ΠΑΛΙΝΔΡΟΜΗΣΗ. Απλή Παλινδρόμηση. (Όγκος πωλήσεων = α +b έξοδα διαφήμησης +e ) Εκτίμηση Απλής Παλινδρόμησης. α= εκτίμηση της τεταγμένης για χ=0

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΛΙΝΔΡΟΜΗΣΗ. Απλή Παλινδρόμηση. (Όγκος πωλήσεων = α +b έξοδα διαφήμησης +e ) Εκτίμηση Απλής Παλινδρόμησης. α= εκτίμηση της τεταγμένης για χ=0"

Transcript

1 ΠΑΛΙΝΔΡΟΜΗΣΗ ΓΡΑΜΜΙΚΟ ΜΗ ΓΡΑΜΜΙΚΟ ΔΕΝ ΥΠΑΡΧΕΙ ΣΧΕΣΗ Απλή Παλινδρόμηση Y = a + bx + e (Όγκος πωλήσεων = α +b έξοδα διαφήμισης +e ) Εκτίμηση Απλής Παλινδρόμησης Y = a + bx (Όγκος πωλήσεων = α +b έξοδα διαφήμησης +e ) α= εκτίμηση της τεταγμένης για χ=0 b= εκτίμηση της κλίσης Υ=εξαρτημένη μεταβλητή Χ= ανεξάρτητη μεταβλητή ή ερμηνεύσιμη Η μεταβλητή Χ ερμηνεύει τις μεταβολές της Υ που εκφράζεται σαν ποσοστό επί της %

2 . Αν έχουμε πλήρη συσχέτισης τότε έχουμε 100%. Δηλ., Οι τιμές Υ ταυτίζονται με τις Χ πάνω σε μια ευθεία. Το σφάλμα πρόβλεψης ονομάζεται κατάλοιπο. Δίνεται σαν η διαφορά των Y και Y Y Y. Δηλαδή, Σφάλμα εκτίμησης Άθροισμα τετραγώνων των καταλοίπων διαιρούμενων με n-2. ΠΟΛΥΔΙΑΣΤΑΤΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Y = a + b x b x 1 1 k k + e ΠΑΡΑΔΟΧΕΣ ΜΟΝΤΕΛΟΥ 1) Σφάλματα κανονικά. 2) Μέσο σφάλμα 0 3) Διακύμανση σφάλματος σ 2 4) Τα σφάλματα ανεξάρτητα. Το άθροισμα των τετραγώνων των συνολικών παρατηρήσεων από το μέσο, Σ ( Y i - Υ ) 2, καλείται συνολικό άθροισμα τετραγώνων ή TSS (Total Sum of Squares). Μαθηματικά αυτό ισούται με : Σ (Ŷ -Y ) 2 + Σ (Y- Ŷ) 2. Δηλαδή με το άθροισμα τετραγώνων της παλινδρομήσεως (SSR ) και με το άθροισμα τετραγώνων των καταλοίπων (SSE). Συνεπώς ισχύει η σχέση: TSS = SSR + SSE

3 2= R = Ερμηνεύσιμη μεταβολή/ολική μεταβολή =1-Άθροισμα τετραγώνων καταλοίπων /Ολική μεταβολή Ή R 2 Άθροισμα τετραγώνων παλινδρόμησης SSR = = Συνολικό άθροισμα τετραγώνων TSS Διορθωμένος πολυδιάστατος συντελεστής παλινδρόμησης (Adjusted R-Squared) R-sq(adj)= R 2 A= 1-(1-R 2 n 1 )( ) n k 1 Όπου: n= Μέγεθος δείγματος k= Αριθμός ανεξάρτητων μεταβλητών μέσα στο μοντέλο Τυπικό σφάλμα εκτίμησης Εκτίμηση για την τυπική απόκλιση του μοντέλου s ε = SSE n k 1 = MSE όπου SSE = Άθροισμα των τετραγώνων των καταλοίπων n = Μέγεθος δείγματος k = Αριθμός ανεξάρτητων μεταβλητών ΕΚΤΙΜΗΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Y = a + bx + + b x k k I) Προσδιορισμός Μοντέλου : Εξαρτημένη -Ανεξάρτητη Μεταβλητή-Γραμμική Παλινδρόμηση. ΙΙ). Κατασκευή Μοντέλου: Υπολογισμοί Εκτιμήσεων του Μοντέλου.

4 1). Είναι το μοντέλο στατιστικά σημαντικό ;. Η μηδενική και η εναλλακτική υπόθεση, ελέγχονται σε επίπεδο σημαντικότητας α(=0.05 ή 0,01 ή ). Ελέγχω την Η : β 1 = β 2 = β 3 = βk= 0 έναντι της Α: Τουλάχιστον ένα β i δεν είναι ίσο με το 0 σε επίπεδο σημαντικότητας α. Αν ισχύει η μηδενική υπόθεση και όλοι οι συντελεστές είναι 0, τότε το μοντέλο της παλινδρόμησης δεν είναι ικανό να προβλέψει ή να περιγράψει. Ο έλεγχος της F, είναι μια μέθοδος με την οποία ελέγχουμε αν το μοντέλο παλινδρόμησης μπορεί να εξηγήσει ένα σημαντικό μέρος της μεταβλητότητας της εξαρτημένης μεταβλητής. Ο έλεγχος της στατιστικής F για την πολυδιάστατη παλινδρόμηση είναι F= Έλεγχος της στατιστικής F SSR k MSR = SSE MSE n k 1 Όπου: Πολυδιάστατος συντελεστής παλινδρόμησης (R 2 ) R 2 Άθροισμα τετραγώνων παλινδρόμησης SSR = = Συνολικό άθροισμα τετραγώνων TSS n= Αριθμός δεδομένων k= Αριθμός ανεξάρτητων μεταβλητών Βαθμοί ελευθερίας = D 1 =k και D 2 =n-k-1 Από την έξοδο του προγράμματος Analysis of variance αν δίνει p- τιμή F μικρό τότε δέχομαι την Α. 2). Είναι οι μεταβλητές από μόνες τους σημαντικές; Η: β i =0, δεδομένου ότι όλες οι άλλες μεταβλητές είναι ήδη στο μοντέλο Α : β i 0, για κάθε i Ο έλεγχος των υποθέσεων, μπορεί να γίνει χρησιμοποιώντας τον έλεγχο της t.

5 Έλεγχος t t = b 0 i s b i όπου: b i : Συντελεστής κλίσης δείγματος για την ανεξάρτητη i μεταβλητή s bi: Εκτίμηση τυπικού σφάλματος για τον i συντελεστή κλίσης του δείγματος Βαθμοί ελευθερίας = n-k-1 Από την έξοδο του προγράμματος, αν έχουμε p- τιμή t μικρές δέχομαι την Η. 3). Υπάρχει Πολυσυγραμμικότητα; Συσχετίσεις μεταξύ ανεξαρτήτων μεταβλητών μικρές, αν είναι δυνατόν μηδενικές. Όταν υπάρχει πολυσυγγραμμικότητα, οι συντελεστές β των ανεξάρτητων μεταβλητών είναι ευμετάβλητοι, και ακόμα και το πρόσημό τους είναι πιθανόν να αλλάζει όταν συμπεριλαμβάνονται διαφορετικές μεταβλητές. Επίσης οι τιμές P μπορεί να διογκωθούν, και αυτό θα έχει σαν αποτέλεσμα να μην απορριφθεί η μηδενική υπόθεση, ενώ θα έπρεπε να απορριφθεί στην πραγματοποίηση του ελέγχου για την σημαντικότητα του μοντέλου. ΕΠΙΠΡΟΣΘΕΤΑ, Διαφορά πληθωριστικού παράγοντα (VIF) 1 VIF = 2 1 R j όπου R 2 j = Συντελεστής παλινδρόμησης όταν η j ανεξάρτητη μεταβλητή στρέφεται εναντίον των υπολοίπων k-1 ανεξάρτητων μεταβλητών. Εάν VIF < 5 για μια συγκεκριμένη μεταβλητή, η πολυσυγγραμικότητα δεν θεωρείται πρόβλημα για αυτή την μεταβλητή. Αν VIF 5 μας δείχνει ότι η συσχέτιση ανάμεσα στις ανεξάρτητες μεταβλητές είναι πολύ μεγάλη και πρέπει να αντιμετωπιστεί αφαιρώντας μεταβλητές από το μοντέλο. 4). Ανάλυση καταλοίπων (Επιβεβαίωση παραδοχών)

6 1. Σφάλματα κανονικά Ιστόγραμμα καταλοίπων συμμετρικό. 2. Μέσο σφάλμα 0 Άθροισμα καταλοίπων μηδέν 3. Διακύμανση σφάλματος σ 2 σταθερή Διάγραμμα καταλοίπων έναντι τιμών της Χ (ή Y ) γεμίζει ομοιογενώς το διάγραμμα. 4. Τα σφάλματα ανεξάρτητα. Durbin-Watson. Το κριτήριο αυτό βασίζεται στην κατανομή δειγματοληψίας της στατιστικής : d = t= 2 ( eˆ eˆ ) t t= 1 eˆ 2 t 2 t 1 που είναι συνήθως γνωστή ως στατιστική Durbin-Watson d στατιστική (Durbin- Watson d statistic).οι τιμές που μπορεί να πάρει, η στατιστική d, κυμαίνονται ανάμεσα στην τιμή μηδέν και στην τιμή τέσσερα. Όταν 0 < d < 2, τότε υπάρχει κάποιος βαθμός θετικής αυτοσυσχετίσεως, ενώ όταν 2 < d < 4, τότε υπάρχει κάποιος βαθμός αρνητικής αυτοσυσχετίσεως. ΕΦΑΡΜΟΓΗ Εφαρμογή της Ανάλυσης της Παλινδρόμησης στον Επενδυτικό Κίνδυνο Οι επενδύσεις στο χρηματιστήριο είναι ελκυστικές σε όλους. Παρόλα αυτά, οι χρηματιστηριακές επενδύσεις μεταφέρουν και το στοιχείο του κινδύνου. Ο κίνδυνος που αντιστοιχεί σε κάθε μετοχή, μπορεί να μετρηθεί με δύο τρόπους. Ο πρώτος είναι ο συστηματικός κίνδυνος (systematic risk), που εξηγεί την μεταβλητότητα που δημιουργείται στην αξία της μετοχής, καθώς η αγορά κινείται πάνω ή κάτω, η αξία τείνει να κινείται και αυτή προς την ίδια κατεύθυνση. Ο δείκτης Standar & Poor s (S&P) 500 είναι το πιο συνηθισμένο μέτρο που χρησιμοποιείται στην αγορά. Ο δεύτερος τύπος κινδύνου καλείται ειδικός κίνδυνος (specific risk), και δείχνει την μεταβλητότητα που οφείλεται σε άλλου παράγοντες, όπως είναι η δυνατότητα αποδοχών της εταιρείας, οι στρατηγικές αποκτήσεων και τα λοιπά. Ο ειδικός κίνδυνος υπολογίζεται από το τυπικό σφάλμα της εκτίμησης.

7 Ο συστηματικός κίνδυνος χαρακτηρίζεται από ένα μέτρο που καλείται βήτα (beta). Οι τυποποιημένες τιμές, γνωστές και ως beta τιμές, προκύπτουν σαν εκτιμηθείσες τιμές των παραμέτρων του μοντέλου, αφού πρώτα μετατρέψουμε τις τιμές της εξαρτημένης και ανεξάρτητης μεταβλητής σε τυποποιημένες. Στην απλή γραμμική παλινδρόμηση, η beta τιμή της κλίσης ισούται με τον συντελεστή συσχέτισης των δύο μεταβλητών. Μια αξία beta που ισοδυναμεί με 1,0 δηλώνει ότι η συγκεκριμένη μετοχή θα ακολουθεί τις μετακινήσεις της αγοράς, ενώ ένα beta μικρότερο από 1,0 δείχνει ότι η μετοχή είναι λιγότερο ασταθής από τη αγορά. Ένα beta μεγαλύτερο από 1,0 δείχνει ότι η μετοχή έχει μεγαλύτερη διακύμανση από την αγορά. Ακόμα, μετοχές με μεγαλύτερες τιμές beta είναι περισσότερο επικίνδυνες από αυτές με χαμηλότερες τιμές beta. Οι τιμές beta μπορούν να υπολογισθούν αναπτύσσοντας ένα μοντέλο παλινδρόμησης με τις αποδόσεις των μετοχών (εξαρτημένη μεταβλητή) έναντι του μέσου όρου των αποδόσεων της αγοράς (ανεξάρτητη μεταβλητή). Η κλίση της γραμμής παλινδρόμησης ισοδυναμεί με τον κίνδυνο beta. Αυτό φαίνεται και από το διάγραμμα (10). Αν σχεδιάσουμε τη μορφή των αποδόσεων της αγοράς έναντι της απόδοσης της κάθε μετοχής και βρούμε την γραμμή παλινδρόμησης, τότε θα παρατηρήσουμε ότι η κλίση ισούται με την μονάδα, δηλαδή οι μετοχές μεταβάλλονται κατά το ίδιο ποσοστό με την αγορά. Παρόλα αυτά, αν η τιμή της μετοχής μεταβάλλεται λιγότερο από ότι μεταβάλλεται η αγορά, τότε η κλίση της γραμμής παλινδρόμησης θα είναι μικρότερη από την μονάδα, ενώ η κλίση θα είναι μεγαλύτερη από την μονάδα, όταν η τιμή της μετοχής μεταβάλλεται περισσότερο από ότι μεταβάλλεται η αγορά. Η αρνητική κλίση δείχνει ότι η μετοχή μετακινείται προς την αντίθετη κατεύθυνση από εκείνη της αγοράς. Για παράδειγμα αν η αγορά κινείται προς τα πάνω, η τιμή της μετοχής πέφτει προς τα κάτω. ΔΙΑΓΡΑΜΜΑ (10)

8 Το φύλλο εργασίας Stock, που παίρνουμε από την βάση δεδομένων της επιχείρησης Tracway, περιλαμβάνει τις ημερήσιες τιμές της μετοχής Tracway για την περίοδο από 30 Ιουνίου μέχρι της 31 Δεκεμβρίου του Το διάγραμμα (11) είναι ένα διάγραμμα διασποράς της απόδοσης του δείκτη S&P500 και της απόδοσης της μετοχής Tracway για μια περίοδο έξι μηνών, αντίστοιχα. Φαίνεται καθαρά η συσχέτιση που εμφανίζεται να υπάρχει. Διάγραμμα Διασποράς των Trackway Stock Prices έναντι του δείκτη S&P 500 Trackway Stock Price $ $ $ $50.00 $ S&P 500 Index ΔΙΑΓΡΑΜΜΑ (11) Η ποσοστιαία αύξηση (αρνητικές τιμές δείχνουν μείωση) και για τον S&P500 και για τις μετοχές της Tracway, υπάρχει στο φύλλο εργασίας Stock, από όπου παίρνουμε τα απαραίτητα στοιχεία για να δημιουργήσουμε το μοντέλο παλινδρόμησης. Stock Date S&P500Tracway SAP % change Tracway % change 30-Jun $ Jul $ % 1.50% 5-Jul $ % 0.99% 6-Jul $ % -5.27% 7-Jul $ % 0.62% 10-Jul $ % 1.84% 11-Jul $ % 3.62% Ημερήσια μεταβολή στην τιμή της μετοχής Tracway = β 0 + β 1 μεταβολή του S&P500 Ο πίνακας (4) δείχνει τα αποτελέσματα της εφαρμογής της παλινδρόμησης από το Excel. Το μοντέλο που προκύπτει είναι : Ημερήσια μεταβολή στην τιμή της μετοχής Tracway = 0, ,62124 μεταβολή του S&P500 Η τιμή του συντελεστή προσδιορισμού (R 2 = 0,90) δείχνει ότι ένα μεγάλο ποσοστό της μεταβλητότητας εξηγείται από το μοντέλο. Η κλίση της γραμμής παλινδρόμησης, β 1, ( ο κίνδυνος beta της μετοχής Tracway) είναι 0,62. Αυτό δείχνει ότι η Tracway έχει μικρότερο απόδοση από την αγορά.

9 Stock Στατιστικά παλινδρόμησης Πολλαπλό R R Τετράγωνο Προσαρμοσμένο R Τετράγωνο Τυπικό σφάλμα Μέγεθος δείγματος 125 ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ βαθμοί ελευθερίας SS MS F Σημαντικότητ α F Παλινδρόμηση E-64 Υπόλοιπο Σύνολο Κατώτερο 95% Υψηλότερο 95% Κατώτερο 95.0% Υψηλότερο 95.0% Συντελεστές Τυπικό σφάλμα t τιμή-p Τεταγμένη επί την αρχή S&P % change E ΠΙΝΑΚΑΣ (4)

10 Πολλαπλή Γραμμική Παλινδρόμηση- ΕΦΑΡΜΟΓΗ Employee Success Duration Reeducation College gpa Age M/F College Grad Local Το τμήμα των Ανθρώπινων Πόρων της επιχείρησης Tracway ξεχωρίζει για το μεγάλο ποσοστό του κύκλου εργασιών, που πραγματοποιεί στις πωλήσεις του προσωπικού της. Το τμήμα αυτό περιλαμβάνει κάποιες στρατηγικές πολιτικής που μπορούν να αναγνωρίσουν τα απαραίτητα χαρακτηριστικά που πρέπει να έχουν τα άτομα για να έχουν την δυνατότητα να παραμείνουν περισσότερο καιρό στην επιχείρηση. Παρόλα αυτά, σε μια πρόσφατη συνάντηση του προσωπικού, οι διευθύνοντες των ανθρώπινων πόρων δεν μπόρεσαν να συμφωνήσουν ποια πρέπει να είναι αυτά τα χαρακτηριστικά. Κάποιοι υποστήριζαν ότι τα χρόνια της εκπαίδευσης και ο βαθμός κολεγίου είναι οι σημαντικότεροι συντελεστές. Άλλοι υποστήριζαν ότι η πρόσληψη πιο ώριμων υποψηφίων θα οδηγούσε στην μεγαλύτερη παραμονή τους στην επιχείρηση. Για να μπορέσουν να καταλήξουν στο σωστό αποτέλεσμα, το προσωπικό συμφώνησε να πραγματοποιηθεί μια στατιστική μελέτη για να καθοριστεί η επίδραση που θα έχουν τα χρόνια εκπαίδευσης, ο βαθμός κολεγίου και η ηλικία που προσλαμβάνονται τα άτομα στην παραμονή τους στην επιχείρηση. Ένα δείγμα 40 πωλητών που προσβλήθηκαν δέκα χρόνια πριν,επιλέχθηκε για να καθοριστεί η επίπτωση που είχαν αυτές οι μεταβλητές στην διάρκεια του κάθε άτομου που παρέμεινε στην επιχείρηση. Στο παράδειγμα μας έχουμε μία εξαρτημένη μεταβλητή ( τα χρόνια παραμονής στην επιχείρηση Tracway) και τρεις ανεξάρτητες μεταβλητές (τα χρόνια εκπαίδευσης, ο βαθμός κολεγίου, και η ηλικία). Το υπόδειγμα της απλής γραμμικής παλινδρόμησης που αναπτύξαμε προηγουμένως αναφέρεται σε σχέσεις που περιλαμβάνουν μία μόνο ερμηνευτική μεταβλητή. Η συμπεριφορά όμως των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών. Ένα μοντέλο παλινδρόμησης με περισσότερες από μία ανεξάρτητες μεταβλητές καλείται μοντέλο πολυδιάστατης παλινδρόμησης. Αν όλοι οι όροι στο μοντέλο είναι γραμμικοί, τότε έχουμε το μοντέλο της γραμμικής πολυμεταβλητής παλινδρομήσεως. Η απλή γραμμική παλινδρόμηση είναι μια ειδική περίπτωση της πολλαπλής γραμμικής παλινδρόμησης. Ένα μοντέλο πολυδιάστατης γραμμικής παλινδρόμησης έχει την εξής μορφή: Υ = β + β X + β X β X k k + e

11 ,όπου το Y: είναι η εξαρτημένη μεταβλητή X 1 X k : είναι οι ανεξάρτητες ή αλλιώς ερμηνευτικές μεταβλητές β 0 :είναι ο ερμηνευτικός όρος β 1 :είναι οι συντελεστές παλινδρόμησης για τις ανεξάρτητες μεταβλητές e :είναι το τυπικό σφάλμα Οι βασικές υποθέσεις που συνιστούν το κλασικό γραμμικό υπόδειγμα στη γενική του μορφή, δηλαδή με Κ ερμηνευτικές μεταβλητές, είναι σχεδόν οι ίδιες με τις υποθέσεις για το διμεταβλητό γραμμικό υπόδειγμα. Οι υποθέσεις αυτές, που πρέπει να ισχύουν για όλες τις παρατηρήσεις, είναι οι ακόλουθες : 1. Y t = β 0 + β1x t1 + β 2 X t β k X tk + et 2. e t ~ ( 0, σ 2 ) α) e t είναι τυχαία μεταβλητή β) Ee t =0 γ) Ee t 2 = σ 2 3. Ee t e s = 0 για t s 4. Η μεταβλητή X δεν είναι στοχαστική. Οι τιμές της παραμένουν σταθερές και δεν είναι όλες ίσες μεταξύ τους. 5. Δεν υπάρχουν ακριβείς γραμμικές σχέσεις ανάμεσα στις ερμηνευτικές μεταβλητές. 6. Ο αριθμός των παρατηρήσεων του δείγματος είναι μεγαλύτερος από τον αριθμό των συντελεστών του υποδείγματος που θέλουμε να εκτιμήσουμε. Η υπόθεση 1 αναφέρεται στην γραμμική σχέση που συνδέει τις μεταβλητές Y και X 1, X 2,, X k. Κάθε τιμή t της εξαρτημένες μεταβλητής είναι γραμμική συνάρτηση των τιμών των ερμηνευτικών μεταβλητών X t1, X t2,, X tk και του διαταρακτικού όρου e t. Οι υποθέσεις 2 και 3 αναφέρονται στον διαταρακτικό όρο e t και είναι ακριβώς ίδιες με τις αντίστοιχες υποθέσεις του απλού υποδείγματος. Η υπόθεση 4 είναι επίσης ακριβώς ίδια με την αντίστοιχη υπόθεση του γραμμικού υποδείγματος, με την διαφορά ότι τώρα αναφέρεται σε Κ ερμηνευτικές μεταβλητές. Οι πρόσθετες υποθέσεις 5 και 6 έχουν σχέση με την εκτίμηση και τον έλεγχο του υποδείγματος. Η υπόθεση 5 αποτελεί προϋπόθεση για την εκτίμηση του υποδείγματος και αποκλείει την ύπαρξη πολυσυγγραμμικότητας μεταξύ των ερμηνευτικών μεταβλητών. Αυτό σημαίνει πως καμία από τις Κ ερμηνευτικές δεν μπορεί να εκφραστεί ως γραμμικός συνδυασμός των υπολοίπων. Τέλος, η υπόθεση 6 εξασφαλίζει τους απαραίτητους βαθμούς ελευθερίας και για την εκτίμηση αλλά και για τον έλεγχο του υποδείγματος. Ο αριθμός των παρατηρήσεων πρέπει να είναι τουλάχιστον ίσος με τους συντελεστές του υποδείγματος, για να είναι δυνατή η εκτίμηση του, όπως θα φανεί αργότερα. Πρέπει όμως να είναι και μεγαλύτερος, για να είναι δυνατός ο έλεγχος υποθέσεων με

12 τις διάφορες στατιστικές ελέγχου που η κατανομή τους εξαρτάται από τους βαθμούς ελευθερίες, όπως η κατανομή t ή η κατανομή F. Για την επιχείρηση Tracway όπως είπαμε έχουμε τρεις ανεξάρτητες μεταβλητές και έτσι το μοντέλο γράφεται ως εξής : Χρόνια παραμονής στην επιχείρηση (retention) = β 0 + β 1 Χρόνια εκπαίδευσης( Years education) + β 2 Βαθμός κολεγίου (GPA) + β 3 Ηλικία (Age) + e Όπως και στην περίπτωση της απλής γραμμικής παλινδρόμησης, εκτιμούμε τους συντελεστές παλινδρόμησης, που καλούνται μερικοί συντελεστές παλινδρόμησης (partial regression coefficients), όπως το b 0, b 1. b k και έπειτα μπορούμε να προβλέψουμε την τιμή της εξαρτημένης μεταβλητής χρησιμοποιώντας το υπόδειγμα : Y ˆ = b + b X + b X + b X k k Οι συντελεστές μερικής παλινδρόμησης παριστάνουν την αναμενόμενη μεταβολή της εξαρτημένης μεταβλητής, όταν η αντίστοιχη εξαρτημένη μεταβλητή αυξάνεται κατά μία μονάδα ενώ οι τιμές των άλλων ανεξάρτητων μεταβλητών παραμένουν σταθερές. Επιπλέον, το β 2 αναπαριστάνει την μεταβολή στην παραμονή στην επιχείρηση όταν το GPA αυξάνεται κατά μία μονάδα, ενώ τα χρόνια εκπαίδευσης και η ηλικία παραμένουν σταθερά. Όπως και στην απλή γραμμική παλινδρόμηση, η πολλαπλή γραμμική παλινδρόμηση χρησιμοποιεί την αρχή των ελαχίστων τετραγώνων στην εκτίμηση του ερμηνευτικού όρου και του συντελεστή κλίσης που ελαχιστοποιεί τους τετραγωνισμένους όρους των σφαλμάτων όλων των παρατηρήσεων. Αυτός είναι ένας από τους λόγους που οι βασικές υποθέσεις που πρέπει να ισχύουν στην απλή γραμμική παλινδρόμηση, πρέπει να ισχύουν και στην πολλαπλή. Γνωρίζουμε τα αποτελέσματα των υπαλλήλων της επιχείρησης Tracway. Χρησιμοποιώντας την ανάλυση δεδομένων βρίσκουμε την πολλαπλή παλινδρόμηση των στοιχείων αυτών, πίνακας (5). Η μόνη διαφορά με την απλή γραμμική παλινδρόμηση είναι ότι τα στοιχεία για τις ανεξάρτητες μεταβλητές βρίσκονται σε τρεις στήλες. Ο έλεγχος των καταλοίπων επιβεβαιώνει τις υποθέσεις που πρέπει να ισχύουν. Employee Success Στατιστικά παλινδρόμησης Πολλαπλό R R Τετράγωνο 0.15 Προσαρμοσμένο R Τετράγωνο Τυπικό σφάλμα Μέγεθος δείγματος 40

13 ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ βαθμοί ελευθερίας SS MS F Σημαντικότη τα F Παλινδρόμηση Υπόλοιπο Σύνολο Κατώτερο 95% Υψηλότερο 95% Κατώτερο 95.0% Υψηλότερο 95.0% Συντελεστές Τυπικό σφάλμα t τιμή-p Τεταγμένη επί την αρχή Yrseducation College gpa Age ΠΙΝΑΚΑΣ (5) Από τον πίνακα (5) φαίνεται ότι το μοντέλο έχει την μορφή : Retention = -2,74-0,067 Years education + 0,680 GPA + 0,292 Age Για παράδειγμα, για ένα άτομο ηλικίας 30 ετών με 15 χρόνια εκπαίδευσης και με βαθμό κολεγίου 2.50, το μοντέλο παλινδρόμησης μπορεί να προβλέψει ότι αυτός ο υποψήφιος θα παραμείνει στην εταιρεία : Retention = -2,74-0, ,060 2,50 + 0, = 6,648 years Ένα σημείο που πρέπει να τονίσουμε είναι ότι είναι επικίνδυνο να παρατείνεις ένα μοντέλο παλινδρόμησης έξω από τις σειρές που καλύπτονται από τις παρατηρήσεις. Για παράδειγμα για ένα άτομο ηλικίας 40 ετών με 13 χρόνια εκπαίδευσης και με μέσο όρο βαθμό κολεγίου 1,5, η παλινδρόμηση θα προβλέψει 9,1 χρόνια παραμονής στην επιχείρηση. Αυτό μπορεί να μην ανταποκρίνεται στην πραγματικότητα, αλλά στο μοντέλο παλινδρόμησης δεν μελετούνται στοιχεία με αυτά τα χαρακτηριστικά. Ερμηνεία αποτελεσμάτων της Πολλαπλής Γραμμικής Παλινδρόμησης Τα αποτελέσματα της ανάλυσης της παλινδρόμησης είναι της ίδιας μορφής με αυτά της γραμμικής παλινδρόμησης. Το πολλαπλό R, ο πολλαπλός συντελεστής συσχέτισης,και το R τετράγωνο,ο πολλαπλός συντελεστής προσδιορισμού, δείχνουν την δύναμη της σχέσης μεταξύ της εξαρτημένης και των ανεξάρτητων μεταβλητών. Η χαμηλή τιμή του R 2, R 2 = 0,15, δείχνει ότι μόνο 15% της μεταβλητότητας των στοιχείων εξηγείται από τις ανεξάρτητες μεταβλητές, ένα προφανώς φτωχό συνταίριασμα..

14 1). Είναι το μοντέλο στατιστικά σημαντικό ;. Η ANOVA στον πίνακα (5) ελέγχει την σημαντικότητα όλου του μοντέλου. Δηλαδή υπολογίζει την στατιστική F για να πραγματοποιηθούν οι έλεγχοι των υποθέσεων. H 0 : β 1 = β 2 = β k = 0 H 1 : τουλάχιστον ένα από τα β είναι διάφορο του μηδενός Η μηδενική υπόθεση δηλώνει ότι δεν υπάρχει γραμμική σχέση μεταξύ της εξαρτημένης μεταβλητής και κάθε μία από τις ανεξάρτητες μεταβλητές, ενώ η εναλλακτική υπόθεση δηλώνει ότι η εξαρτημένη μεταβλητή παρουσιάζει γραμμική σχέση με μία τουλάχιστον από τις ανεξάρτητες μεταβλητές. Δεν μπορούμε να καταλήξουμε στην ύπαρξη γραμμικής σχέσης της εξαρτημένης μεταβλητής με όλες τις ανεξάρτητες μεταβλητές. Ο έλεγχος είναι πανομοιότυπος με αυτόν της απλής γραμμικής παλινδρόμησης. Η στατιστική F υπολογίζεται από το κλάσμα MSR / MSE, εκτός αν αυτό έχει k και n-k-1 βαθμούς ελευθερίας. Σε ένα επίπεδο σημαντικότητας 5%, θα αποτύχουμε να απορρίψουμε την μηδενική υπόθεση γιατί η σημαντικότητα του F είναι μεγαλύτερη από 0,05. Μια άλλη εξήγηση είναι ότι η πιθανότητα να πάρουμε αυτά τα αποτελέσματα από ένα τυχαίο δείγμα ενός πληθυσμό, στο οποίο δεν υπάρχει καμία σχέση μεταξύ της εξαρτημένης και των ανεξάρτητων μεταβλητών, είναι 0,114, δηλαδή το επίπεδο σημαντικότητας με ποσοστό 5% βρίσκεται αρκετά πιο ψηλά. 2). Είναι οι μεταβλητές από μόνες τους σημαντικές; 2. Το τελευταίο μέρος στα αποτελέσματα, προβάλλει τις πληροφορίες για τον έλεγχο των υποθέσεων για τον κάθε ένα συντελεστή παλινδρόμησης ξεχωριστά. Για παράδειγμα, ο έλεγχος της υπόθεσης για την κλίση του πληθυσμού β 1 ( που αντιστοιχεί στα χρόνια εκπαίδευσης ) είναι μηδέν, υπολογίζουμε την στατιστική t διαιρώντας τον εκτιμητή b 1 (-0,06705) με το τυπικό του σφάλμα ( 0,355165) και βρίσκουμε ότι ισούται με 0,1888, όπως βλέπουμε και στην τρίτη στήλη. Αυτή η στατιστική έχει n-k-1 βαθμούς ελευθερίας, ή σε αυτήν την περίπτωση, = 36. Γνωρίζουμε από τους στατιστικούς πίνακες κατανομών ότι t 36,0.025 = 2,0281. Έτσι δεν μπορούμε να απορρίψουμε την μηδενική υπόθεση σε επίπεδο σημαντικότητας 0,05. Αυτό το αποτέλεσμα μπορεί επίσης να προκύψει εξετάζοντας την τιμή-p (P-value) στην επόμενη στήλη των αποτελεσμάτων. Από την άλλη πλευρά, με τον έλεγχο t μπορούμε να συμπεράνουμε ότι η κλίση που αντιστοιχεί στην ηλικία είναι σημαντική παρόλο που δεν μπορούμε να απορρίψουμε την μηδενική υπόθεση, όσον αφορά την σημαντικότητα όλου του μοντέλου. Τέτοιες ανωμαλίες μπορούν να συμβούν σε μοντέλα πολλαπλής παλινδρόμησης για πολλούς λόγους, περιλαμβάνοντας την αλληλεξάρτηση μεταξύ των μεταβλητών. Ο έλεγχος F δείχνει την σημαντικότητα όλου του μοντέλου. Στην περίπτωσή μας, η χαμηλή τιμή R 2 υποδηλώνει ένα φτωχό συνταίριασμα, παρόλο που η ηλικία από μόνη της εμφανίζει σημαντικότητα., σε συνδυασμό με τις άλλες μεταβλητές δεν μπορούμε να καταλήξουμε στο συμπέρασμα ότι όλες οι κλίσεις είναι διαφορετικές του μηδενός. Μπορούμε επίσης να χρησιμοποιήσουμε τις αποδόσεις της παλινδρόμησης για να υπολογίσουμε τα διαστήματα εμπιστοσύνης για την κλίση των συντελεστών. Ένα διάστημα εμπιστοσύνης για το β j θα μπορούσε να είναι:

15 β j ± t n-k-1 s.e όπου s.e είναι το τυπικό σφάλμα που φαίνεται στην συνοπτική απόδοση. 3). Υπάρχει Πολυσυγραμμικότητα;.. Η συσχέτιση (correlation) είναι μια αριθμητική τιμή μεταξύ του 1 και 1, και μετρά την γραμμική σχέση μεταξύ των μεταβλητών. Όσο υψηλότερη είναι η απόλυτη τιμή της συσχέτισης, τόσο περισσότερο δυνατή είναι η σχέση μεταξύ των μεταβλητών. Το πρόσημο δείχνει εάν η σχέση μεταξύ των μεταβλητών είναι θετική ή αρνητική. Μέσω Excel,με το εργαλείο συσχέτισης, μπορούμε να υπολογίσουμε την συσχέτιση μεταξύ των συνδυασμένων μεταβλητών. Ο πίνακας (7) δείχνει τον πίνακα συσχέτισης για τα διατομικά στοιχεία που συλλέχθηκαν κατά την διάρκεια της παραμονής των εργαζομένων στην επιχείρηση Tracway. Μπορούμε να δούμε ότι η ηλικία έχει την δυνατότερη σχέση με την εξαρτημένη μεταβλητή, από ότι τα χρόνια εκπαίδευσης και ο βαθμός του κολεγίου. Αυτός ο πίνακας δίνει πληροφορίες για το ποια ανεξάρτητη μεταβλητή θα επιλεχθεί πρώτα για τον συνυπολογισμό της στο μοντέλο. Duration Yrseducation College gpa Age Duration 1 Yrseducation College gpa Age ΠΙΝΑΚΑΣ (7) Η πολυσυγγραμμικότητα (multicollinearity) είναι χαρακτηριστικό του δείγματος, αναφέρεται δηλαδή στις γραμμικές σχέσεις ανάμεσα στις ερμηνευτικές μεταβλητές στο δείγμα και όχι στον πληθυσμό. Αυτό σημαίνει πως δεν μπορεί να γίνει έλεγχος, με την στατιστική έννοια του όρου, για πολυσυγγραμμικότητα. Οι διάφοροι τρόποι «ελέγχου» της πολυσυγγραμμικότητας αναφέρονται στην διαπίστωση και μέτρηση και όχι στον έλεγχο της πολυσυγγραμμικότητας. Όταν το υπόδειγμα περιλαμβάνει δύο μόνο ερμηνευτικές μεταβλητές, η τιμή του συντελεστή απλής συσχετίσεως μεταξύ των ερμηνευτικών μεταβλητών είναι ικανοποιητικό μέτρο του βαθμού της πολυσυγγραμμικότητας που υπάρχει στο δείγμα. Όσο όμως αυξάνει ο αριθμός των ερμηνευτικών μεταβλητών τόσο δυσκολότερη γίνεται η διαπίστωση και η μέτρηση της πολυσυγγραμμικότητας. Η εξέταση των συντελεστών απλής συσχετίσεως ανάμεσα στις ερμηνευτικές μεταβλητές δεν είναι αρκετή, γιατί όπως αναφέραμε παραπάνω, μπορεί η τιμή των συντελεστών συσχετίσεως να είναι χαμηλή και το δείγμα να χαρακτηρίζεται από πολυσυγγραμμικότητα. Συμπεριλαμβάνοντας πολλές μεταβλητές στο μοντέλο παλινδρόμησης,μπορεί να οδηγηθούμε σε πολυσυγγραμμικότητα. Είναι μια κατάσταση στην οποία δύο ή

16 περισσότερες μεταβλητές στο ίδιο μοντέλο παλινδρόμησης έχουν υψηλά επίπεδα της ίδιας πληροφορίας, εξηγώντας την μεταβλητότητα της εξαρτημένης μεταβλητής και την συσχέτιση της μίας με την άλλη. Συγκεκριμένα, η πολυσυγγραμμικότητα υπάρχει, όταν σε ένα σύνολο από ανεξάρτητες μεταβλητές, η μία ανεξάρτητη μεταβλητή προβλέπει την άλλη καλύτερα από ότι προβλέπουν την εξαρτημένη μεταβλητή. Η πολυσυγγραμμικότητα καθιστά δύσκολη την διάκριση των επιρροών που έχουν αυτές οι μεταβλητές στην εξαρτημένη μεταβλητή. Το πρόβλημα της παλινδρόμησης, δηλαδή,υφίσταται όταν δεν έχουμε σωστές φυσικές ερμηνείες στα αποτελέσματα της ανάλυσης της παλινδρόμησης. Για παράδειγμα θα είχαμε το πρόβλημα της πολυσυγγραμμικότητας αν για την ανεξάρτητη μεταβλητή, την ηλικία, παρατηρούσαμε ότι καθώς αυξανόταν η ηλικία αυξανόταν και ο συντελεστής αυτής της ανεξάρτητης μεταβλητής, ενώ στην πραγματικότητα θα έπρεπε να μειώνεται. Ένας άλλος τρόπος για να δούμε αν υπάρχει το πρόβλημα της πολυσυγγραμμικότητας είναι να βρούμε τις μεταξύ συσχετίσεις των μεταβλητών. Αν είναι θετικές τότε έχουμε το πρόβλημα της πολυσυγγραμμικότητας. Επιπλέον, ένας άλλος τρόπος εύρεσης της ύπαρξης πολυσυγγραμμικότητας είναι μέσω του παράγοντα επιρροής διακύμανσης (variance inflation factor) Η πολυσυγγραμμικότητα μπορεί να συντελέσει έμμεσα σε λανθασμένη εξειδίκευση του υποδείγματος. Αυτό μπορεί να συμβεί, γιατί στην πράξη, πολλές φορές προσθέτουμε ή αφαιρούμε ερμηνευτικές μεταβλητές ανάλογα με το αν είναι στατιστικά σημαντικές ή όχι. Αν όμως η μη σημαντικότητα του συντελεστή οφείλεται στην ύπαρξη πολυσυγγραμμικότητας, η αφαίρεση της σχετικής μεταβλητής δημιουργεί σφάλματα εξειδικεύσεως. Από την προηγούμενη ανάλυση μπορούμε να συμπεράνουμε, πως η πολυσυγγραμμικότητα είναι σοβαρό πρόβλημα, γιατί επηρεάζει την αξιοπιστία των αποτελεσμάτων της εκτιμήσεως. Οι πιο σοβαρές από τις συνέπειές της αναφέρονται : α) στην ακρίβεια των συντελεστών, επειδή οι διακυμάνσεις μπορεί να είναι σχετικά μεγάλες, β) στη σταθερότητα των συντελεστών, και γ) στη δυνατότητα σφάλματος εξειδίκευσης. Πρέπει όμως να τονισθεί ότι η πολυσυγγραμμικότητα δεν επηρεάζει τις ιδιότητες των εκτιμητών που παίρνουμε με την μέθοδο των ελαχίστων τετραγώνων. Οι εκτιμητές δηλαδή, εξακολουθούν να είναι άριστοι γραμμικοί αμερόληπτοι. Όταν υπάρχει πολυσυγγραμμικότητα, οι συντελεστές β των ανεξάρτητων μεταβλητών είναι ευμετάβλητοι, και ακόμα και το πρόσημό τους είναι πιθανόν να αλλάζει όταν συμπεριλαμβάνονται διαφορετικές μεταβλητές. Επίσης οι τιμές P μπορεί να διογκωθούν, και αυτό θα έχει σαν αποτέλεσμα να μην απορριφθεί η μηδενική υπόθεση, ενώ θα έπρεπε να απορριφθεί στην πραγματοποίηση του ελέγχου για την σημαντικότητα του μοντέλου. Η αναφορά στην πολυσυγγραμμικότητα έγινε για να πληροφορηθούμε για τα προβλήματα που είναι πιθανόν να προκαλέσει και έτσι σε μια τέτοια περίπτωση θα είναι απαραίτητη η συμβουλή ενός ειδικού. 4). Ανάλυση καταλοίπων (Επιβεβαίωση παραδοχών)

17 . Όπως και σε κάθε μοντέλο παλινδρόμησης, χρειάζεται να παρατηρούμε προσεκτικά τα αποτελέσματα, για να μπορέσουμε να τα κατανοήσουμε. Τα αποτελέσματα δεν υπονοούν ότι περισσότερη εκπαίδευση δεν θα είναι χρήσιμη, ή ότι ο υψηλότερος μέσος όρος μαθημάτων κολεγίου δεν μπορεί να συμβάλει στην επιτυχία. Θέλει να πει ότι εκείνοι με περισσότερη μόρφωση παρουσιάζουν ελαστικότητα εργασίας, δηλαδή μπορούν εύκολα να μετακινούνται σε άλλες εργασίες. Το ίδιο συμβαίνει και με τον μέσο όρο του βαθμού απολυτηρίου. Αλλά όταν συγκεκριμένα μελετάμε πόσο καιρό, τα σαράντα άτομα του δείγματος που προσβλήθηκαν, παρέμειναν στην επιχείρηση μετά από δέκα χρόνια, εκείνοι που ήταν μεγαλύτεροι παρέμειναν περισσότερο στην επιχείρηση Tracway. Περισσότερα χρόνια εκπαίδευσης καθώς και υψηλότερος μέσος όρος μαθημάτων δεν ήταν σημαντικοί παράγοντες για να παραμείνουν περισσότερο χρονικό διάστημα στην επιχείρηση. Άλλες μεταβλητές που δεν συμπεριλαμβάνονται στο μοντέλο, είναι πιθανόν να οδηγούσαν σε διαφορετικά αποτελέσματα. Έτσι προκύπτει η απορία, πώς να δημιουργήσουμε «καλά» μοντέλα παλινδρόμησης. Δημιουργία «καλών» μοντέλων Παλινδρόμησης Ένα καλό μοντέλο παλινδρόμησης θα πρέπει να περιλαμβάνει μόνο στατιστικά σημαντικές ανεξάρτητες μεταβλητές. Επειδή τα χρόνια εκπαίδευσης και ο μέσος όρος βαθμός κολεγίου δεν φαίνεται να επηρεάζουν σημαντικά την ανεξάρτητη μεταβλητή, πρέπει να τις παραλείψουμε, και να υπολογίσουμε το μοντέλο, περιλαμβάνοντας μόνο την ηλικία. Τα αποτελέσματα αυτού φαίνονται στον πίνακα (6). Το καινούργιο μοντέλο είναι : Retention = - 2,01 + 0,300 Age Σε αυτό το μοντέλο παλινδρόμησης το R 2 είναι 0,142 αντί 0,150 που είναι στο μοντέλο και με τις τρεις ανεξάρτητες μεταβλητές, δηλαδή το μοντέλο και με τις τρεις ανεξάρτητες μεταβλητές είναι λίγο καλύτερο από το καινούργιο μοντέλο. Η ηλικία είναι στατιστικά σημαντική μεταβλητή, με σημαντικότητα F ίση με 0,017. Αυτό δείχνει ότι υπάρχει ακόμα μεγαλύτερη σημαντικότητα από ότι στο προηγούμενο μοντέλο. Η πρόβλεψη για τους τριαντάχρονους υποψηφίους με 16 χρόνια εκπαίδευσης και μέσο όρο βαθμό κολεγίου 2,50, είναι ότι θα παραμείνουν στην επιχείρηση 6,99 χρόνια, λίγο περισσότερο από ότι στο προηγούμενο μοντέλο, γιατί οι άλλες δύο μεταβλητές δεν συμπεριλαμβάνονται στο καινούργιο μοντέλο.

18 Employee Success Στατιστικά παλινδρόμησης Πολλαπλό R R Τετράγωνο Προσαρμοσμένο R Τετράγωνο Τυπικό σφάλμα Μέγεθος δείγματος 40 ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ βαθμοί ελευθερίας SS MS F Σημαντικότη τα F Παλινδρόμηση Υπόλοιπο Σύνολο Τυπικό σφάλμα t τιμή-p Κατώτερο 95% Υψηλότερο 95% Κατώτερο 95.0% Υψηλότερο 95.0% Συντελεστές Τεταγμένη επί την αρχή Age ΠΙΝΑΚΑΣ (6) Α) Χρήση διορθωμένου συντελεστή προσδιορισμού (Adjusted R 2 ) στον υπολογισμό του ταιριάσματος Ένας χρήσιμος τρόπος για να εξετάσουμε το σχετικό ταίριασμα των διαφορετικών μοντέλων, είναι μέσω του διορθωμένου συντελεστή προσδιορισμού. Προσθέτοντας μια ανεξάρτητη μεταβλητή στο μοντέλο παλινδρόμησης, ο συντελεστής προσδιορισμού που θα προκύπτει θα είναι ίσος η μεγαλύτερος από αυτόν του πρωταρχικού μας μοντέλου. Αυτό ισχύει ακόμα και όταν η νέα ανεξάρτητη μεταβλητή έχει κάποια σχέση με την εξαρτημένη μεταβλητή. Ο διορθωμένος συντελεστής προσδιορισμού απεικονίζει τον αριθμό των ανεξάρτητων μεταβλητών που υπάρχουν στο μοντέλο αλλά και το μέγεθος του δείγματος. Αυτό βοηθάει στο να κατανοήσουμε καλύτερα την τιμή της ανεξάρτητης μεταβλητής που προστέθηκε στο μοντέλο. Αν εκφράσουμε το συνολικό άθροισμα των τετραγώνων και το άθροισμα των τετραγώνων των καταλοίπων ως διακυμάνσεις, δηλαδή αν τα διαιρέσουμε με τους αντίστοιχους βαθμούς ελευθερίας, ώστε να έχουμε αμερόληπτους εκτιμητές των αντίστοιχων διακυμάνσεων στον πληθυσμό, παίρνουμε τον διορθωμένο συντελεστή προσδιορισμού. Ο διορθωμένος συντελεστής προσδιορισμού, δηλαδή, στην πολλαπλή γραμμική παλινδρόμηση δίνεται από την σχέση:

19 Adjusted R 2 SSE = 1 - SST n 1 n k 1,όπου το SSE: είναι άθροισμα των τετραγώνων των καταλοίπων SST: είναι το συνολικό άθροισμα τετραγώνων n: είναι ο αριθμός των παρατηρήσεων k: είναι ο αριθμός των ανεξάρτητων μεταβλητών Συγκεκριμένα ο προσαρμοσμένος όρος (n-1) / (n-k-1) παριστάνει την αναλογία των βαθμών ελευθερίας του SSE και του SST. Ο διορθωμένος συντελεστής προσδιορισμού είναι περισσότερο κατάλληλος για την σύγκριση της ερμηνευτικής ικανότητας των υποδειγμάτων, όταν ο αριθμός των ερμηνευτικών μεταβλητών καθώς και το μέγεθος του δείγματος διαφέρουν. Από τη σχέση του διορθωμένου συντελεστή προσδιορισμού είναι φανερό ότι αυτός είναι μικρότερος από τον συντελεστή προσδιορισμού. Θα είναι ίσοι μόνο όταν R 2 = 1 ή ασυμπτωτικά, δηλαδή όταν το μέγεθος του δείγματος τείνει στο άπειρο. Επιπλέον ο συντελεστής προσδιορισμού δεν μπορεί να πάρει αρνητικές τιμές ενώ ο διορθωμένος συντελεστής προσδιορισμού μπορεί. Για την επιχείρηση Tracway, στο μοντέλο και με τις τρεις ανεξάρτητες μεταβλητές, βρίσκουμε ότι: Adjusted R 2 = 1-267, , = 0, Για το μοντέλο παλινδρόμησης με μία μόνο ανεξάρτητη μεταβλητή, την ηλικία, ο διορθωμένος συντελεστής προσδιορισμού είναι 0,119. Παρατηρείται ότι ενώ το R 2 θα έπρεπε να μειώνεται παραλείποντας τις άλλες δύο μεταβλητές από το μοντέλο, στην πραγματικότητα αυξάνεται, δείχνοντας ένα καλύτερο μοντέλο ταιριάσματος. Επιπλέον, ο διορθωμένος συντελεστής προσδιορισμού μας δίνει την δυνατότητα να υπολογίζουμε την επίδραση της πρόσθεσης ή της μετακίνησης μεταβλητών μέσα ή έξω από το μοντέλο.

20

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής Διαγνωστικοί Έλεγχοι Διαπίστωσης της Αυτοσυσχέτισης Οι περισσότεροι από τους διαγνωστικούς ελέγχους της αυτοσυσχέτισης αναφέρονται σε αυτοσυσχέτιση

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21 Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική

Διαβάστε περισσότερα

Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων

Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια Αθήνα, 6-4-7 Γραμμικά Μοντέλα Λύσεις Ασκήσεων η Άσκηση: (α) Eίναι η σχέση μεταξύ των δύο μεταβλητών γραμμική; Διάγραμμα Διασποράς Για το Υψόμετρο & τις Αρνητικές Τιμές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 8ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 8ο Επιλογή του αριθμού των χρονικών υστερήσεων Στις περισσότερες οικονομικές χρονικές σειρές υπάρχει υψηλή συσχέτιση μεταξύ της τρέχουσας

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

www.onlneclassroom.gr www.onlneclassroom.gr Α. Το διάγραμμα διασποράς των μεταβλητών διαθέσιμο εισόδημα (Χ) και κατανάλωσης (Υ), όπως σχηματίστηκε στο excel, είναι 3000 Δ ιάγραμμα Δ ιασ π οράς 500 Δ ηλω

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το κλασικό Γραμμικό Υπόδειγμα ΔΙΑΛΕΞΗ 0 Μαρί-Νοέλ Ντυκέν, Μαρία

Διαβάστε περισσότερα

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ

Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Α.Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ : «Η ΕΠΙΔΡΑΣΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 2 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Αποτελεί ευθεία γενίκευση του σχεδίου που γνωρίσαμε όταν μιλήσαμε για τη σύγκριση κατά ζεύγη δύο μέσων μ 1 και μ 2

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 6: ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ - ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 6: ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ - ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 6: ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΘΕΜΑ 5ο (ΜΟΝΑΔΕΣ 0) www.oleclassroom.gr Ένας οικονομικός αναλυτής θέλει να διερευνήσει τη σχέση μεταξύ της τιμής ενός αγαθού με τις σημειούμενες πωλήσεις του σε διαφορετικά καταστήματα μιας αστικής περιοχής.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων

Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τεχνικές Ανάλυσης Διοικητικών Αποφάσεων ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμηματικό e-mal : dap_ode@yahoo.gr www.dap-pape.gr

Διαβάστε περισσότερα

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ:

Η τελεία χρησιμοποιείται ως υποδιαστολή (π.χ 3 14 τρία κόμμα δεκατέσσερα) Παρακαλώ παραδώστε τα θέματα μαζί με το γραπτό σας ΟΝΟΜΑ: ΕΠΩΝΥΜΟ: ΑΜ: Πανεπιστήμιο Πατρών, Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιανουαρίου 2014 (18-Φεβ-2014) 9:00-11:00 Μάθημα: «ΟΙΚΟΝΟΜΕΤΡΙΑ» ΟΙΚΟΝ 320 Διδάσκων: Επίκουρος Καθηγητής Ιωάννης Α. Βενέτης Διάρκεια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΑ» και «ΝΕΚΑ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΑ» και «ΝΕΚΑ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΑ» και «ΝΕΚΑ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ Εισαγωγή: 3 η Άσκηση: 15/12/2016 Για την ανάλυση της σημασίας

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ «ΜΕΛΕΤΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ

Διαβάστε περισσότερα

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ

ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ . ΠΑΛΙΝΔΡΟΜΗΣΗ ΤΑΞΗΣ ΜΕΓΕΘΟΥΣ (RANK REGRESSION).1 Μονότονη Παλινδρόμηση (Monotonic Regression) Από τη γραφική παράσταση των δεδομένων του προηγουμένου προβλήματος παρατηρούμε ότι τα ζευγάρια (Χ i, i )

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ

ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ Η συγγραμμικότητα (collinearity) ή πολυσυγγραμμικότητα (multicollinearity) είναι εκείνη η ανεπιθύμητη κατάσταση (εμφανίζεται στην πολυμεταβλητή παλινδρόμηση) όπου μία ανεξάρτητη

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΚΠΟΝΗΣΗ : ΜΠΑΡΔΑΚΗ ΘΕΟΔΩΡΑ ΛΑΚΟΥΜΕΝΤΑ ΙΩΑΝΝΑ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : σ =Ε(Χ )-µ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : Cov(X,Υ)=Ε(ΧΥ)-Ε(Χ)Ε(Υ) ΑΣΚΗΣΗ 3 Να δείξετε ότι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES»

UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» METHODS OF SPATIAL ECONOMIC ANALYSIS LECTURE 11 Δρ. Μαρί-Νοέλ

Διαβάστε περισσότερα

Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή

Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή

Διαβάστε περισσότερα

Οικονομετρία. Πολυσυγγραμμικότητα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης

Οικονομετρία. Πολυσυγγραμμικότητα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης Οικονομετρία Πολυσυγγραμμικότητα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση της έννοιας της πολυσυγγραμμικότητας και των συνεπειών της

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Πολλαπλή γραμμική παλινδρόμηση με χρήση excel Θεωρία και παραδείγματα.

Πολλαπλή γραμμική παλινδρόμηση με χρήση excel Θεωρία και παραδείγματα. Πολλαπλή γραμμική παλινδρόμηση με χρήση excel 2003. Θεωρία και παραδείγματα. Γκούμας Στράτος. Πτυχιούχος Οικονομολόγος. MSc Εφαρμοσμένη Οικονομική και Χρηματοοικονομική (Ε.Κ.Π.Α./ Τμήμα Οικονομικών) e-mail:

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 18: ΠΡΟΥΠΟΛΟΓΙΣΜΟΙ ΚΑI ΑΡΙΘΜΟΔΕΙΚΤΕΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017

Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 Ανάλυση διακύμανσης (Μέρος 3 ο ) 7/4/2017 2 α x b Παραγοντικό Πείραμα (1) Όταν θέλουμε να μελετήσουμε την επίδραση (στη μεταβλητή απόφασης) δύο παραγόντων, έστω Α και Β, με α στάθμες ο Α και b στάθμες

Διαβάστε περισσότερα