CSC 314: Switching Theory

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CSC 314: Switching Theory"

Transcript

1 CSC 314: Switching Theory Course Summary 9 th January

2 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

3 Περιγραφή Γλωσσών Φραστική Περιγραφή L ={οι λέξεις του αλφαβήτου Σ ={a,b} με το πολύ 2 a }} Κανονικές Εκφράσεις (Γλώσσες) πχ. L= ( b* (b* a b*) (b* a b* a b* ) Ιδιότητες (κλειστότητα ως προς..) 3

4 Απλά Μοντέλα Υπολογισμού 1. Ντετερμινιστικά Πεπερασμένα Αυτόματα για κάθε σύμβολο του αλφάβητου και κατάσταση προσδιορίζεται ποια είναι η επόμενη κατάσταση. Μαγνητική ταινία εισόδου a b b a b a Διάγραμμα Καταστάσεων q σ q 0 a q 0 q 0 b q 1 q 1 a q 1 q 1 b δ(q,σ) q 0 Κεφαλή ανάγνωσης q 0 q 3 q 2 q 1 Πεπερασμένος έλεγχος Πεπερασμένες καταστάσεις Διάγραμμα Καταστάσεων 4

5 Τι μάθαμε? Από μια φραστική περιγραφή να κατασκευάσουμε ένα ΝΠΑ. 5

6 Απλά Μοντέλα Υπολογισμού 2. Μη-Ντετερμινιστικά Πεπερασμένα Αυτόματα προσδιορίζονται μόνο οι επιτρεπτές μεταβάσεις δ(q, a)= p. ότι δεν προσδιορίζεται δεν είναι επιτρεπτό. a ε-μη-ντετερμινιστικό b e e q 0 q 1 q 2 c 6

7 Τι μάθαμε? Από μια φραστική περιγραφή να κατασκευάσουμε ένα ΜΝΠΑ. Ιδιότητες Πεπερασμένων αυτόματων (κλειστότητα ως προς..) Θεώρημα. Μια γλώσσα είναι κανονική αν και μόνο αν γίνεται δεκτή από ένα πεπερασμένο αυτόματο. Αλγόριθμος κατασκευής ενός ΜΝΠΑ από μια κανονική έκφραση Θεώρημα. Για κάθε μη-ντετερμινιστικό πεπερασμένο αυτόματο υπάρχει ένα ισοδύναμο ντετερμινιστικό πεπερασμένο αυτόματο. Ο αλγόριθμος απαιτεί εκθετικό χρόνο ως προς το μέγεθος του μηντετερμινιστικού αλγόριθμου 7

8 Κανονικές και Μη-Κανονικές Γλώσσες Θεώρημα Άντλησης (ισχυρή μορφή). Έστω (άπειρη) κανονική γλώσσα L. Τότε υπάρχει n 1 τέτοιο ώστε κάθε συμβολοσειρά w L, w n(=μ L ), μπορεί να γραφτεί ως : w= x y z ώστε y e και xy n (=Μ L ) και για κάθε ακέραιο i 0, ηλέξη xy i z L. Πχ. Δείξτε ότι η L 1 = { a n b n n 0}δεν είναι κανονική. παίρνω μια λέξη a n b n = a Μ L b Μ L Παρατήρηση. To Μ L είναι παράμετρος της γλώσσας. ΜπορώναπαίρνωλέξειςπιομεγάλεςαπόΜ L, π.χ. w = 2Μ L xy Μ L, έτσι οι δυνατές περιπτώσεις για το τι μπορεί να είναι η x, y περιορίζονται. 8

9 Συμπέρασμα Υπάρχουν μη-κανονικές γλώσσες, π.χ. η a n b n. δεν μπορούν να αναπαρασταθούν με Πεπερασμένα αυτόματα Υπάρχουν πιο ισχυρά μοντέλα υπολογισμού για αυτές?? 9

10 ΝΑΙ! Κατηγορηματικές (χωρίς συμφραζόμενα) Γραμματικές Οι λέξεις μιας γλώσσας παράγονται εκτελώντας μια ακολουθία από ένα σύνολο από κανόνες όπου μη-τερματικά σύμβολα (π.χ. S, A, B) παράγουν λέξεις από τερματικά (a, b, c) και μη τερματικά σύμβολα. πχ. S asb Π.χ. G = ( V, Σ, R, S ), Σ = {a,b}, R = { S asb, S e Παράγει την a n b n Το με τι αντικαταστατέ ένα μη-τερματικό δεν επηρεάζεται από το τι υπάρχει πριν ή μετά το μη-τερματικό (συμφραζόμενα) πχ. S asb a asb b 10

11 Τι μάθαμε? Ιδιότητες (κλειστότητα ως προς..) Θεώρημα. Όλες οι κανονικές γλώσσες είναι γλώσσες χωρίς συμφραζόμενα. πεπερασμένο αυτόματο που δέχεται την κανονική γλώσσα (Αλγόριθμος 1) γραμματική χωρίς συμφραζόμενα για τη γλώσσα Γλώσσες κανονικής γραμματικής: κανόνες της μορφής A ab Θεώρημα Μια γλώσσα είναι κανονική αν και μόνο υπάρχει μια κανονική γραμματική που την παράγει. Αλγόριθμος 1: από το πεπερασμένο αυτόματο της γλώσσας κατασκευάζουμε μια γραμματική χωρίς συμφραζόμενα για αυτήν. Αλγόριθμος 2: από μια κανονική γραμματική κατασκευάζουμε ένα μηντετερμινιστικό αυτόματο που την εκφράζει 11

12 Aυτόματα Στοίβας Είναι όπως τα μη-ντετερμινιστικά πεπερασμένα αυτόματα αλλά έχουν και μνήμη: Στοίβα M=(Q, Σ, Γ, δ, s, F), όπου Q= {q,p}, Σ={a,b,c}, Γ={a,b}, F=f, και δ: 1. δ(s, a, ε) = {(s, a)} 2. δ(s, b, ε) = {(s, b)} 3. δ(s, c, ε) = {(f, ε)} 4. δ(f,a,a) = {(f, e)} 5. δ(f,b,b) = {(f, e)} Δέχεται τη γλώσσα L= {wcw R : w {a,b}*}. 12

13 Τι μάθαμε? Θεώρημα. Κάθε κατηγορηματική γραμματική γίνεται δεκτή από κάποιο αυτόματο στοίβας. Αλγόριθμος Θεώρημα. Αν μια γλώσσα είναι δεκτή από κάποιο αυτόματο στοίβας τότε είναι κατηγορηματική γραμματική. Συμπέρασμα. Μιαγλώσσαείναιδεκτήαπόκάποιοαυτόματο στοίβας αν και μόνο αν είναι δεκτή από μια κατηγορηματική γραμματική. Μπορούμε να αναπαραστήσουμε όλες τις γλώσσες με αυτόματο στοίβας? Πχ. η a n b n c n είναιδεκτήαπόκάποιοαυτόματοστοίβας? 13

14 Θεώρημα Άντλησης για κατηγορηματικές Θεώρημα 2 (άντλησης για κατηγορηματικές). (2 η διατύπωση) Έστω G=(V, Σ, R, S) μια γ.χ.σ.. Τότε κάθε συμβολοσειρά w L(G) με w > φ(g) V-Σ (=Μ L ) μπορεί να ξαναγραφτεί ως w = uvxyz με τρόπο ώστε είτε v ε είτε y ε vxy M L και u v i x y i z L(G) για κάθε i 0. Π.χ. Η a n b n c n δεν είναι κατηγορηματική! Παρατήρηση. To Μ L είναι παράμετρος της γλώσσας. Όταν μπορώ να παίρνω λέξεις πιο μεγάλες από Μ L, π.χ. w= a Μ L b Μ L c Μ L, w = = 3Μ L vxy Μ L, έτσι οι δυνατές περιπτώσεις για το τι μπορεί να είναι η x, y περιορίζονται (π.χ. μπορεί να περιέχουν μόνο 2 από τα 3 σύμβολα). 14

15 Πιο ισχυρά μοντέλα υπολογισμού? Μηχανές Turing αλλά μπορούν και να γράφουν στην ταινία εισόδου και να μετακινούνται σε αυτή και αριστερά Ντετερμινιστικές Μηχανές Turing όπως τα ντετερμινιστικά πεπερασμένα αυτόματα πρέπει να ορίζονται όλες οι δυνατές μεταβάσεις δ(d, a) = (p, b), a Σ, b={,, Σ} Μη Ντετερμινιστικές Μηχανές Turing όπως τα μη-ντετερμινιστικά πεπερασμένα αυτόματα ορίζονται μόνο οι επιτρεπτές μεταβάσεις 15

16 Παράδειγμα Παράδειγμα. Μ=(Q, Σ, δ, s, {h}):q={q 0, q 1, h} Σ ={a, t, B}, s={q 0 } (q 1, Btaaaa} ` (q 0, Btaaaa} ` (q 1, Bttaaa} ` (q 0, Bttaaa}. ` (q 1, Bttttt} ` (q 0, Btttttt} ` (h, Bttttttt} q σ δ(q,σ) q 0 a ( q 1, t) q 0 t ( h, t ) q 0 B ( q 0, ) q 1 q 1 q 1 a (q 0,a) t (q 0, ) B (q 1, ) 16

17 Αναπαράσταση Μηχανών Turing Αναπαριστούμε τις μηχανές συνθέτοντας πιο απλές μηχανές σε πιο πολύπλοκες. 17

18 Αναδρομικές Γλώσσες Αν Σ 0 Σ -{t, B}το αλφάβητο εισόδου της M H M αποφασίζει μια γλώσσα L Σ 0* αν για κάθε λέξη w Σ * 0 είναι αληθές ότι: Αν w L, η M δέχεται (τερματίζει με κατάσταση y) την w και αν w L η Μ απορρίπτει (τερματίζει με κατάσταση n) την w. Μιαγλώσσαείναιαναδρομική αν υπάρχει μια μηχανή που την αποφασίζει. Αναδρομικές Συναρτήσεις: ορίζονται αντίστοιχα Ιδιότητες (κλειστότητα ως προς..) 18

19 Αναδρομικά Απαριθμήσιμες Γλώσσες Αν μια μηχανή Turing αποφασίζει μια γλώσσα ή υπολογίζει μια συνάρτηση μπορεί να θεωρηθεί ως ένας αλγόριθμος. Ορισμός. Έστω Μ=(Q, Σ, δ, s, {h}) και Σ 0 Σ -{t, B}ένα αλφάβητο και L Σ * μια γλώσσα. 0 ΗΜημιαποφασίζει την L αν για κάθε λέξη w Σ * 0 αληθεύει το εξής: w L αν και μόνο αν η M τερματίζει με είσοδο w. Παρατηρείστε. Αν η Μ έχει είσοδο w L τερματίζει Αν όμως w Σ * 0-L τότε η Μ δεν θα εισέλθει ποτέ σε κατάσταση τερματισμού. Μια γλώσσα L είναι αναδρομικά απαριθμήσιμη αν υπάρχει μια μηχανή Μ που ημιαποφασίζει την L. Ιδιότητες Αναδρομικά Απαριθμήσιμων γλωσσών (κλειστότητα ως προς ) 19

20 Μειονέκτημα Μηχανών Turing Στα αυτόματα αν διαβαστεί όλη η λέξη το αυτόματο τερματίζει πάντα σε τελική (οπότε αποδέχεται τη λέξη) ημητελικήκατάσταση(οπότε δεν αποδέχεται τη λέξη). Στις μηχανές Turing που ημιαποφασίζουν για μια γλώσσα αν η λέξη δεν είναι αποδεχτή δεν τερματίζει ποτέ αλλά συνεχίζει επ άπειρον να κάνει υπολογισμούς. Οπότεδενξέρουμεανπεριμέναμεαρκετάγιαναδούμεανηλέξη είναι αποδεχτή ή όχι. 20

21 Αναδρομικές Γλώσσες Ιδιότητες Αναδρομικών Γλωσσών (κλειστότητα ως προς..) συναναδρομικά απαριθμήσιμες γλώσσες 21

22 Επεκτάσεις Μηχανών Turing Πρόταση. Οποιαδήποτε συνάρτηση υπολογίζεται ή οποιαδήποτε γλώσσα αποφασίζεται ή ημιαποφασίζεται από μια μηχανή Turing τυχαίας προσπέλασης ή πολλών κεφαλών ή ταινιών εισόδου υπολογίζεται, αποφασίζεται ή ημιαποφασίζεται, αντίστοιχα από μια μηχανή Turing. Η κατασκευή της μηχανής Turing γίνεται σε πολυνυωνυμικό χρόνο. 22

23 Μη-ντετερμινιστικές μηχανες Turing Από μια συνολική κατάσταση είναι δυνατόν να προκύψουν πολλές εναλλαχτικές συνολικές καταστάσεις. Πρόταση. Οποιαδήποτε συνάρτηση υπολογίζεται ή οποιαδήποτε γλώσσα αποφασίζεται ή ημιαποφασίζεται από μια Μη Ντετερμινιστική μηχανή Turing, υπολογίζεται, αποφασίζεται ή ημιαποφασίζεται, αντίστοιχα από μια μηχανή Turing. Η κατασκευή της ντετερμινιστικής μηχανής Turing γίνεται σε εκθετικό χρόνο! 23

24 Καθολικές Μηχανές Turing Κωδικοποιώ την λειτουργία (μηχανή Turing, Μ 1 ) που θέλω να εκτελέσω ως μια λέξη ΤηνεισάγωστηνείσοδοτηςKαθολική Μηχανή Turing H μηχανή προσδιορίζει τις μεταβάσεις της με βάση την κωδικοποιημένη M 1 24

25 Υπολογισιμότητα Θέση Church-Turing: ότιμπορείναυπολογιστεί(υπάρχει αλγόριθμος) μπορεί να υπολογιστεί από μια μηχανή Turing. Δηλ. Αλγόριθμος είναι μια μηχανή Turing που τερματίζει για όλες τις εισόδους του προβλήματος Τα προβλήματα που δεν μπορούν να επιλυθούν από μια μηχανή Turing (μη-αναδρομικά) δεν μπορούν να επιλυθούν. (μη επιλύσιμα). Υπάρχουν μη επιλύσιμες γλώσσες? 25

26 Ένα μη-επιλύσιμο πρόβλημα Το πρόβλημα του τερματισμού ένα πρόγραμμα P, με είσοδο x, θα τερματίσει ή θα πέσει σε άπειρη ανακύκλωση? Δείξαμε ότι ένα τέτοιο πρόγραμμα δεν υπάρχει! Γλώσσα Τερματισμού Κ 0 ={(p(m),w) : η Turing μηχανή Μ τερματίζει με είσοδο x} Δείξαμε ότι η Κ 0 είναι μη αναδρομική! 26

27 Συνέπεια: Πολλά Μη-επιλύσημα προβλήματα Ορισμός. (Πολλά προς Ένα Αναγωγισιμότητα) Έστω L 1, L 2 Σ * δύο γλώσσες. Μια αναγωγή από την L 1 στην L 2, L 1 L 2, είναι μια αναδρομική συνάρτηση τ: Σ * Σ * τέτοια ώστε x L 1 αν και μόνο αν τ(x) L 2. Χρήση: ΓιαναδείξουμεότιηL 2 δεν είναι αναδρομική: Προσδιορίζω μια γλώσσα L 1 που είναι γνωστό ότι είναι μη αναδρομική Ανάγω την L 1 στην L 2. 27

28 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να υπολογιστεί με μια μηχανή Turing υπάρχουν προβλήματα που δεν μπορούν να επιλυθούν (π.χ. πρόβλημα τερματισμού υπάρχουν προβλήματα που μπορούν να επιλυθούν Επιλύσιμα προβλήματα Πόσους υπολογιστικούς πόρους απαιτούν χρόνο χώρο? 28

29 Χρονική και Χωρική Πολυπλοκότητα Ντετερμινιστικές Μηχανές Turing 29

30 Κλάση P Περιέχει προβλήματα τα οποία μπορούν να επιλυθούν σε πολυωνυμικό χρόνο, όπως, Κανονικές γλώσσες Πρόβλημα Συνεκτικότητας Euler Κύκλος 2-SAT 30

31 Χρονική και Χωρική Πολυπλοκότητα Μη-ντετερμινιστικές Μηχανές Turing NP = U c>0 NTIME(n c ) (Non-Deterministic Polynomial Time) NPSPACE = U c>0 NSPACE(n c ) (Non-Deterministic Polynomial Space) Χώρος Πόρισμα 1. PSPACE = NPSPACE Χρόνος P NP P NP?????? 31

32 Κλάση NP Περιλαμβάνειταπροβλήματαγιαταοποίαμιαμη-ντετερμινιστική μηχανή μπορεί να μαντέψει ένα μονοπάτι υπολογισμού του προβλήματος (μια υποψήφια λύση) και να ελέγξει εάν είναι σωστό σε πολυωνυμικό χρόνο. Παραδείγματα SAT ανήκει στην κλάση NP. Hamiltonia Circuit ΜέγιστοΑνεξάρτητοσύνολο 32

33 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη μηχανή Turing που την υπολογίζει. Έστω L 1, L 2 Σ * δύο γλώσσες. Μια συνάρτηση υπολογίσιμη σε πολυωνυμικό χρόνο ονομάζεται πολυωνυμική αναγωγή από την L 1 στην L 2, L 1 p L 2, αν για κάθε x Σ * ισχύει: x L 1 αν και μόνο αν τ(x) L 2. Συμπέρασμα: HL 2 είναι τουλάχιστον όσο δύσκολη όσο η L 1. Αν μπορούσαμε να λύσουμε την L 2 σε πολυωνυμικό χρόνο, θα μπορούσαμε να λύσουμε και την L 1 σε πολυωνυμικό χρόνο. Αν δεν μπορούμε να λύσουμε την L 1 σε πολυωνυμικό χρόνο, δεν μπορούμε να λύσουμε ούτε την L 2 σε πολυωνυμικό χρόνο. 33

34 34

35 ΝP-πληρότητα Ορισμός. Μια γλώσσα L Σ * ονομάζεται NP-πλήρης αν 1. L NP 2. για κάθε γλώσσα L NP, ισχύει L p L. Θεώρημα. Eστω L οποιαδήποτε NP-πλήρης γλώσσα. Τότε P=NP αν και μόνο αν L P. Απόδειξη. 1. Αποδεικνύω ότι αν P = NP τότε L P: αφού L είναι NP-πλήρης ξέρουμε ότι L NP. Αφού P = NP L P. 2. Αποδεικνύω ότι αν L P τότε P = NP: αφού L είναι NP-πλήρης ξέρουμε ότι για κάθε γλώσσα L NP, ισχύει L p L. Αφού η L P, δηλ. λύνεται πολυνωνυμικά (από μια ΝΜΤ) και η L λύνεται πολυωνυμικά. Οπότε P = NP. 35

36 Υπάρχουν ΝP-πλήρη προβλήματα! Θεώρημα Cook Το πρόβλημα της ικανοποιησιμότητας SAT είναι ΝP-πλήρες. Απόδειξη. Αποδεικνύουμε τις ιδιότητες 1, 2, του ορισμού της ΝPπληρότητας. Πολλά ΝΡ-πλήρη προβλήματα! Θεώρημα. Το πρόβλημα 3-SAT είναι ΝΡ-πλήρες. Απόδειξη. Δείχνουμε ότι SAT p 3-SAT αφού το SAT είναι ΝP-πλήρες To 3-SAT είναι ΝΡ-πλήρες. 36

Chapter 7, 8 : Completeness

Chapter 7, 8 : Completeness CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσα χωρίς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA) Τι θα κάνουμε σήμερα Εισαγωγή στα Ντετερμινιστικά Πεπερασμένα Αυτόματα 14-Sep-11 Τυπικός Ορισμός Ντετερμινιστικών

Διαβάστε περισσότερα

Mh apofasisimèc gl ssec. A. K. Kapìrhc

Mh apofasisimèc gl ssec. A. K. Kapìrhc Mh apofasisimèc gl ssec A. K. Kapìrhc 15 Maòou 2009 2 Perieqìmena 1 Μη αποφασίσιμες γλώσσες 5 1.1 Ανάγω το πρόβλημα A στο B................................. 5 1.2 Αναγωγές μη επιλυσιμότητας..................................

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση

Συνδυαστική Βελτιστοποίηση Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 1 Άγγελος Σιφαλέρας sifalera@uom.gr 4 η Διάλεξη Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 2 Knapsack Problem, (1/9) Ένας επενδυτής διαθέτει ένα χρηματικό

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο «ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» ΜΠΙΘΗΜΗΤΡΗ ΒΑΣΙΛΙΚΗ ΣΤΕΛΛΑ Επιβλέπουσα: Αν. Καθηγήτρια

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

L mma thc 'Antlhshc. A. K. Kapìrhc

L mma thc 'Antlhshc. A. K. Kapìrhc L mma thc 'Antlhshc A. K. Kapìrhc 12 MartÐou 2009 2 Perieqìmena 1 Το Λήμμα της Άντλησης για μη κανονικές γλώσσες 5 1.1 Μη κανονικές γλώσσες..................................... 5 1.2 Λήμμα άντλησης για

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι Παύλος Εφραιμίδης 1 περιεχόμενα αλγόριθμοι τεχνολογία αλγορίθμων 2 αλγόριθμοι αλγόριθμος: οποιαδήποτε καλά ορισμένη υπολογιστική διαδικασία που δέχεται κάποια τιμή ή κάποιο σύνολο τιμών, και δίνεικάποιατιμήήκάποιοσύνολοτιμώνως

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

1 η Εργασία ΕΟ 13 2014-2015. Υποδειγματική λύση

1 η Εργασία ΕΟ 13 2014-2015. Υποδειγματική λύση 1 η Εργασία ΕΟ 13 014-015 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) 1

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Προσομοίωση ΚΕΦΑΛΑΙΟ 7

Προσομοίωση ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 7 Προσομοίωση 7.1 Συστήματα και πρότυπα συστημάτων 7.2 Η διαδικασία της προσομοίωσης 7.3 Ανάπτυξη προτύπων διακριτών γεγονότων 7.4 Τυχαίοι αριθμοί 7.5 Δείγματα από τυχαίες μεταβλητές 7.6 Προσομοίωση

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Λειτουργικά Συστήματα Κεφάλαιο 2 Οργάνωση Συστήματος Αρχείων 2.1 Διαχείριση Αρχείων και Σύστημα Αρχείων(File System)

Λειτουργικά Συστήματα Κεφάλαιο 2 Οργάνωση Συστήματος Αρχείων 2.1 Διαχείριση Αρχείων και Σύστημα Αρχείων(File System) 2.1.1 Εισαγωγή στη διαχείριση αρχείων Οι Η/Υ αποθηκεύουν τα δεδομένα και τα επεξεργάζονται. Εφαρμογή Προγράμματος C:\Documents and Settings\user\Τα έγγραφά μου\leitourgika.doc Λ.Σ. File System Γι αυτό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΒΑΙΚΕ ΕΝΝΟΙΕ ΑΓΟΡΙΘΜΩΝ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΩΤΟΥ ΑΘΟΥ 1. ηµειώστε το γράµµα αν η πρόταση είναι σωστή και το γράµµα αν είναι λάθος. 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

= P = P. = P [ X 0 = x 0, X 1 = x 1,..., X k = x k. Xn = x 0. Xn+1 = x 1 X n = x 0. Xn+k = x k X n+k 1 = x k 1 = π 0 (x 0 )p(x 0, x 1 ) p(x k 1, x k )

= P = P. = P [ X 0 = x 0, X 1 = x 1,..., X k = x k. Xn = x 0. Xn+1 = x 1 X n = x 0. Xn+k = x k X n+k 1 = x k 1 = π 0 (x 0 )p(x 0, x 1 ) p(x k 1, x k ) ΚΕΦΑΛΑΙΟ VI. ΑΝΑΛΛΟΙΩΤΕΣ ΚΑΤΑΝΟΜΕΣ Οι αναλλοίωτες κατανομές είναι κατά κάποιο τρόπο οι φυσικές καταστάσεις μιας μαρκοβιανής αλυσίδας. Αν μια αλυσίδα ξεκινήσει από μια αναλλοίωτη κατανομή της θα παραμείνει

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Γενετικοί Αλγόριθμοι. Εισαγωγή

Γενετικοί Αλγόριθμοι. Εισαγωγή Τεχνητή Νοημοσύνη 08 Γενετικοί Αλγόριθμοι (Genetic Algorithms) Εισαγωγή Σε αρκετές περιπτώσεις το μέγεθος ενός προβλήματος καθιστά απαγορευτική τη χρήση κλασικών μεθόδων αναζήτησης για την επίλυσή του.

Διαβάστε περισσότερα

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Τάξη: Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: ΒΛΙΣΙΔΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Α1. Να αναφέρετε τους λόγους για τους οποίους

Διαβάστε περισσότερα

Περιφερειακή Διεύθυνση Πρωτοβάθμιας και Δευτεροβάθμιας Εκπαίδευσης Βορείου Αιγαίου. Β Λυκείου

Περιφερειακή Διεύθυνση Πρωτοβάθμιας και Δευτεροβάθμιας Εκπαίδευσης Βορείου Αιγαίου. Β Λυκείου Περιφερειακή Διεύθυνση Πρωτοβάθμιας και Δευτεροβάθμιας Εκπαίδευσης Βορείου Αιγαίου Β Λυκείου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ ΠΡΩΤΟΒΑΘΜΙΑΣ & ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Βασικά Στοιχεία Το αλφάβητο της C Οι βασικοί τύποι της C Δηλώσεις μεταβλητών Είσοδος/Έξοδος Βασικές εντολές της C Αλφάβητο

Διαβάστε περισσότερα

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν

Διαβάστε περισσότερα

Αλγόριθμοι για Υπολογιστές Ένας μικρός οδηγός

Αλγόριθμοι για Υπολογιστές Ένας μικρός οδηγός Αλγόριθμοι για Υπολογιστές Ένας μικρός οδηγός Μάνος Καρβούνης Για το μάθημα Εισαγωγή στον Προγραμματισμό 2 Περιεχόμενα: Πρόλογος Σελ 3 Τι είναι ένας αλγόριθμος; Και τι είναι ένας αλγόριθμος για υπολογιστές;

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα...

Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα... Περιεχόμενα Σχετικά με τους συγγραφείς...3 Πρόλογος... 11 Πρόλογος της ελληνικής έκδοσης... 23 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25 1.1 Ένα πρώτο πρόβλημα: Ευσταθές Ταίριασμα...25 1.2

Διαβάστε περισσότερα

Αναπαράσταση Μη Αριθμητικών Δεδομένων

Αναπαράσταση Μη Αριθμητικών Δεδομένων Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2014-15 Αναπαράσταση Μη Αριθμητικών Δεδομένων (κείμενο, ήχος και εικόνα στον υπολογιστή) http://di.ionio.gr/~mistral/tp/csintro/

Διαβάστε περισσότερα

1 ( x ) =-3χ έχει τουλάχιστον μία ρίζα θετική και

1 ( x ) =-3χ έχει τουλάχιστον μία ρίζα θετική και Διαγώνισμα στο θεώρημα Bolzano με λύσεις Θέμα 1 ο Να δώσετε μια πρόχειρη γραφική παράσταση συνάρτησης f με πεδίο ορισμού το R, που να είναι συνεχής στο R-{α,β} και να είναι συνεχής στο [α,β]. Να δώσετε

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ B ΛΥΚΕΙΟΥ ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩN «ΔΙΟΦΑΝΤΟΣ»

Β ΛΥΚΕΙΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ B ΛΥΚΕΙΟΥ ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩN «ΔΙΟΦΑΝΤΟΣ» Β ΛΥΚΕΙΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Κωδικός Βιβλίου: 0-22-0230 ISBN 978-960-06-4895-9 (01) 000000 0 22 0230 3 B ΛΥΚΕΙΟΥ ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2008 ΔΙΔΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙΔΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Παράδοση: Πέμπτη 10 Απριλίου 2008, 24:00 (μεσάνυχτα)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ»

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Σάββατο 5 Ιουνίου 2010 Οδηγίες: Η διάρκεια της εξέτασης είναι τρεις και µισή (3 ½) ώρες. Ισχύουν όσα αναφέρονται στους Κανονισµούς Εξετάσεων του ΕΑΠ γενικότερα και της Θ.Ε. ειδικότερα. Τα

Διαβάστε περισσότερα

Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet.

Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Λέσχη Ανάγνωσης Γενικού Λυκείου Σαντορίνης Σχολικό έτος 2011-2012 Ο Σέρλοκ Χόλμς, η εις άτοπο απαγωγή και οι απαρχές του internet. Γιάννης Παπόγλου Το σμαραγδένιο στέμμα Σύµφωνα µε ένα παλιό µου ρητό,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α1. 1. Λάθος 2. Λάθος 3. Σωστό 4. Λάθος 5. Σωστό Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 19 Απριλίου

Διαβάστε περισσότερα

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο:

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο: Τι είναι το GeoGebra; Γρήγορη Εκκίνηση Λογισμικό Δυναμικών Μαθηματικών σε ένα - απλό στη χρήση - πακέτο Για την εκμάθηση και τη διδασκαλία σε όλα τα επίπεδα της εκπαίδευσης Συνδυάζει διαδραστικά γεωμετρία,

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ ΤΑΞΗ ΚΕΦΑΛΑΙΟ 2 ο ΕΙΣΗΓΗΤΗΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ : ΚΑΖΑΝΤΖΗΣ ΧΡΗΣΤΟΣ 1. Γενικός

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Πανεπιστηµιο Πατρων Τµηµα Μηχανικων Ηλεκτρονικων Υπολογιστων & Πληροφορικης Εργαστηριο Επεξεργασιας Σηµατων και Τηλεπικοινωνιων

Πανεπιστηµιο Πατρων Τµηµα Μηχανικων Ηλεκτρονικων Υπολογιστων & Πληροφορικης Εργαστηριο Επεξεργασιας Σηµατων και Τηλεπικοινωνιων Πανεπιστηµιο Πατρων Τµηµα Μηχανικων Ηλεκτρονικων Υπολογιστων & Πληροφορικης Εργαστηριο Επεξεργασιας Σηµατων και Τηλεπικοινωνιων Ταυτοποίηση Μη Γραµµικών Συστηµάτων Υψηλής Τάξης : Μία προσέγγιση ϐασισµένη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1Ο Α1. Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν Σωστό ή Λάθος. 1. Ο υπολογιστής είναι ο ταχύτερος μηχανισμός επεξεργασίας δεδομένων. 2. Οι εντολές

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας. Ακαδημαϊκό Έτος 2006-2007

Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας. Ακαδημαϊκό Έτος 2006-2007 Ιόνιο Πανεπιστήμιο Τμήμα Τεχνών Ήχου και Εικόνας Ακαδημαϊκό Έτος 2006-2007 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος Διδάσκων: Φλώρος Ανδρέας Περιεχόμενα 1 Περιγραφή

Διαβάστε περισσότερα