE(6,31) WRITE(6,34) P,Load(P) WRITE(6,68) WRITE(6,66) (S(I),Us(I),Axm(I),Axf(I),Exs(I),Rs(I),AxfB(I), &I=1,IM11) RETURN END
9 Π-55 Υπολογιστικές µέθοδοι και εφαρµογές σε λεπτότοιχες κατασκευές Αρχείο δεδοµένων (~.dat) 0.207E E E
ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ
ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ιπλωµατική Εργασία Ιωάννη Σ. Προµπονά
ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ ΦΟΙΤΗΤΡΙΑ: Γ.ΦΕΒΡΑΝΟΓΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Χ.ΓΑΝΤΕΣ ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2000
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο
ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS
NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF NAVAL ARCHITECTURE AND ARINE ENGINEERING SHIPBUILDING TECHNOLOGY LABORATORY EXPERIENTAL AND NUERICAL STUDY OF A STEEL-TO-COPOSITE ADHESIVE JOINT UNDER
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα
Εισαγωγή στη Fortran. Μάθημα 3 ο. Ελευθερία Λιούκα
Εισαγωγή στη Fortran Μάθημα 3 ο Ελευθερία Λιούκα liouka.eleftheria@gmail.com Περιεχόμενα Loops External Functions Subroutines Arrays Common mistakes Loops Ανάγκη να εκτελέσουμε τις ίδιες εντολές πολλές
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Η δυναμική ενός μοντέλου Keynsian Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:
Operational Programme Education and Lifelong Learning Continuing Education Programme for updating Knowledge of University Graduates: Modern Development in Offshore Structures 1 - SECTION 8.2 - GDM George
Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αλληλεπίδραση Ανωδοµής-Βάθρων- Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΙΠΛΩΜΑΤΙΚΗ
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ ιπλωµατική εργασία: Λεµονάρη Μαρίνα Επιβλέπων καθηγητής:
3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch Λεωνίδας Αλεξόπουλος, Επ. Καθηγητής Τομέας ΜΚ&ΑΕ leo@mail.ntua.gr, τηλ: 772-1666 Βοηθοί διδασκαλίας: Κανακάρης Γιώργος, Διδακτορικός
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Τα ισοζύγια μάζας του συστήματος διανομή ατμού σε μονάδα διυλιστηρίου δίνονται από τις παρακάτω
Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΞΩΝ ΑΠΟ ΧΑΛΥΒΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΞΩΝ ΑΠΟ ΧΑΛΥΒΑ ΦΟΙΤΗΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Π. Α ΑΜΑΚΟΣ ΕΠΙΒΛΕΠΟΝΤΕΣ
Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)
Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η
ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Πρόοδος 6 Μαρτίου 007 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ ιπλωµατική Εργασία Μαρία Μ. Βίλλη
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 (λύσεις)
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Να υπολογιστούν τα όρια 4 + n n ) n ) n n + n + ) n + 5) n 7 n+ + ) n Θεωρούµε την ακολουθία a n ), που ορίζεται
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Ενδιάµεση Εξέταση 12:00-12:30 µ.µ. (30 λεπτά) Τρίτη, 14 Σεπτεµβρίου,
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
bits and bytes q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων
bits and bytes ΦΥΣ 145 - Διαλ.02 1 q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων q Η μνήμη χωρίζεται σε words και κάθε word περιέχει τμήμα πληροφορίας q Ο αριθμός των words σε μια
Μεθοδολογία. Aνάλυσης Προβλήµατος. Τι είναι αλγόριθµος? Σχεδιάσµος Αλγορίθµου
Προγραµµατισµός Προηγ. διαλεξη: γιατι γραφουµε προγραµµατα; Σηµερα: πως γραφουµε προγραµµατα; τι ειναι προγραµµατισµος µεθοδολογια αφαιρετικοτητα (abstraction) διαχωρισµος µεταξυ τι και πως(προγραµµα,δεδοµενα...)
ΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική. Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας.
ΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική Πρόοδος 13 Μαρτίου 006 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
( ) Sine wave travelling to the right side
SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 13 Μαρτίου 2010 Οµάδα
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 13 Μαρτίου 2010 Οµάδα Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα που
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M7 Δομές δεδομένων: Πίνακες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ
ΦΥΣ 145 Λύσεις Ενδιάμεσης Εξέτασης Χ. Παναγόπουλος 12/3/2015
Οι εντολές είναι: ΦΥΣ 145 Λύσεις Ενδιάμεσης Εξέτασης Χ. Παναγόπουλος 12/3/2015 ls -l../lab3/*/data* cp../lab3/*/plot*../lab3 mkdir../lab1/plot grep FORMAT../*/prog*.f chmod o+r../lab*/*/plot2 cd../lab3/exercise1
Πίνακες. (i) FORTRAN και Αντικειµενοστραφής Προγραµµατισµός
Πίνακες (i) οµηµένη µεταβλητή: αποθηκεύει µια συλλογή από τιµές δεδοµένων Πίνακας (array): δοµηµένη µεταβλητή που αποθηκεύει πολλές τιµές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M5 Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ Εργαστήριο Ναυτικής
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s
Model Description. Governing equations The vertical coordinate (eta) is defined by: η p p T p s p T η s ; η s p re f z s p T p re f 0 p T The horizontal equations of motion in the η system may be expressed
ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών ΠΜΣ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή ιπλωµατική Εργασία ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια υπορουτίνα; ΥΠΟΡΟΥΤΙΝΕΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν ή περισσότερους υπολογισμούς Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές φορές μέσα
Ενότητα 1 Διάλεξη 4. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 4 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν
THE CASE OF HEATING OF THE OPEN SWIMMING POOL OF AMALIADA
MUNICIPALITY OF ILIDA INNOVATIONS AND MODERN DESIGNS THE CASE OF HEATING OF THE OPEN SWIMMING POOL OF AMALIADA Presentation: Christos Papageorgiou, Chemical Engineer, BChemEng, MSc. DProf ΚΑΙΝΟΤΟΜΙΕς ΚΑΙ
GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES
GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES RICHARD J. MATHAR Abstract. The manuscript provides tables of abscissae and weights for Gauss- Laguerre integration on 64, 96 and 128
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΜΙΚΡΟΜΗΧΑΝΙΚΟΥ ΜΟΝΤΕΛΟΥ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΙΔΙΟΤΗΤΩΝ ΛΕΠΤΩΝ ΥΜΕΝΙΩΝ ΣΤΗ ΜΙΚΡΟ ΚΑΙ ΝΑΝΟ - ΚΛΙΜΑΚΑ Αλέξανδρος Παυλίδης
4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα
ΚΕΦΑΛΑΙΟ 4 Κίνηση Σωματιδίου Στο κεφάλαιο αυτό μελετάται αριθμητικά η επίλυση των κλασικών εξισώσεων κίνησης μονοδιάστατων μηχανικών συστημάτων, όπως λ.χ. αυτή του σημειακού σωματιδίου σε μια ευθεία, του
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΟ ΕΛΕΓΧΟ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ανεµόµετρο AMD 1 Αισθητήρας AMD 2 11 ος όροφος Υπολογιστής
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
MasterSeries MasterPort Lite Sample Output
MasterSeries MasterPort Lite Sample Output The following output is from the MasterPort Lite Design program. Contents 2 Frame Geometry and Loading 3 Tabular Results Output 4 Bending Moment and Diagrams
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση
Άσκηση ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ 08-09 5 Ο ΕΞΑΜΗΝΟ Ι ΑΣΚΩΝ:. Βαλουγεώργης ΕΡΓΑΣΙΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΟΡΙΑΚΩΝ ΤΙΜΩΝ (Σ Ε & Μ Ε Ηµεροµηνία παράδοσης: 8//09 Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό
Ο τελεστής ανάθεσης και οι εντολές εισόδουεξόδου
Ο τελεστής ανάθεσης και οι εντολές εισόδουεξόδου Ο τελεστής ανάθεσης = και η βασική του διαφορά από το σύµβολο ισότητας. Η εντολή ανάγνωσης µεταβλητών READ. Η εντολή εκτύπωσης µεταβλητών WRITE. οµή προβληµάτων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΟΙΚΗΣΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΙΑΧΕΙΡΙΣΗ Ε ΟΜΕΝΩΝ ΚΑΙ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ (Β ΕΞΑΜΗΝΟ) ιδάσκων: Επ. Καθηγητής Γρηγόρης Χονδροκούκης ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ Η ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
Fortran και Αντικειμενοστραφής προγραμματισμός.
Fortran και Αντικειμενοστραφής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Διδάσκοντες: Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 3 η Σειρά Ασκήσεων 07.12.2010 Άσκηση 1. Δίνονται τα
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Πίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός
Πίνακες (i) Δομημένη μεταβλητή: αποθηκεύει μια συλλογή από τιμές δεδομένων Πίνακας (array): δομημένη μεταβλητή που αποθηκεύει πολλές τιμές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Μεταπτυχιακή Εργασία
ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ»
AUTh TUC ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» Πρόγραμμα Δια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ Χρονική Περίοδος: 2014 2016 ΠΕΓΑ: ΣΥΓΧΡΟΝΕΣ ΕΞΕΛΙΞΕΙΣ ΣΤΙΣ
Είσοδος -Έξοδος. Άνοιγµα αρχείου:
Είσοδος -Έξοδος Άνοιγµα αρχείου: open (unit = αριθµός, file = "όνοµα_αρχείου") Αριθµός: θετικός ακέραιος (εκτός του 6) µε τον οποίο αναφερόµαστε στο αρχείο Όνοµα αρχείου: το όνοµα του αρχείου (καλύτερα
Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιπλωµατική Εργασία «ΙΕΡΕΥΝΗΣΗ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΚΑΘΟΛΙΚΟΥ ΚΑΙ ΤΟΠΙΚΟΥ ΑΝΕΛΑΣΤΙΚΟΥ ΛΥΓΙΣΜΟΥ ΜΕ ΤΗ ΜΕΘΟ
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017 Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα ΠΠΜ 221: Ανάλυση Κατασκευών
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ιπλωµ ατική εργασία «Α Ν Α Λ Υ Τ Ι Κ Η Κ Α Ι Α Ρ Ι Θ Μ Η Τ Ι Κ Η Ι Ε Ρ Ε Υ Ν Η Σ Η Π Ρ Ο Β Λ Η
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2016 M7 Δομές δεδομένων: Πίνακες Δρ. Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ιαφάνειες παρουσίασης #5
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης #5!Παρουσίαση
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Μορφοποίηση της εξόδου
Μορφοποίηση της εξόδου (i) Όταν θέλουμε τα αποτελέσματα μιάς εντολής WRITE(*, *) να εμφανίζονται με συγκεκριμένο τρόπο τροποποιούμε τον δεύτερο αστερίσκο. 2 τρόποι μορφοποίησης WRITE(*, '(format εξόδου)')
Financial Risk Management
Pricing of American options University of Oulu - Department of Finance Spring 2018 Volatility-based binomial price process uuuus 0 = 26.51 uuus 0 = 24.71 uus 0 = us 0 = S 0 = ds 0 = dds 0 = ddds 0 = 16.19
Γραµµικός Προγραµµατισµός (ΓΠ)
Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.
Kul Finite element method I, Exercise 07/2016
Kul-49.3300 Finite element metod I, Eercise 07/016 Demo problems y 1. Determine stress components at te midpo of element sown if u y = a and te oter nodal displacements are zeros. e approimations to te
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Δυναμική του χρέους και του ελλείμματος Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.
8 FORTRAN 77/90/95/2003
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή... 17 1.1. Ανασκόπηση της ιστορίας των υπολογιστών... 18 1.2. Πληροφορία και δεδομένα... 24 1.3. Ο Υπολογιστής... 26 1.4. Δομή και λειτουργία του υπολογιστή... 28 1.5.
Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
(Mechanical Properties)
109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch Λεωνίδας Αλεξόπουλος Βοηθοί διδασκαλίας: Κανακάρης Γιώργος, Καβαλόπουλος Νίκος Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004)
32 ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004) ιάλεξη 5 5.1 Ι ΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Εκτός από τους µονοδιάστατους πίνακες ή διανυσµατα που συζητήσαµε στην παράγραφο 4.1, µπορούµε να αποθηκεύσουµε
Form Description Order Date Page Number. HE3 Particulars in relation to the first directors and secretary
Logout draganajournalist@gmail.com Exit Print Orders Basket (0) File Content Addresses Directors & Secretaries Share Capital Charges & Mortgages Name History Name AZYOL DEVELOPMENT LTD Reg. Number ΗΕ 321887
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 Μ4. Συναρτήσεις, Υπορουτίνες, Ενότητες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΙΕΡΕΥΝΗΣΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΙΕΡΕΥΝΗΣΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ ΟΧΥΡΩΜΑΤΙΚΩΝ ΕΡΓΩΝ ιπλωµατική Εργασία Γεώργιος Κ. Πανούσης Επιβλέπων ρ. Χάρης Γαντές Επίκουρος Καθηγητής