Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s"

Transcript

1 Model Description. Governing equations The vertical coordinate (eta) is defined by: η p p T p s p T η s ; η s p re f z s p T p re f 0 p T The horizontal equations of motion in the η system may be expressed by dv dt η Φ p ηp f k v F (.) The thermodynamic energy equation (the first law of thermodynamics) dt dt ωα c p Q; ω d p dt (.) The mass continuity equation in the η system is η p t η v η p η η p η 0 (.)

2 . Model Description. DIVHOA equations and code Subroutine DIVHOA calculates divergence correction DC, divergence DIV and horizontal pressure advection in the thermodynamic equation (horizontal part of omega-alpha). DIV DC η v p (.4) T t α c p v p (.5) The finite-difference equations take the form DC 0 88w x min x 4 t x y Π x Π y where Π P P ; P Φ η p η p η ; P Φ η p η p η η v p x y x u y p x y v x p y u y v x p u y v x p!! !! preparatory calculations !! if (sigma) then do j=,jm do i=,im filo(i,j)=fis(i,j) pdsl(i,j)=pd(i,j)

3 .. DIVHOA equations and code else do j=,jm do i=,im filo(i,j)=0.0 pdsl(i,j)=res(i,j)*pd(i,j) end if do l=,lm do j=,jm do i=,im div(i,j,l)=0.0 omgalf(i,j,l)=0.0 do j=,jm do i=,im adpdx(i,j)=0.0 adpdy(i,j)=0.0!! main vertical integration loop vert_loop: do l=lm,,- p DPDE p DPDE RDPD do j=,jm do i=,im dpde(i,j)=deta(l)*pdsl(i,j) rdpd(i,j)=.0/dpde(i,j) p x DPDE i ivw j j DPDE i ive j j ADPDX i j

4 4. Model Description do j=,jm do i=+ihe(j),im+ihw(j) adpdx(i,j)=dpde(i+ivw(j),j)+dpde(i+ive(j),j) p y DPDE i j DPDE i j ADPDY i j do j=,jm- do i=,im adpdy(i,j)=dpde(i,j-)+dpde(i,j+) p η APEL p η APEL RTOP Φ η FIM do j=,jm do i=,im apel(i,j)=pt+aeta(l)*pdsl(i,j) rtop(i,j,l)=r*t(i,j,l)*( *q(i,j,l))/apel(i,j) fiupk=filo(i,j)+rtop(i,j,l)*dpde(i,j) fim(i,j)=filo(i,j)+fiupk filo(i,j)=dfl(l)+htm(i,j,l)*(fiupk-dfl(l))! diagonal contributions to pressure gradient force p DPDE i ihe j j DPDE i j ADPDNE i j Φ η FIM FIM i ihe j j FIM i j PNE i j

5 .. DIVHOA equations and code 5 p η p η RTOP i ihe j j l RTOP i j l APEL i ihe j j APEL i j CNE i j p RT v p η p η ADPDNE i j CNE i j PCNE i j do j=,jm- do i=,im+ivw(j) adpdne(i,j)=dpde(i+ihe(j),j+)+dpde(i,j) pne(i,j)=.0*(fim(i+ihe(j),j+)-fim(i,j)) cne(i,j)=.0*(rtop(i+ihe(j),j+,l)+rtop(i,j,l)) & *(apel(i+ihe(j),j+)-apel(i,j)) pcne(i,j)=cne(i,j)*adpdne(i,j) p DPDE i ihe j j DPDE i j ADPDSE i j Φ η FIM FIM i ihe j j FIM i j PSE i j p η p η RTOP i ihe j j l RTOP i j l APEL i ihe j j APEL i j CSE i j p RT v p η p η ADPDSE i j CSE i j PCSE i j

6 6. Model Description do j=,jm do i=,im+ivw(j) adpdse(i,j)=dpde(i+ihe(j),j-)+dpde(i,j) pse(i,j)=.0*(fim(i+ihe(j),j-)-fim(i,j)) cse(i,j)=.0*(rtop(i+ihe(j),j-,l)+rtop(i,j,l)) & *(apel(i+ihe(j),j-)-apel(i,j)) pcse(i,j)=cse(i,j)*adpdse(i,j)! continuity equation modification Π Φ η p η PNE PCXC p η CNE Φ η p η p η PSE CSE PNE i ivw j j PNE i j CNE i ivw j j CNE i j PSE i ivw j j PSE i j CSE i ivw j j CSE i j do j=,jm- do i=+ihe(j),im- pcxc(i,j)=vbm(i,j)*vtm(i,j,l)*(pne(i+ivw(j),j) & +cne(i+ivw(j),j)+pse(i+ivw(j),j)+cse(i+ivw(j),j) & -pne(i,j-)-cne(i,j-)-pse(i,j+)-cse(i,j+))! DC 0 88w x min x Π x Π y 4 t x y W PDAR PCXC i ihe j j PCXC i ihw j j PCXC i j PCXC i j

7 .. DIVHOA equations and code 7 do j=,jm- do i=,im-+ivw(j) div(i,j,l)=deta(l)*wpdar(i,j) & *(pcxc(i+ihe(j),j)-pcxc(i,j+) & +pcxc(i+ihw(j),j)-pcxc(i,j-))! lat & long pressure force components do j=,jm- do i=+ihe(j),im+ihw(j) dcnek=cne(i+ivw(j),j)+cne(i,j-) dcsek=cse(i+ivw(j),j)+cse(i,j+) pcew(i,j)=(dcnek+dcsek)*adpdx(i,j) pcns(i,j)=(dcnek-dcsek)*adpdy(i,j)! lat & lon fluxes & omega-alpha components u y UDY ; v x V DX do j=,jm do i=,im udy(i,j)=dy*u(i,j,l) vdx(i,j)=dx(i,j)*v(i,j,l) u y p x UDY i j ADPDX i j v x p y V DX i j ADPDY i j FEW i j FNS i j

8 8. Model Description do j=,jm- do i=+ihe(j),im+ihw(j) few(i,j)=udy(i,j)*adpdx(i,j) tew(i,j)=udy(i,j)*pcew(i,j) fns(i,j)=vdx(i,j)*adpdy(i,j) tns(i,j)=vdx(i,j)*pcns(i,j)! diagonal fluxes and diagonally averaged wind u y v x p FNE i j UVD i ihe j j UV D i j ADPDNE i j do j=,jm- do i=,im- pvnek=(udy(i+ihe(j),j)+vdx(i+ihe(j),j))+(udy(i,j+)+vdx(i,j+)) fne(i,j)=pvnek*adpdne(i,j) tne(i,j)=pvnek*pcne(i,j)*.0 u y v x p FSE i j UVD i ihe j j UVD i j ADPDSE i j

9 .. DIVHOA equations and code 9 do j=,jm- do i=,im- pvsek=(udy(i+ihe(j),j)-vdx(i+ihe(j),j))+(udy(i,j-)-vdx(i,j-)) fse(i,j)=pvsek*adpdse(i,j) tse(i,j)=pvsek*pcse(i,j)*.0 η v p x y x y x y x u y p x y v x p y u y v x p u y v x p x FEW y FNS FNE FSE FEW i ihe j j FEW i ihw j j FNS i j FNS i j FNE i j FNE i ihw j j FSE i j FSE i ihw j j! horizontal part of omega-alpha & divergence do j=,jm- do i=,im- hm(i,j)=htm(i,j,l)*hbm(i,j) omgalf(i,j,l)=(tew(i+ihe(j),j)+tew(i+ihw(j),j)+tns(i,j+) & +tns(i,j-)+tne(i,j)+tne(i+ihw(j),j-)+tse(i,j) & +tse(i+ihw(j),j+))*rdpd(i,j)*fcp(i,j)*hm(i,j) t(i,j,l)=omgalf(i,j,l)+t(i,j,l) div(i,j,l)=(((few(i+ihe(j),j)+fns(i,j+)+fne(i,j)+fse(i,j)) & -(few(i+ihw(j),j)+fns(i,j-)+fne(i+ihw(j),j-) & +fse(i+ihw(j),j+)))*fdiv(i,j)+div(i,j,l))*hm(i,j) vert_loop end subroutine divhoa

10 p p 0. Model Description. PGCOR equations and code u t v t Φ p x p x f cv (.6) Φ p y p y f cu (.7) u t PGF x CF x ; v t PGF y CF y where PGF x and CF x are pressure gradient force, and Coriolis force in x direction. For pressure gradient force explicit time scheme is used, while for Coriolis force trapesoidal scheme is used. u τ u τ v τ v τ PGF τ x PGF τ y t f c v τ t f c u τ v τ u τ This set of equations is solved for u τ and v τ. u τ u τ v τ v τ PGF τ x F v τ PGF τ y F u τ v τ u τ u UP τ Fv τ u τ FV P UP F v τ V P Fu τ v τ VP Fu τ where UP u τ PGF τ x Fv τ and VP v τ PGF τ y Fu τ. PGF τ x t x p x p Φ η Φ η p η p η p η p η p Φ η Φ η p η p η p η p η τ

11 .. PGCOR equations and code PGF τ y t y p y p Φ η Φ η p η p η p RT v p η p η p Φ η Φ η p η p η p RT v p η p η τ p DPDE p DPDE RDPD do j=,jm do i=,im dpde(i,j)=pdsl(i,j)*deta(l) rdpd(i,j)=.0/dpde(i,j) p x DPDE i ivw j j DPDE i ive j j RDPDX ADPDX i j i j p x p y p y DPDE i j DPDE i j ADPDY i j RDPDY i j ADPDY i j ADPDX i j do j=,jm- do i=,im- adpdx(i,j)=dpde(i+ivw(j),j)+dpde(i+ive(j),j) adpdy(i,j)=dpde(i,j-)+dpde(i,j+) rdpdx(i,j)=.0/adpdx(i,j) rdpdy(i,j)=.0/adpdy(i,j)

12 . Model Description p η APEL p η APEL RTOP Φ η FIM do j=,jm do i=,im apel(i,j)=pt+aeta(l)*pdsl(i,j) rtop(i,j,l)=r*t(i,j,l)*( *q(i,j,l))/apel(i,j) fiupk=filo(i,j)+rtop(i,j,l)*dpde(i,j) fim(i,j)=filo(i,j)+fiupk filo(i,j)=dfl(l)+htm(i,j,l)*(fiupk-dfl(l))! diagonal contributions to pressure gradient force p DPDE i ihe j j DPDE i j ADPDNE i j Φ η FIM p Φ η ADPDNE i j PNE i j PPNE i j FIM i ihe j j FIM i j PNE i j p η p η RTOP i ihe j j l RTOP i j l APEL i ihe j j APEL i j CNE i j p RT v p η p η ADPDNE i j CNE i j PCNE i j

13 .. PGCOR equations and code do j=,jm- do i=,im+ivw(j) adpdne(i,j)=dpde(i+ihe(j),j+)+dpde(i,j) pne(i,j)=.0*(fim(i+ihe(j),j+)-fim(i,j)) ppne(i,j)=pne(i,j)*adpdne(i,j) cne(i,j)=.0*(rtop(i+ihe(j),j+,l)+rtop(i,j,l)) & *(apel(i+ihe(j),j+)-apel(i,j)) pcne(i,j)=cne(i,j)*adpdne(i,j) p DPDE i ihe j j DPDE i j ADPDSE i j Φ η FIM p Φ η ADPDSE i j PSE i j FIM i ihe j j FIM i j PPSE i j PSE i j p η p η RTOP i ihe j j l RTOP i j l APEL i ihe j j APEL i j CSE i j p RT v p η p η ADPDSE i j CSE i j PCSE i j do j=,jm do i=,im+ivw(j) adpdse(i,j)=dpde(i+ihe(j),j-)+dpde(i,j) pse(i,j)=.0*(fim(i+ihe(j),j-)-fim(i,j)) ppse(i,j)=pse(i,j)*adpdse(i,j) cse(i,j)=.0*(rtop(i+ihe(j),j-,l)+rtop(i,j,l)) & *(apel(i+ihe(j),j-)-apel(i,j)) pcse(i,j)=cse(i,j)*adpdse(i,j)

14 4. Model Description! lat & long pressure force components Φ η PNE PNE i ivw j j PNE i j DPNE Φ η PSE PSE i ivw j j PSE i j DPSE Φ η Φ η DPNE DPSE PEW i j Φ η Φ η DPNE DPSE PNS i j p η p η p η p η CNE CSE CNE i ivw j j CNE i j CSE i ivw j j CSE i j DCNE DCSE p η p η RT v p η p η DCNE DCSE PCEW i j p η p η RT v p η p η DCNE DCSE PCNS i j

15 .. PGCOR equations and code 5 do j=,jm- do i=,im- dpne=pne(i+ivw(j),j)+pne(i,j-) dpse=pse(i+ivw(j),j)+pse(i,j+) pew(i,j)=dpne+dpse pns(i,j)=dpne-dpse dcne=cne(i+ivw(j),j)+cne(i,j-) dcse=cse(i+ivw(j),j)+cse(i,j+) pcew(i,j)=dcne+dcse pcns(i,j)=dcne-dcse PGF τ x t x p x PPNE PCNE PCEW PCNS PPSE PCSE τ! update u and v (coriolis & pgf) do j=,jm- do i=,im- dpfnek=((ppne(i+ivw(j),j)+ppne(i,j-)) & +(pcne(i+ivw(j),j)+pcne(i,j-)))*.0 dpfsek=((ppse(i+ivw(j),j)+ppse(i,j+)) & +(pcse(i+ivw(j),j)+pcse(i,j+)))*.0 dpfew(i,j)=dpfnek+dpfsek dpfns(i,j)=dpfnek-dpfsek do j=,jm- do i=,im- f0k=u(i,j,l)*curv(i,j)+f(i,j) vm(i,j)=vtm(i,j,l)*vbm(i,j) upk=(dpfew(i,j)*rdpdx(i,j)+pcew(i,j)+pew(i,j))*cpgfu(i,j)+f0k*v(i,j,l)+u(i,j,l) vpk=(dpfns(i,j)*rdpdy(i,j)+pcns(i,j)+pns(i,j))*cpgfv-f0k*u(i,j,l)+v(i,j,l) utk=u(i,j,l)

16 6. Model Description vtk=v(i,j,l) u(i,j,l)=((f0k*vpk+upk)/(f0k*f0k+.0)-u(i,j,l)) & *vm(i,j)+u(i,j,l) v(i,j,l)=(vpk-f0k*u(i,j,l)-v(i,j,l)) & *vm(i,j)+v(i,j,l)

17 .4. HZADV equations and code 7.4 HZADV equations and code.4. Temperature T t v T ADT τ T n T τ ADT τ T τ n T τ τ ADT n τ T n T τ n t x y p u y p x x T x v x p y y T y u y v x p T u y v x p T τ T τ n T τ n t x y p u y p x x T x v x p y y T y u y v x p T u y v x p T τ n ADT n t x y p u y p x x T x v x p y y T y u y v x p T u y v x p T p DPDE p DPDE RDPD do j=,jm do i=,im dpde(i,j)=pdsl(i,j)*deta(l) rdpd(i,j)=.0/dpde(i,j)

18 8. Model Description p x DPDE i ivw j j DPDE i ive j j ADPDX i j do j=,jm do i=+ihe(j),im+ihw(j) adpdx(i,j)=dpde(i+ivw(j),j)+dpde(i+ive(j),j) rdpdx(i,j)=.0/adpdx(i,j) p y DPDE i j DPDE i j ADPDY i j do j=,jm- do i=,im adpdy(i,j)=dpde(i,j-)+dpde(i,j+) rdpdy(i,j)=.0/adpdy(i,j)! mass fluxes and mass points advection components u y UDY v x V DX

19 .4. HZADV equations and code 9 do j=,jm do i=,im udy(i,j)=ust(i,j)*dy vdx(i,j)=vst(i,j)*dx(i,j) u y p x UDY i j ADPDX i j FEW i j u y p x x T FEW i j TST i ive j j T ST i ivw j j TEW i j do j=,jm do i=+ihe(j),im+ihw(j) few(i,j)=udy(i,j)*adpdx(i,j) tew(i,j)=few(i,j)*(tst(i+ive(j),j)-tst(i+ivw(j),j)) v x p y V DX i j ADPDY i j FNS i j v x p y y T FNS i j TST i j TST i j T NS i j do j=,jm- do i=,im fns(i,j)=vdx(i,j)*adpdy(i,j) tns(i,j)=fns(i,j)*(tst(i,j+)-tst(i,j-))

20 0. Model Description! diagonal fluxes and diagonally averaged wind u y v x UDY i j VDX i j UV D i j do j=,jm- do i=,im uvd(i,j)=udy(i,j)+vdx(i,j) u y v x p UVD i ihe j j UV D i j DPDE i j DPDE i ihe j j FNE i j u y v x p T FNE i j TST i ihe j j T ST i j TNE i j do j=,jm- do i=,im- fne(i,j)=(uvd(i+ihe(j),j)+uvd(i,j+)) & *(dpde(i,j)+dpde(i+ihe(j),j+)) tne(i,j)=fne(i,j)*(tst(i+ihe(j),j+)-tst(i,j)) u y v x p FSE i j UVD i ihe j j UVD i j DPDE i j DPDE i ihe j j

21 .4. HZADV equations and code u y v x p T FSE i j TST i ihe j j TST i j TSE i j do j=,jm- do i=,im- fse(i,j)=(temp(i+ihe(j),j)+temp(i,j-))*(dpde(i,j)+dpde(i+ihe(j),j-)) tse(i,j)=fse(i,j)*(tst(i+ihe(j),j-)-tst(i,j)) ADT n t x y p n ADT t x y p TEW x TNS y TNE TSE TEW i ihw j j TEW i ihe j j T NS i j TNS i j TNE i ihw j j TNE i j TSE i j TSE i ihw j j n t x y FAD i j do j=,jm- do i=,im-+ivw(j) adt(i,j)=(tew(i+ihw(j),j)+tew(i+ihe(j),j)+tns(i,j-)+tns(i,j+) & +tne(i+ihw(j),j-)+tne(i,j)+tse(i,j)+tse(i+ihw(j),j+)) & *rdpd(i,j)*fad(i,j).4. Wind (velocity components) u t v u

22 . Model Description v t v v τ u n u τ n t x y p x u y v x p x u u y p xx x ux y x y v x p y u u y v x p y u τ τ v n v τ n t x y p y u y v x p x v u y p xx x vx y x y v x p y v u y v x p y v τ

23 .5. PDTE equations and code.5 PDTE equations and code η s p s t η v η p η η η p 0 subroutine pdte() use parmeta use ctlblk use masks use dynam use vrbls use contin integer :: i, j, l real, dimension(:im,:jm) :: pret, rpsl!!!! start subroutine pdte!! p s t 0 η s v η p dη p τ s p τ s t LM l v l p l τ L l v l p l DIV I J L do l=,lm do j=,jm- do i=,im div(i,j,l)=div(i,j,l-)+div(i,j,l)

24 4. Model Description LM l v l p l DIV I J LM PSDT I J do j=,jm- do i=,im psdt(i,j)=-div(i,j,lm) pret(i,j)=psdt(i,j)*res(i,j) rpsl(i,j)=.0/pdsl(i,j) η η p s p T p s t η s p s p T LM l v l p l! computation of etadt do l=,lm- do j=,jm- do i=,im etadt(i,j,l)=-(pret(i,j)*eta(l+)+div(i,j,l))*htm(i,j,l+)*rpsl(i,j) T t vertical part of ωα c p α p c p t η p η! kinetic energy generation terms in t equation do j=,jm- do i=,im omgalf(i,j,)=omgalf(i,j,)-div(i,j,)*rtop(i,j,)*ef4t t(i,j,)=t(i,j,)-div(i,j,)*rtop(i,j,)*ef4t do l=,lm-

25 .5. PDTE equations and code 5 do j=,jm- do i=,im omgalf(i,j,l)=omgalf(i,j,l)-(div(i,j,l-)+div(i,j,l))*rtop(i,j,l)*ef4t t(i,j,l)=t(i,j,l)-(div(i,j,l-)+div(i,j,l))*rtop(i,j,l)*ef4t do j=,jm- do i=,im omgalf(i,j,lm)=omgalf(i,j,lm)+(pret(i,j)-div(i,j,lm-))*rtop(i,j,lm)*ef4t t(i,j,lm)=t(i,j,lm)+(pret(i,j)-div(i,j,lm-))*rtop(i,j,lm)*ef4t do l=lm,,- do j=,jm- do i=,im div(i,j,l)=div(i,j,l)-div(i,j,l-) end subroutine pdte

26 6. Model Description

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Αρχές Μετεωρολογίας και Κλιματολογίας (Μέρος 2 ο )

Αρχές Μετεωρολογίας και Κλιματολογίας (Μέρος 2 ο ) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΕΛ. ΒΕΝΙΖΕΛΟΥ 70, 176 71 ΑΘΗΝΑ Αρχές Μετεωρολογίας και Κλιματολογίας (Μέρος 2 ο ) Πέτρος Κατσαφάδος pkatsaf@hua.gr Τμήμα Γεωγραφίας Χαροκόπειο Πανεπιστήμιο Αθηνών

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5, MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5, 3 14 -, :., 83, 66404 e-mail: chupinvr@istu.irk.ru...,,., -,.,. :,,,,,, -, - [1].,.., [2, 3].,.,,,.,,, [4, 5].,..1.

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ i ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΑΡΑΓΩΓΗΣ ΜΕΤΑΦΟΡΑΣ ΔΙΑΝΟΜΗΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΕΩΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation

Διαβάστε περισσότερα

Fourier Analysis of Waves

Fourier Analysis of Waves Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman

Διαβάστε περισσότερα

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction () () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract

Διαβάστε περισσότερα

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1 Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1 Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 2 Dervish Abu Bekr, «Παραμύθια τησ Χαλιμϊσ, τομ. Α» Ιούνιοσ 2013 Φωτo εξωφύλλου: Βαςιλεύα Αςπαςύα Μαςούρα Επιμϋλεια ϋκδοςησ:

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

- 1+x 2 - x 3 + 7x4. 40 + 127x8. 12 - x5 4 + 31x6. 360 - x 7. - 1+x 2 - x 3 - -

- 1+x 2 - x 3 + 7x4. 40 + 127x8. 12 - x5 4 + 31x6. 360 - x 7. - 1+x 2 - x 3 - - a.bergara@ehu.es - 1 x 2 - - - - - - - Ο - 1x 2 - x 3 - - - - - - 1 x 2 - x 3 7 x4 12-1x 2 - x 3 7x4 12 - x5 4 31x6 360 - x 7 40 127x8 20160 - - - Ο clear; % Coefficients of the equation: a x'b x c

Διαβάστε περισσότερα

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

Modelling the Furuta Pendulum

Modelling the Furuta Pendulum ISSN 28 5316 ISRN LUTFD2/TFRT--7574--SE Modelling the Furuta Pendulum Magnus Gäfvert Department of Automatic Control Lund Institute of Technology April 1998 z M PSfrag replacements θ m p, l p m a, l a

Διαβάστε περισσότερα

Πίνακας Περιεχομένων. 1. Locals Window & BreakPoints

Πίνακας Περιεχομένων. 1. Locals Window & BreakPoints Πίνακας Περιεχομένων 1. Locals Window & BreakPoints... 1 2. Άσκηση 1 (Select case)... 4 3. Άσκηση 2 (For)... 4 4. Άσκηση 3 (Do Loop)... 5 5. Άσκηση 4 (Do Loop)... 6 1. Locals Window & BreakPoints 2.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

MET 4302 LECTURE 3A 23FEB18

MET 4302 LECTURE 3A 23FEB18 E 3 LECRE 3A 3FEB8 Objective: o analyze baroclinic instability of normal-mode Rossby waves in a vertically sheared zonal flow. Reading: CH 7, pp 3-3 Problems: 7. and 7.3 on p. 6 ---------------------------------------

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Part III - Pricing A Down-And-Out Call Option

Part III - Pricing A Down-And-Out Call Option Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ ΤΟΠΙΚΗΣ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ: ΠΡΟΣΕΓΓΙΣΗ ΜΕΣΩ ΔΕΙΚΤΩΝ Επιβλέπων: Αθ.Δελαπάσχος

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer

Διαβάστε περισσότερα

Απαντήσεις στο μάθημα Δομημένος Προγραμματισμός ΕΠΑΛ

Απαντήσεις στο μάθημα Δομημένος Προγραμματισμός ΕΠΑΛ Απαντήσεις στο μάθημα Δομημένος Προγραμματισμός ΕΠΑΛ ΘΕΜΑ Α Α1. α-σωστό β-λάθος γ-λάθος δ-σωστό ε-σωστό Α2. 1. ε 2. γ 3. α 4. στ 5. β Α4. Α) Σχολικό βιβλίο σελίδα 58 Βασικές αλγοριθμικές δομές: επιλογή,

Διαβάστε περισσότερα

Computing the Gradient

Computing the Gradient FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in

Διαβάστε περισσότερα

NonEquilibrium Thermodynamics of Flowing Systems: 2

NonEquilibrium Thermodynamics of Flowing Systems: 2 *Following the development in Beris and Edwards, 1994, Section 9.2 NonEquilibrium Thermodynamics of Flowing Systems: 2 Antony N. Beris Schedule: Multiscale Modeling and Simulation of Complex Fluids Center

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm) Marking Outline: Low DCR, high rated current. Magnetic shielded structure Lead free product, RoHS compliant. RoHS Carrier tape packing, suitable for SMT process. SMT Widely used in buck converter, laptop,

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα