Nachrichtentechnik I WS 2005/2006
|
|
- Μαγδαληνή Καραμανλής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Nachrichtentechnik I WS 2005/ Signals & Systems wt 10/2005 1
2 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation signal space representation Stochastic signals properties white Gaussian noise Systems definition & classification linear time-invariant systems wt 10/2005 2
3 Motivation Signal: Physical means to represent information Necessary for information transmission Here: mathematical concept required to model communications System: Mathematical model for the transmission medium which transports information Examples: wire, optical fiber, radio transmission, filter Results in a transformation of the input signal Input Signal s(t) System g(t) Output Signal Transformation wt 10/2005 3
4 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation signal space representation Stochastic signals properties white Gaussian noise Systems definition & classification linear time-invariant systems wt 10/2005 4
5 Signals Definition (cf Lüke: Signalübertragung ) Change in a physical quantity in order to attract attention and to transfer meaning Examples: Pressure fluctuations Ink distribution on a white paper Brightness distribution on a screen Voltage / current variations Mathematical description (time signal): s(t) range (Wertebereich) domain (Definitionsbereich) wt 10/2005 5
6 Signal Classification (1) range domain real-valued real-valued / complex-valued continuous-time & continuous-range integers continuous-time & discrete-range analog signal integers discrete-time & continuous-range discrete-time & discrete-range digital signal wt 10/2005 6
7 k s(t) k+1 s(t) k+2 s(t) Signal Classification (2) Deterministic signals 6 Described by a closed mathematical expression, eg s( t) = cos(2πf 0t) - t Stochastic signals 6 Characterized by a stochastic process: - Probability distribution function / cumulative distribution function - Power density spectrum Represented by sample functions: Examples: speech signal, noise, 6 - t - t wt 10/2005 7
8 Signal Properties (1) Scalar product: Orthogonality: Cross-correlation function (CCF): (s(t),g(t)) = Z s(t) g (t) dt (s(t),g(t)) = 0 ϕ E sg(τ) =(s(t),g(t + τ)) Z = s (t) g (t + τ) dt Autocorrelation function (ACF): ϕ E ss(τ) = Z s(t) s (t + τ) ) dt wt 10/2005 8
9 Signal Properties (2) Distance between signals (norm): d = s(t) g(t) = p (s(t) g(t),s(t) g(t)) Signal energy: E s = s(t) 2 =(s(t),s(t)) = ϕ E ss(0) = Z s(t) 2 dt Mean signal power: P s = lim T 1 2T T T s( t) 2 dt Energy signals: Es < and Ps = 0 Power signals: Es = and Ps < wt 10/2005 9
10 Basic signals (1) Rectangular impulse: rect(t) = ½ 1 0 for otherwise t 1 2 Triangular impulse: Λ(t) = ½ 1 t for t 1 0 otherwise Sine x over x: si(πt) = sin(πt) πt Gaussian impulse: 1 t e 2π 2 2 wt 10/
11 Basic signals (2) Step function: ε(t) = ½ 1 0 for t 0 otherwise Dirac delta function δ(t): Z δ(τ)dτ =1 Z s(t τ)δ(τ)dτ = s(t) Sha function: III(t) = X i δ(t i) wt 10/
12 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation signal space representation Stochastic signals properties white Gaussian noise Systems definition & classification linear time-invariant systems wt 10/
13 Signal Transformations Time reflection: even signal: odd signal: Scaling: Time shift (delay element): Fourier transform: s( t) s ( t) = s( t) s( t) = s( t) s(at) s( t t0) S(f)= Z s(t)= Z s(t)e j2πft dt S(f)e j2πft df wt 10/
14 Properties of the Fourier Transform Linearity Convolution Multiplication Modulation Time Shift Similarity Similarity & Shift Differentiation t-multiplication Complex Conjugate Parseval s Theorem Time Domain Frequency Domain c 1s1( t) + c2s2( t) c 1S1( f ) + c2s2( f ) s1( t) s2( t) S1( f ) S2( f ) S f ) S ( s1( t) s2( t) 1( 2 f ) j2πf t S( f f0) 0 s( t) e s ( t t ) j2πft0 0 S( f ) e 1 f s (at) S( a ) a s a ( t t 1 f j2πft0 )) S( a ) e ( 0 d n n s(t) ( j2πf ) n S( f ) dt n n j2πt ) s( ) d S( f ) ( t s * ( ± t) S *( f ) x ( t), s( t) = X ( f ), S( f ) a df n wt 10/
15 Symmetry Properties of the Fourier Transform Time Domain s(t) Frequency Domain S(f) real even real odd imaginary even imaginary odd real even imaginary odd imaginary even real odd wt 10/
16 Basic Signals and their Spectra (1) Basic waveform Spectrum Informationstechnik Universität Ulm wt 10/
17 Basic Signals and their Spectra (2) Basic waveform Spectrum wt 10/
18 Signal Space Representation Coordinates in signal space: a i =(s(t),b i (t)) i =0, 1,,M 1 = Z s(t) b i(t) dt Linear combination: s(t) = M 1 X i=0 a i b i (t) Signal vectors: a s =(a 0,a 1,,a M 1 ) wt 10/
19 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation signal space representation Stochastic signals properties white Gaussian noise Systems definition & classification linear time-invariant systems wt 10/
20 Stochastic Signals: Properties (1) Linear ensemble mean: m s (t 0 )= 1 s(t 0 )= lim n n nx k= 1 k s(t 0 ) Ensemble mean square: P = s 2 (t 0 )= n 1 lim n nx k= 1 k s 2 (t 0 ) Variance: σs(t 2 0 )= s(t0 ) m s (t 0 ) 2 ensemble average s 2 (t 0 )=σ 2 s(t 0 )+m 2 s (t 0 ) wt 10/
21 Stochastic Signals: Properties (2) time average Linear time mean: k m = m t (k 0 ) = k s(t) = lim T Z 1 T 2 T T k s (t) dt Time mean square: Z T k 2 1 s (t) = lim k 2 s (t) T 2 T T dt Stationarity: ensemble averages are time invariant Ergodicity: time average and ensemble average coincide ergodicity stationarity wt 10/
22 Stochastic Signals: Properties (3) Autocorrelation function: ϕ ss (t 0,τ)= s(t 0 ) s(t 0 + τ) ϕ ss (t 0, 0) = s(t 0 ) s(t 0 )= s 2 (t 0 ) Autocovariance function: μ ss (t 0,τ)= s(t0 ) m s (t 0 ) s(t 0 + τ) m s (t 0 +τ ) Power density spectrum: Φ ss (t 0,f)= Z ϕ ss (t 0,τ) e j2πfτ dτ Φ ss ( 0 t0, f ) ϕss( t, τ ) wt 10/
23 Stochastic Signals: Properties (4) Crosscorrelation function: ϕ sg (t 0,τ)= s(t 0 ) g (t 0 + τ) Crosscovariance function: μ sg (t 0,τ)= s(t0 ) m s (t 0 ) g(t 0 + τ) m g (t 0 + τ) wt 10/
24 Stochastic Signals: Properties (5) Cumulative distribution function (cdf) (Verteilungsfunktion): P s (x, t 0 )= k s(t 0 ) x Prob 1 P s (x 1,t 0 ) P s (x 2,t 0 ) 1 P s (,t 0 ) = 1 P s (,t 0 ) = 0 for x 1 x 2 Probability density function (pdf) (Verteilungsdichtefunktion): p s (x, t 0 )= d dx P s(x, t 0 ) wt 10/
25 p e Gaussian Distribution (1) Probability density function (pdf): p s (x) = 1 (x m) 2 e 2 πσ 2 2σ 2 p s (x) 6 1 p x - m ; m m + Informationstechnik Universität Ulm wt 10/ P s (x)
26 1 e 2 2 Gaussian Distribution (2) p Cumulative distribution function (cdf): m ; m m + P s (x) = Z x p s (ϑ) dϑ - x P s (x) mean value - x Mittelwert wt 10/
27 Gaussian Distribution (3) Cdf of Gaussian distribution: P s (x) = Z x = 1 2 p s (ϑ) dϑ m x erfc 2 σ 2 Error function: erf (x) = Z x 2 e ϑ 2 π dϑ 0 Error function complement: erfc(x) =1 erf (x) wt 10/
28 White Gaussian Noise Process Probability distribution function: Gaussian Ergodic Process Mean value: m s = 0 Variance: 2 σ s = ϕ ss (0) Power density spectrum: Φ ss (t 0,f)=Φ ss (f) =N 0 white Autocorrelation function: ϕ ss (τ) =N 0 δ(τ) wt 10/
29 Overview (Signals & Systems) Signals: definition & classification properties basic signals Signal transformations Fourier transformation signal space representation Stochastic signals properties white Gaussian noise Systems definition & classification linear time-invariant systems wt 10/
30 Systems Definition (cf Oppenheim Signals and Systems ) A system can be viewed as any process that results in the transformation of signals Input Signal s(t) System g(t) $ $ Output Signal Examples: filter wire Transformation/ Mapping wt 10/
31 A System Can Be Continuous-time or discrete-time Deterministic or stochastic Memory-less or with memory Causal or non-causal Stable or unstable Linear or nonlinear Time-invariant or time-variant wt 10/
32 Block-diagram Representation of Systems s(t) = s 1 (t) g 1 (t) = s 2 (t) g 2 (t) system 1 system 2 s(t) g(t) = g 2 (t) + g 3 (t) system 3 s(t) = s 3 (t) g 3 (t) wt 10/
33 Basic Systems (1): n(t) + g(t) = s(t) + n(t) (addition of two signals) s(t) g(t) a g(t) = a s(t) (multiplication by a s(t) g(t) constant coefficient) T s(t) g(t) g(t) = s(t-t) (delay element) n(t) x g(t) = s(t) n(t) (multiplication of two s(t) g(t) signals) wt 10/
34 Basic Systems (2): SIN g(t) = sin [s(t)] (nonlinear operation) s(t) g(t) h(t) s(t) g(t) g(t) = s(t) * h(t) (LTI-system) s(t) h 1 (t) g(t) (feedback system) h 2 (t) wt 10/
35 Linear Time-Invariant (LTI) Systems (1) Linear: s i(t) $ g i(t) $ X s i (t) $ X g i (t) $ i i Superposition principle Time-Invariant: Impulse response: Z s(t) $ g(t) $ s(t τ) $ g(t τ) $ δ(t) s(t τ) δ(τ) dτ h(t) Z s(t τ) h(τ) dτ Convolution integral: Z s(t τ) h(τ) dτ = s(t) h(t) wt 10/
36 Linear Time-Invariant (LTI) Systems (2) Input Signal s(t) $ h(t) Output Signal g(t) =s(t) h(t) $ impulse response Properties of the convolution integral: commutative law: s t) h( t ( ) = h( t) s( t) associative law: distributive law: s s ( 2 t) [ h1 ( t) h2 ( t)] = [ s( t) h1 ( t)] h ( t) ( 2 t) [ h1 ( t) + h2 ( t)] = [ s( t) h1 ( t)] + [ s( t) h ( t)] wt 10/
37 Some Properties of LTI Systems Transfer function: h(t) H ( f ) g( t) = s( t) h( t) G( f ) = S( f ) H ( f ) without memory: h( t) = K δ ( t) causality: h( t) = 0 t < 0 for wt 10/
38 Special LTI Systems (1) s(t) δ(t) g(t) =s(t) Ideal system: h ideal (t)=δ(t) Output signal of an ideal system: g(t) =δ(t) s(t) = s(t) wt 10/
39 Special LTI Systems (2) Ideal lowpass filter: h TP (t)=2f g si(π2f g t) H TP (f)= rect( f ) 2f g f g : cutoff frequency Ideal bandpass filter: h BP (t)=f si(πf t) 2cos(2πf 0 t) H BP (f)= ( ( f f 0 )+ ( f + f 0 rect rect )) f f f : f 0 : bandwidth center frequency wt 10/
40 Special LTI Systems (3) Short time integration: Integration: h KI ( t) g( t) g( t) = t h Int (t)=ε(t) t T = rect T t T = rect T T T s(τ ) dτ 2 2 * s( t) integration time g(t) =ε(t) s(t) = Z t s(τ) dτ wt 10/
41 LTI Systems with Stochastic Input Signals (1) Signals, sample functions: k s(t) h(t) k g(t)=h(t) k s(t) sample function of input signal Autocorrelation functions (Wiener Lee relation) Power density spectrum (Wiener-Khintchine theorem) sample function of output signal ϕ gg (τ)=ϕ ss (τ) ϕ E hh(τ) Φ gg (f)=φ ss (f) H(f) 2 wt 10/
42 LTI Systems with Stochastic Input Signals (2) Example: WGN at the input Power density spectrum: Autocorrelation function: h(t) n (t) n e (t) Φ ne n e (f) =N 0 H(f) 2 ϕ ne n e (τ) =N 0 ϕ E hh(τ) Variance at the output: σ 2 n e = N 0 ϕ E hh(0) = N 0 E h LTI system: ideal lowpass filter Φ ne n (f) =N e 0 rect ( f ) 2f g ϕ ne n e (τ) =N 0 2f g si(π2f g t) 2 σ ne = N 0 2f g wt 10/
43 LTI Systems with Stochastic Input Signals (3) Generalized Wiener Lee relation k s(t) h ( t 1 ) k g ( t 1 ) h ( t 2 ) k g ( t 2 ) Crosscorrelation function: WGN at the input: ϕ g1 g 2 (τ)=ϕ ss (τ) ϕ E h 1 h 2 (τ) ϕ ne1 n e2 (τ)=n 0 ϕ E h 1 h 2 (τ) h ( ) ( ) and orthogonal: 1 t h ϕ (τ)= 2 t n e1 n e2 0 wt 10/
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Fundamentals of Signals, Systems and Filtering
Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness
Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada
Linear System Response to Random Inputs M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Linear System Response to deterministic input. Response to stochastic input. Characterize
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης (Correlation) & Συνδιασποράς (Covariance)
CT Correlation (2B) Young Won Lim 8/15/14
CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
LTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier 2.2: Μετασχηματισμός Fourier (Fourier Transform, FT) 2.3: Ιδιότητες του
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
Introduction to Time Series Analysis. Lecture 16.
Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Stationary Stochastic Processes Table of Formulas, 2017
Stationary Stochastic Processes, 07 Stationary Stochastic Processes Table of Formulas, 07 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0
3 Frequency Domain Representation of Continuous Signals and Systems
3 Frequency Domain Represenaion of Coninuous Signals and Sysems 3. Fourier Series Represenaion of Periodic Signals............. 2 3.. Exponenial Fourier Series.................... 2 3..2 Discree Fourier
Contents Introduction to Filter Concepts All-Pole Approximations
Contents 1 Introduction to Filter Concepts... 1 1.1 Gain and Attenuation Functions..... 1 1.2 Ideal Transmission... 4 1.2.1 Ideal Filters... 5 1.3 Real Electronic Filters... 6 1.3.1 Realizable Lowpass
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
BandPass (4A) Young Won Lim 1/11/14
BandPass (4A) Copyright (c) 22 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later version
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Ανάλυση Θορύβου Σε Γραμμικά Κυκλώματα
AO Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης Ανάλυση Θορύβου Σε Γραμμικά Κυκλώματα Θεωρία, Εξαρτήματα και ιατάξεις Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Άδεια
Αθανάσιος Σκόδρας /
Αθανάσιος Σκόδρας 2610 99 61 67 / 2610 9 97 2 97 skodras@upatras.gr http://www.ece.upatras.gr/gr/personnel/faculty.html?id=672 Ώρες Γραφείου: Τετάρτη Πέµπτη Παρασκευή 11:00-12:00 Γραφείο: 1 ος όροφος Τομέας
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Stationary Stochastic Processes Table of Formulas, 2016
Stationary Stochastic Processes, 06 Stationary Stochastic Processes Table of Formulas, 06 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 5.9 Η Στοχαστική Ανέλιξη Gauss (οι διαφάνειες ακολουθούν διαφορετική
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3 5.6: Μέση Τιμή, Συναρτήσεις Συσχέτισης & Συνδιασποράς 5.7: Μετάδοση Στοχαστικής
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10: Θόρυβος (Πηγές Θορύβου, Κατανομή Poisson, Λευκός Θόρυβος, Ισοδύναμο
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Ψηφιακές Επικοινωνίες
Ψηφιακές Επικοινωνίες Βασικές Έννοιες Θεωρία Σηµάτων: ανάλυση στο χρονικό και φασµατικό πεδίο Continuous Fourier Transform Σειρές Fourier Σήµατα βασικής ζώνης (Baseband) και ιέλευσης ζώνης (Bandpass) Θεωρία
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ y t x Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 1 ΔΙΑΛΕΞΗ 2 ΔΙΑΦΑΝΕΙΑ 1 ΤΥΠΟΙ ΣΗΜΑΤΩΝ Analog: Continuous Time & Continuous Amplitude Sampled: Discrete Time & Continuous
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University
Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,
ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.
Τµήµα Ηλεκτρονικής ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ. Σπουδαστής: Γαρεφαλάκης Ιωσήφ Α.Μ. 3501 Επιβλέπων καθηγητής : Ασκορδαλάκης Παντελής. -Χανιά 2010- ΠΕΡΙΛΗΨΗ : Η παρούσα
Fundamentals of Wireless Communication
Communication Technology Laboratory Prof Dr H Bölcskei Sternwartstrasse 7 CH-8092 Zürich Fundamentals of Wireless Communication Homework 3 Solutions Handout date: April 27, 2018 Problem 1 Estimation of
Assignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation
Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI
Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
ΣΤΗΑ ΨΕΣ 2012-13 24/3/2013 11:03 µµ
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ DISCRETE TIME SIGNALS AND SYSTEMS Γνωρίζουµε ήδη καλά τα Αναλογικά Σήµατα,, ή Σήµατα Συνεχούς Χρόνου Παραδείγµατα δίνονται πιο κάτω. Στα σήµατα αυτά η τιµή είναι ορισµένη
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
HMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #5 Ιδιότητες του Μετασχηματισμού Fourier (Συνέχεια) Παραδείγματα Ιδιότητες του Μετασχηματισμού Fourier Χρονική κλιμάκση j xt () X( j) xat ( ) X( ) a a xate ( ) τ=at
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye
ME 374, System Dynamics Analysis and Design Homewk 9: Solution June 9, 8 by Jason Frye Problem a he frequency response function G and the impulse response function ht are Fourier transfm pairs herefe,
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
1.8 Paul Mother Wavelet Real Part Imaginary Part Magnitude.6.4 Amplitude.2.2.4.6.8 1 8 6 4 2 2 4 6 8 1 t .8.6 Real Part of Three Scaled Wavelets a = 1 a = 5 a = 1 1.2 1 Imaginary Part of Three Scaled Wavelets
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων (DETECTION)
Αναγνώριση Προτύπων Baysian Θεωρία Αποφάσεων (DETECTION) Χριστόδουλος Χαμζάς Τα περιεχόμενα των παρουσιάσεων προέρχονται από τις παρουσιάσεις του αντίστοιχου διδακτέου μαθήματος του καθ. Παναγιώτη Τσακαλίδη,
Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου Εισαγωγή Τι είναι σήμα; Είναι μεταβολές ενός φυσικού μεγέθους που αναπαριστούν ή μεταφέρουν
Module 5. February 14, h 0min
Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
2.153 Adaptive Control Lecture 7 Adaptive PID Control
2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17 Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out:
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διαλέξεις 3 4 Στοχαστικά/τυχαία / χ διανύσματα Ντετερμινιστικά και στοχαστικά σήματα στο πεδίο της συχνότητας Στοχαστικά σήματα και γραμμικά συστήματα Deterministic and
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 7η: Βελτίωση Σήματος Φωνής Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 8: Speech Enhancement