ΦΥΣ 145 Λύσεις Ενδιάμεσης Εξέτασης Χ. Παναγόπουλος 12/3/2015
|
|
- Κόσμος Μοσχοβάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Οι εντολές είναι: ΦΥΣ 145 Λύσεις Ενδιάμεσης Εξέτασης Χ. Παναγόπουλος 12/3/2015 ls -l../lab3/*/data* cp../lab3/*/plot*../lab3 mkdir../lab1/plot grep FORMAT../*/prog*.f chmod o+r../lab*/*/plot2 cd../lab3/exercise1 Άσκηση 1 Οι πληροφορίες στον κατάλογο ερμηνεύονται ως εξής: αρχικό - : Το αρχείο είναι συνηθισμένο (δηλαδή όχι φάκελλος ή link ή socket ή κάτι άλλο) rwxrw-r-- : Ο ιδιοκτήτης του αρχείου μπορεί να το διαβάσει/αντιγράψει (r), να το τροποποιήσει/σβήσει (w), και να το θέσει σε εφαρμογή (x). Χρήστες που είναι στην "ομάδα" του αρχείου έχουν δικαιώματα ανάγνωσης/αντιγραφής και τροποποίησης/σβησίματος (rw-). Χρήστες έξω από την ομάδα έχουν μόνο άδεια ανάγνωσης/αντιγραφής (r--). 1 : Αριθμός συνδέσμων του αρχείου (για συνήθη αρχεία είναι 1) george : Το όνομα του ιδιοκτήτη του αρχείου phy145 : Το όνομα της ομάδας του αρχείου 830 : Ο αριθμός των bytes που καταλαμβάνει το αρχείο Mar 29 : Ημερομηνία τελευταίας τροποποίησης του αρχείου 22:24 : Ώρα τελευταίας τροποποίησης του αρχείου input1 : Όνομα του αρχείου Άσκηση 2 Αποθήκευση αριθμών διπλής ακρίβειας: Όρα σημειώσεις 1ης διάλεξης Μέθοδος Newton-Raphson: e i ~ e i-12. Μέθοδος διχοτόμησης: e i = e i-1 /2.
2 Άσκηση 3 C Το πρόγραμμα αυτό διαβάζει από ένα αρχείο το όνομα και την ηλικία C μέχρι 100 ατόμων, και τα ταξινομεί με σειρά ηλικίας. Συνομήλικοι C καταχωρούνται με αλφαβητική σειρά. program AgeAndNameSort! Τα ονόματα και οι ηλικίες στην αρχική σειρά, και στην τελική! Υποθέτουμε ότι το αρχείο περιέχει μέχρι 100 ονόματα/ηλικίες character*15 name(100), namesort(100) integer age(100), agesort(100) integer i, j, k, n open(unit=8, file='phy145proodos2015_ask3.input', status='old') do i = 1, 100! Διαβάζουμε έως 100 ονόματα/ηλικίες read(8,*,end=1) name(i), age(i) write(*,*) 'WARNING: Reached a limit of 100 names/ages!!' 1 n = i-1! Ο αριθμός των ονομάτων/ηλικιών που διαβάστηκαν do i = 1, n! Θα ταξινομήσουμε το i-οστό όνομα/ηλικία do j = 1, i-1! Το συγκρίνουμε με τα i-1 ταξινομημένα ονόματα if(age(i).lt.agesort(j).or. & age(i).eq.agesort(j).and. name(i).lt.namesort(j)) goto 2 2 do k = i-1, j, -1! Τα ονόματα στις θέσεις j έως i-1 namesort(k+1) = namesort(k)! θα μετατοπιστούν ένα βήμα πιο agesort (k+1) = agesort (k)! πέρα, ώστε να ανοίξει χώρος για! το i-οστό όνομα. namesort(j) = name(i)! Τώρα τοποθετούμε το i-οστό όνομα agesort (j) = age (i)! στη σωστή, ταξινομημένη θέση του open(unit=9, file='phy145proodos2015_ask3.output', status='new') write(9,*) ' Names Ages' do i = 1, n write(9,3) namesort(i), agesort(i) 3 format(2x,a15,2x,i3) stop end
3 Θέτουμε το πρόγραμμα σε λειτουργία, με αρχείο εισόδου: Το αρχείο εξόδου είναι: George 15 Maria 7 Alexis 7 Nikos 14 Vasilis 15 Names Ages Alexis 7 Maria 7 Nikos 14 George 15 Vasilis 15 Άσκηση 4 Οι εξισώσεις που απορρέουν από το νόμο του Νεύτωνα είναι: m ẍ = V / x = 292x + 144y, m ÿ = V / y = 208y + 144x Θέτοντας m = 1, και ορίζοντας: v x = ẋ, v y = ẏ, φτάνουμε σ'ένα σύστημα 4 εξισώσεων πρώτης τάξης: ẋ = v x, v x = 292x + 144y, ẏ = v y, v y = 208y + 144x Οι αρχικές συνθήκες είναι: x (0) = 0, v x (0) = 10, y(0) = 1, v y (0) = 0
4 program Harmonic Oscillator implicit none real*8 x, xinitial, xfinal, vx, vxinitial, xnew real*8 y, yinitial, yfinal, vy, vyinitial, ynew real*8 t, tinitial, tfinal, dt, precision integer n, i, fileunit xinitial = 0.d0 xfinal = 1.d200! Μια αυθαίρετα μεγάλη τιμή yinitial = 1.d0 yfinal = 1.d200! Μια αυθαίρετα μεγάλη τιμή vxinitial = 10.d0 vyinitial = 0.d0 tinitial = 0.d0 tfinal = 1.d0 fileunit = 11! Σε ποιο αρχείο θα γράφουμε; Αυθαίρετη τιμή (>6) write(*,*) 'Enter values for initial step and desired precision' read(*,*) dt, precision 1 n = (tfinal-tinitial)/dt t = tinitial x = xinitial y = yinitial vx = vxinitial vy = vyinitial write(fileunit,*) t, x, y, vx, vy do i = 1, n xnew = x + dt * vx! Προσωρινά σώζουμε τη νέα ynew = y + dt * vy! τιμή των x και y. vx = vx + dt * (-292*x + 144*y)! Ενημερώνουμε τα vx και vy, vy = vy + dt * (-208*y + 144*x)! χρησιμοποιώντας παλιά x,y x = xnew! Τώρα σώζουμε τις νέες τιμές y = ynew! των x,y που είχαμε βρει t = t + dt write(fileunit,*) t, x, y, vx, vy if (abs(x-xfinal)+abs(y-yfinal).lt.precision) goto 2! Οι νέες fileunit = fileunit+1! τελικές τιμές συμφωνούν με dt = dt/10! αυτές που είχαμε βρει πριν; xfinal = x! Αν όχι, επανάλαβε τον υποyfinal = y! λογισμό με μικρότερο βήμα goto 1 2 write(*,*) 'Reached a precision of: ', precision write(*,*) 'using step size: ', dt stop end Θέτουμε σε λειτουργία το πρόγραμμα:
5 proodos$ gfortran -o PHY145proodos2015_ask4.x PHY145proodos2015_ask4.f proodos$./phy145proodos2015_ask4.x Enter values for initial step and desired precision d-3 Reached a precision of: E-003 using step size: E-006 proodos$ Παρατηρούμε ότι χρειάστηκε ένα πάρα πολύ μικρό βήμα για να επιτύχουμε μια ικανοποιητική ακρίβεια. Αυτό είχε ως συνέπεια τόσο σπατάλη χρόνου CPU (~ 8sec), όσο και σπατάλη χώρου (μέγεθος αρχείων εξόδου: ~ 150 ΜΒ). Σχεδιάζουμε την τροχιά y(x) με το λογισμικό gnuplot: gnuplot> plot 'fort.12' using 2:3 t 'dt = 0.01', 'fort.13' using 2:3 t 'dt = 0.001' with dots, 'fort.14' using 2:3 t 'dt = ' with dots gnuplot> set title 'Harmonic Oscillator' gnuplot> set xlabel 'x' gnuplot> set ylabel 'y' gnuplot> set term epscairo Terminal type set to 'epscairo' Options are ' transparent fontscale 0.5 size 5.00in, 3.00in ' gnuplot> set out 'PHY145proodos2015_ask4.eps' gnuplot> replot Παρατηρούμε ότι για dt = 0.01 τα αποτελέσματα είναι τελείως αναξιόπιστα, ενώ καθώς το dt μικραίνει αρχίζουν και συγκλίνουν όλο και πιο πολύ. Στο πρόβλημα αυτό μπορούμε να υπολογίσουμε και την ακριβή λύση, η οποία συμφωνεί με το πιο πάνω γράφημα. x(t) = (1/ 25) [9 sin(10t)+12 cos(10t)+8 sin(20t) 12cos(20t)] y(t) = (1/ 25) [12sin(10t)+16 cos(10t) 6 sin(20t)+9 cos(20t)]
ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο
ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα
Ενότητα 3 (μέρος 1 ο )
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΦΥΣ 145: Υπολογιστικές Μέθοδοι στη Φυσική Εαρινό Εξάµηνο 2019
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΦΥΣ 145: Υπολογιστικές Μέθοδοι στη Φυσική Εαρινό Εξάµηνο 2019 Ενδιάµεση Εξέταση 13 Μαρτίου 2019 Οδηγίες : - Απαγορεύεται αυστηρά
Εισαγωγή στο Gnuplot. Σφυράκης Χρυσοβαλάντης
Εισαγωγή στο Gnuplot Σφυράκης Χρυσοβαλάντης Περιεχόμενα Εισαγωγή... 3 Εντολές του Gnuplot... 3 Έξοδος του γραφήματος... 3 Καθορισμός των χαρακτηριστικών του γραφήματος... 4 Συναρτήσεις Αρχεία Δεδομένων...
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΦΥΣ 145: Υπολογιστικές Μέθοδοι στη Φυσική Εαρινό Εξάµηνο 2019
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΦΥΣ 145: Υπολογιστικές Μέθοδοι στη Φυσική Εαρινό Εξάµηνο 2019 Ενδιάµεση Εξέταση 13 Μαρτίου 2019 Οδηγίες : - Απαγορεύεται αυστηρά
Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:
Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =
Είσοδος -Έξοδος. Άνοιγµα αρχείου:
Είσοδος -Έξοδος Άνοιγµα αρχείου: open (unit = αριθµός, file = "όνοµα_αρχείου") Αριθµός: θετικός ακέραιος (εκτός του 6) µε τον οποίο αναφερόµαστε στο αρχείο Όνοµα αρχείου: το όνοµα του αρχείου (καλύτερα
Εισαγωγή στη Fortran. Μάθημα 3 ο. Ελευθερία Λιούκα
Εισαγωγή στη Fortran Μάθημα 3 ο Ελευθερία Λιούκα liouka.eleftheria@gmail.com Περιεχόμενα Loops External Functions Subroutines Arrays Common mistakes Loops Ανάγκη να εκτελέσουμε τις ίδιες εντολές πολλές
ΕΞΕΤΑΣΕΙΣ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΗΧΑΝΙΚΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 ΖΩΓΡΑΦΟΥ, 157 80 ΑΘΗΝΑ ηλ. ταχυδρομείο: semfe@central.ntua.gr, fax: 2107721685 ιστοσελίδα: semfe.ntua.gr
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 (λύσεις)
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Να υπολογιστούν τα όρια 4 + n n ) n ) n n + n + ) n + 5) n 7 n+ + ) n Θεωρούµε την ακολουθία a n ), που ορίζεται
Ενότητα 1 Διάλεξη 3. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 3 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M7 Δομές δεδομένων: Πίνακες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ
Εισαγωγή στον Προγραμματισμό Εργαστήριο 3: Βοηθητικά προγράμματα του Linux CLI. Οκτώβριος 2014 Χ. Αλεξανδράκη Γ. Δημητρακάκης
Εισαγωγή στον Προγραμματισμό Εργαστήριο 3: Βοηθητικά προγράμματα του Linux CLI Οκτώβριος 2014 Χ. Αλεξανδράκη Γ. Δημητρακάκης Περίληψη Προηγούμενου Επισκόπηση αρχείων και επεξεργασία κειμένου Εντολές file,
Μονοδιάστατοι πίνακες
Μονοδιάστατοι πίνακες Τι είναι ο πίνακας στον προγραμματισμό; Ο πίνακας είναι μια σύνθετη μεταβλητή που καταλαμβάνει παραπάνω από μια θέση στην μνήμη του Η/Υ, έχει ένα συγκεκριμένο όνομα και δέχεται ένα
Εισαγωγή στη Fortran. Μάθημα 1 ο. Ελευθερία Λιούκα
Εισαγωγή στη Fortran Μάθημα 1 ο Ελευθερία Λιούκα liouka.eleftheria@gmail.com Περιεχόμενα Ιστορία της Fortran Βασικές γνώσεις Fortran Επιτρεπτοί χαρακτήρες Μορφή προγράμματος Τύποι μεταβλητών Πράξεις και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2011-2012 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 26.10.2011 Άσκηση 1. Να μετατραπεί
FORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
8 FORTRAN 77/90/95/2003
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή... 17 1.1. Ανασκόπηση της ιστορίας των υπολογιστών... 18 1.2. Πληροφορία και δεδομένα... 24 1.3. Ο Υπολογιστής... 26 1.4. Δομή και λειτουργία του υπολογιστή... 28 1.5.
Μονοδιάστατοι πίνακες
Μονοδιάστατοι πίνακες Επικ. Καθ. Ν. Καραµπετάκης Τµήµα Μαθηµατικών, Α.Π.Θ. Τι είναι οι πίνακες και που χρειάζονται ; Να γραφεί πρόγραµµα τοοποίο, εφόσον διαβάσει Ν αριθµούς, στη συνέχεια θα υπολογίζει
Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 5: Εντολές Επανάληψης Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εισαγωγή στον Προγραμματισμό Εργαστήριο 3: Βοηθητικά προγράμματα του Linux CLI. Οκτώβριος 2014 Χ. Αλεξανδράκη Γ. Δημητρακάκης
Εισαγωγή στον Προγραμματισμό Εργαστήριο 3: Βοηθητικά προγράμματα του Linux CLI Οκτώβριος 2014 Χ. Αλεξανδράκη Γ. Δημητρακάκης Περίληψη Προηγούμενου Επισκόπηση αρχείων και επεξεργασία κειμένου Εντολές file,
Μορφοποίηση της εξόδου
Μορφοποίηση της εξόδου (i) Όταν θέλουμε τα αποτελέσματα μιάς εντολής WRITE(*, *) να εμφανίζονται με συγκεκριμένο τρόπο τροποποιούμε τον δεύτερο αστερίσκο. 2 τρόποι μορφοποίησης WRITE(*, '(format εξόδου)')
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 15 Μαίου 2013
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 15 Μαίου 013 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2009-2010 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 13.10.2009 Άσκηση 1. Δίνονται τα
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 20 Μαρτίου 2011 Οµάδα
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 20 Μαρτίου 2011 Οµάδα Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα που
ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004)
1 ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004) ιάλεξη 1 1.1 ΕΙΣΑΓΩΓΗ ΣΤΗ FORTRAN 77 Ένα πρόγραµµα σε οποιαδήποτε γλώσσα προγραµµατισµού δεν τίποτα άλλο από µια σειρά εντολών που πρέπει
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια υπορουτίνα; ΥΠΟΡΟΥΤΙΝΕΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν ή περισσότερους υπολογισμούς Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές φορές μέσα
Δομή προγράμματος στη Fortran
Δομή προγράμματος στη Fortran Ένα πρόγραμμα γραμμένο σε Fortran αποτελείται από: Την επικεφαλίδα του προγράμματος. Το τμήμα των δηλώσεων. Το τμήμα των προτάσεων (εντολών). Το τμήμα των υποπρογραμμάτων.
Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 2ο Aντώνης Σπυρόπουλος v2_061015 Οροι που
Πίνακες. (i) FORTRAN και Αντικειµενοστραφής Προγραµµατισµός
Πίνακες (i) οµηµένη µεταβλητή: αποθηκεύει µια συλλογή από τιµές δεδοµένων Πίνακας (array): δοµηµένη µεταβλητή που αποθηκεύει πολλές τιµές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Fortran και Αντικειµενοστραφής προγραµµατισµός.
Fortran και Αντικειµενοστραφής προγραµµατισµός www.corelab.ntua.gr/courses/fortran_naval/naval δάσκοντες: ΆρηςΠαγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) ώρασούλιου (dsouliou@mail.ntua.gr)
Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 3: Ο τελεστής ανάθεσης και οι εντολές εισόδου εξόδου Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Λύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2008-2009 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 14.10.2008 Να μετατραπεί ο αριθμός στο δυαδικό σύστημα.! " Ο αριθμός μετατρέπεται αρχικά
ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στο Unix
ΕΠΛ 003: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στο Unix Υπολογιστικά συστήματα: Στρώματα 1 επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Περιεχόμενα 2 Εισαγωγή
Κεφάλαιο 2 : Περιγραφή της Κίνησης. Υπολογιστική Φυσική Ι. Αναγνωστόπουλος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Φυσική Ι Κεφάλαιο 2 : Περιγραφή της Κίνησης Αναγνωστόπουλος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό
Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγµα # ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση ίδεται η διαφορική εξίσωση: dy dx y 0 = 0 x = y + e, Να επιλυθεί το πρόβληµα αρχικών τιµών µε τις µεθόδους Euler και Runge-Kutta
Δομή προγράμματος στη Fortran
Δομή προγράμματος στη Fortran Ένα πρόγραμμα γραμμένο σε Fortran αποτελείται από: Την επικεφαλίδα του προγράμματος. Το τμήμα των δηλώσεων. Το τμήμα των προτάσεων (εντολών). Το τμήμα των υποπρογραμμάτων.
Ο τελεστής ανάθεσης και οι εντολές εισόδουεξόδου
Ο τελεστής ανάθεσης και οι εντολές εισόδουεξόδου Ο τελεστής ανάθεσης = και η βασική του διαφορά από το σύµβολο ισότητας. Η εντολή ανάγνωσης µεταβλητών READ. Η εντολή εκτύπωσης µεταβλητών WRITE. οµή προβληµάτων
[11] Υπολογιστικά συστήματα: Στρώματα. Περιεχόμενα. Εισαγωγή. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό
Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗς ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Εισαγωγή στο Unix Περιεχόμενα Εισαγωγή 2 Εισαγωγή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 12.10.2010 Άσκηση 1. Να μετατρέψετε
Εντολές Επανάληψης. Επικ. Καθ. Ν. Καραµπετάκης, Τµήµα. Τµήµα Μαθηµατικών, Α.Π.Θ.
Εντολές Επανάληψης Επικ. Καθ. Ν. Καραµπετάκης Τµήµα Μαθηµατικών, Α.Π.Θ. Οι εντολές επανάληψης Παράδειγµα 1. Έστω ότι µας ζητείται να βρούµε το άθροισµα 10 αριθµών. Τότε θα πρέπει να εκτελέσουµε 10 φορές
Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)
Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=
Μερικές άλλες χρήσιμες εντολές
1 Μερικές άλλες χρήσιμες εντολές whoami (Εμφανίζει το όνομα του τρέχοντος χρήστη) pwd (Εμφανίζει το όνομα του τρέχοντος καταλόγου) cat text file name (Παρουσιάζει στην οθόνη το περιεχόμενο ενός αρχείου
Fortran και Αντικειμενοστραφής προγραμματισμός.
Fortran και Αντικειμενοστραφής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Διδάσκοντες: Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)
Introduction Ν. Παπαδάκης 21 Οκτωβρίου 2015 Ν. Παπαδάκης Introduction 21 Οκτωβρίου / 47
Introduction Ν. Παπαδάκης 21 Οκτωβρίου 2015 Ν. Παπαδάκης Introduction 21 Οκτωβρίου 2015 1 / 47 Περιεχόμενα 1 Παρουσίαση Ποβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή του ίδιου προβλήματος
ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004)
32 ΦΥΣ-151. Ηλεκτρονικοί Υπολογιστές Ι (FORTRAN 77) (Άνοιξη 2004) ιάλεξη 5 5.1 Ι ΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Εκτός από τους µονοδιάστατους πίνακες ή διανυσµατα που συζητήσαµε στην παράγραφο 4.1, µπορούµε να αποθηκεύσουµε
Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Στοιχεία Προγραμματισμού Σε Γραφικό Περιβάλλον Φύλλο εργασίας 1 ο
Τετάρτη, 30 Οκτωβρίου 2013 Στοιχεία Προγραμματισμού Σε Γραφικό Περιβάλλον Φύλλο εργασίας 1 ο Λύστε στο Visual Basic Express 2010 τις παρακάτω ασκήσεις: 1. Να δημιουργήσετε ένα νέο Project του είδους Console
Πίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός
Πίνακες (i) Δομημένη μεταβλητή: αποθηκεύει μια συλλογή από τιμές δεδομένων Πίνακας (array): δομημένη μεταβλητή που αποθηκεύει πολλές τιμές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas
Ενότητα 1 Διάλεξη 4. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 4 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.
bits and bytes q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων
bits and bytes ΦΥΣ 145 - Διαλ.02 1 q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων q Η μνήμη χωρίζεται σε words και κάθε word περιέχει τμήμα πληροφορίας q Ο αριθμός των words σε μια
α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y
Ασκήσεις στα Μαθηματικά ΙΙΙ Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 2018-2019 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΙΣΑΓΩΓΗ 1. Στις παρακάτω Δ.Ε. να προσδιορίσετε: α) την ανεξάρτητη και την εξαρτημένη
Βασικά στοιχεία στο Matlab
Αριθμητική : + - * / ^ 3ˆ2 - (5 + 4)/2 + 6*3 >> 3^2 - (5 + 4)/2 + 6*3 22.5000 Βασικά στοιχεία στο Matlab Το Matlab τυπώνει την απάντηση και την καταχωρεί σε μια μεταβλητή που την ονομάζει ans. Αν θέλουμε
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Τα ισοζύγια μάζας του συστήματος διανομή ατμού σε μονάδα διυλιστηρίου δίνονται από τις παρακάτω
1 Επίλυση Συνήθων ιαφορικών Εξισώσεων
1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη
Non Linear Equations (2)
Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙ ΕΥΤΙΚΑ Ι ΡΥΜΑΤΑ Μάθηµα: Πληροφορική Ηµεροµηνία εξέτασης: Σάββατο,
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB 1. Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (Σ.Δ.Ε.) 1 ης τάξης έχει τη μορφή dy dt f ( t, y( t)) όπου η συνάρτηση f(t, y) είναι γνωστή,
Προγραµµατισµός Ι Εργαστήριο 3ο Ακαδ. Έτος ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ
ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I, ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Στόχοι Εξάσκηση στη βασική είσοδο / έξοδο Εξάσκηση στη χρήση µεταβλητών Δυαδικοί τελεστές Φορµαρισµένη έξοδος Πριν ξεκινήσετε Βήµα 1:
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ
ΕΙ ΑΓΩΓΉ ΣΗΝ FORTRAN
ΕΙΑΓΩΓΉ ΣΗΝ FORTRAN ΕΙΑΓΩΓΙΚΑ ΣΟΙΧΕΙΑ FORTRAN (FORmula TRANslator) -είναι από τις πρώτες γλώσσες υψηλού επιπέδου -σχεδιάστηκε αρχικά για μαθηματικούς σκοπούς -κάνει δυνατή την υπολογιστική επίλυση προβλημάτων
- Αναπαράσταση ακέραιας τιµής : - Εύρος ακεραίων : - Ακέραιοι τύποι: - Πράξεις µε ακεραίους (DIV - MOD)
Η Γλώσσα Pascal Χαρακτηριστικά Τύποι Δεδοµένων Δοµή προγράµµατος 1. Βασικές έννοιες Χαρακτηριστικά της γλώσσας Pascal Γλώσσα προγραµµατισµού Συντακτικό Σηµασιολογία Αλφάβητο της γλώσσας Pascal (Σύνολο
Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος
Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation
ΕΞΕΤΑΣΕΙΣ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΟΥ ΜΗΧΑΝΙΚΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 ΖΩΓΡΑΦΟΥ, 157 80 ΑΘΗΝΑ ηλ. ταχυδρομείο: semfe@central.ntua.gr, fax: 2107721685 ιστοσελίδα: semfe.ntua.gr
Εξίσωση Διάχυσης στη Μία Διάσταση
ΚΕΦΑΛΑΙΟ 8 Εξίσωση Διάχυσης στη Μία Διάσταση 8.1 Εισαγωγή Η εξίσωση διάχυσης είναι στενά συνδεδεμένη με τη διαδρομή ενός τυχαίου περιπατητή (random walker). Ας υποθέσουμε ότι μελετάμε την κίνηση ενός τέτοιου
Εξίσωση Διάχυσης στη Μία Διάσταση
ΚΕΦΑΛΑΙΟ 9 Εξίσωση Διάχυσης στη Μία Διάσταση 9.1 Εισαγωγή Η εξίσωση διάχυσης είναι στενά συνδεδεμένη με την τυχαία διαδρομή ενός τυχαίου περιπατητή (random walker). Ας υποθέσουμε ότι μελετάμε την κίνηση
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Δίνοντας το ολοκλήρωμα στη Mathematica παίρνουμε την τιμή του: 0 40 100 140558 z 2z 15
Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1
Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΙΙ ΕΡΓΑΣΤΗΡΙΟ ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΔΙΑΔΙΚΑΣΙΑ ΕΞΕΤΑΣΗΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΙΙ ΕΡΓΑΣΤΗΡΙΟ ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΔΙΑΔΙΚΑΣΙΑ ΕΞΕΤΑΣΗΣ Οι σπουδαστές που έχουν ολοκληρώσει με επιτυχία το εργαστήριο του Προγραμματισμού Ι, τυπικά είναι εξοικειωμένοι με: τη χρήση ολοκληρωμένου
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f
Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 10. Αντικείμενα Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative
Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α. Σπυρόπουλος Α. Μπουντουβής
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α Σπυρόπουλος Α Μπουντουβής Αθήνα, 2015 v13_061015 Στον οδηγό αυτό θα χρησιμοποιηθούν
Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση α. Να στρογγυλοποιηθούν οι παρακάτω αριθμοί σε 4 σημαντικά ψηφία. 3 8 7.0045, 79.830, 73448,,, 7 9 3 Στρογγυλοποίηση σε 4 σημαντικά
Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE
ΕΡΓΑΣΤΗΡΙΟ 7 Ο Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE Βασικές Έννοιες: Δομή Επανάληψης, Εντολές Επανάληψης (For, While do, Repeat until), Αλγόριθμος, Αθροιστής, Μετρητής, Παράσταση
Συμβολικά ονόματα που δίνονται σε θέσεις μνήμης όπου αποθηκεύονται αριθμοί. ιεύθυνση
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι οι μεταβλητές ΕΣ ΤΑΒΛΗΤ - ΜΕΤ ΙΣΤΕΣ Ι ΠΟΛΟΓΙ ΥΠ ΜΕΤΑΒΛΗΤΕΣ Συμβολικά ονόματα που δίνονται σε θέσεις μνήμης όπου αποθηκεύονται αριθμοί. ιεύθυνση 0 1 2 3 4 MNHMH 5 6 7 8 9 Κ Α 1..
Ενότητα 1: «Εισαγωγή στην Αλγοριθμική και τον Προγραμματισμό. Απλές ασκήσεις με γλώσσα Pascal»
Ενισχυτική διδασκαλία διδακτικές ενότητες αλγοριθμικής και εισαγωγής στον προγραμματισμό Ενότητα 1: «Εισαγωγή στην Αλγοριθμική και τον Προγραμματισμό. Απλές ασκήσεις με γλώσσα Pascal» διδάσκων: χρήστος
Προγραμματισμός PASCAL
Προγραμματισμός PASCAL 1 PASCAL Η PASCAL σχεδιάστηκε από τον Worth το 1968 στη Ζυρίχη, αρχικά σαν εργαλείο για τη διδασκαλία προγραμματισμού. Είναι γλώσσα για σειριακό προγραμματισμό. 2 Απλή και εύκολη
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 02, 09 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Μη γραμμικές εξισώσεις 2. Η μέθοδος της διχοτόμησης 1 Μη γραμμικές
4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα
ΚΕΦΑΛΑΙΟ 4 Κίνηση Σωματιδίου Στο κεφάλαιο αυτό μελετάται αριθμητικά η επίλυση των κλασικών εξισώσεων κίνησης μονοδιάστατων μηχανικών συστημάτων, όπως λ.χ. αυτή του σημειακού σωματιδίου σε μια ευθεία, του
ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Τμήματα Υπολογιστή) ΕΚΠΑΙΔΕΥΤΗΣ:ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ Κάθε ηλεκτρονικός υπολογιστής αποτελείται
Εισαγωγή στο Προγραμματισμό για Μηχανολόγους Οδηγός Προετοιμασίας για τη Τελική Εξέταση
Σκοπός Εισαγωγή στο Προγραμματισμό για Μηχανολόγους Οδηγός Προετοιμασίας για τη Τελική Εξέταση. Επανάληψη των βασικών εννοιών της PASCAL και του προγραμματισμού οι έννοιες της μεταβλητής, του τύπου δεδομένων,
Παράδειγμα #3 ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ
Παράδειγμα # ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ ) Να βρεθεί µία πραγµατική ρίζα της εξίσωσης, x xx µε τις µεθόδους α) της διχοτόµησης β) της γραµµικής παρεµβολής γ) των διαδοχικών επαναλήψεων
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Program cinema (input, output);
Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 4: Εντολές συνθήκης και διακλάδωσης Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888
ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε μερικά από τα ιδιαίτερα χαρακτηριστικά της Pascal. 2. Ποιο είναι το αλφάβητο της Pascal; 3. Ποια είναι τα ονόματα-ταυτότητες και σε τι χρησιμεύουν; 4. Σε τι χρησιμεύει το συντακτικό
ιαφάνειες παρουσίασης #5
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης #5!Παρουσίαση
Κεφάλαιο 5ο: Εντολές Επανάληψης
Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες
ΕΙΣΑΓΩΓΗ ΣΤΗΝ FORTRAN 77
ΣΗΜΕIΩΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ FORTRAN 77 Ν. ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Α.Π.Θ. Μάρτιος 2012 ΕΓΚΑΤΑΣΤΑΣΗ Εγκαθιστούμε τον μεταγλωττιστή από το αρχείο http://www.lepsch.com/downloads/force209g77setup.exe Δημιουργούμε
Ενότητα 4. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 4 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΦΥΣ 145 - Διαλ.03. Ø Εντολές ελέγχου και λογικής. Ø Εντολές µεταφοράς. Ø Βρόγχοι επανάληψης εντολών. Ø Βρόγχοι επανάληψης µε λογικές σχέσεις
ΦΥΣ 145 - Διαλ.03 1 Ø Εντολές ελέγχου και λογικής Ø Εντολές µεταφοράς Ø Βρόγχοι επανάληψης εντολών Ø Βρόγχοι επανάληψης µε λογικές σχέσεις Εντολές Ελέγχου και Λογικής ΦΥΣ 145 - Διαλ.03 2 q Τα assignment
2.3 Επιπλέον συναρτήσεις για δισδιάστατα γραφικά
2.3 Επιπλέον συναρτήσεις για δισδιάστατα γραφικά 2.3.1 Γραφική παράσταση καμπύλης που ορίζεται με παραμετρικές εξισώσεις Μερικές φορές, οι καμπύλες ορίζονται παραμετρικά, για παράδειγμα μπορεί οι συντεταγμένες
Εξίσωση Διάχυσης στη Μία Διάσταση
Εξίσωση Διάχυσης στη Μία Διάσταση Κωνσταντίνος Ν. Αναγνωστόπουλος Τομέας Φυσικής Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβειο Πολυτεχνείο Πολυτεχνειούπολη Ζωγράφου 157 8 Ζωγράφου
Γενική οργάνωση υπολογιστή «ΑΒΑΚΑ»
Περιεχόμενα Γενική οργάνωση υπολογιστή «ΑΒΑΚΑ»... 2 Καταχωρητές... 3 Αριθμητική-λογική μονάδα... 3 Μονάδα μνήμης... 4 Μονάδα Εισόδου - Εξόδου... 5 Μονάδα ελέγχου... 5 Ρεπερτόριο Εντολών «ΑΒΑΚΑ»... 6 Φάση
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V