Durbin-Levinson recursive method

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Durbin-Levinson recursive method"

Transcript

1 Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again from scratch; the procedure is a method for computing important theoretical quantities. 9 ottobre / 19

2 Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because Idea it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again from scratch; the procedure is a method for computing important theoretical quantities. ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( X 1 P L(X2,...,X n)x 1 ) Note ( X 1 P L(X2,...,X n)x 1 ) is orthogonal to the previous. 9 ottobre / 19

3 Durbin-Levinson, 2 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Check orthogonality condition to find a: i > 1 : ˆX n+1 X n+1, X i = P L(X2,...,X n)x n+1 X n+1, X i + a X 1 P L(X2,...,X n)x 1, X i = last step coming from the definitions of projections (i = 2... n). 9 ottobre / 19

4 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( X 1 P L(X2,...,X n)x 1 ) Check orthogonality condition with i = 1: 9 ottobre / 19

5 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( X 1 P L(X2,...,X n)x 1 ) Check orthogonality condition with i = 1: 0 = ˆX n+1 X n+1, X 1 P L(X2,...,X n)x 1 9 ottobre / 19

6 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Check orthogonality condition with i = 1: 0 = ˆX n+1 X n+1, X 1 P L(X2,...,X n)x 1 = P L(X2,...,X n)x n+1 X n+1, X 1 P L(X2,...,X n)x 1 +a X 1 P L(X2,...,X n)x ottobre / 19

7 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Check orthogonality condition with i = 1: 0 = ˆX n+1 X n+1, X 1 P L(X2,...,X n)x 1 = P L(X2,...,X n)x n+1 X n+1, X 1 P L(X2,...,X n)x 1 +a X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 + a X 1 P L(X2,...,X n)x ottobre / 19

8 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( X 1 P L(X2,...,X n)x 1 ) Check orthogonality condition with i = 1: 0 = ˆX n+1 X n+1, X 1 P L(X2,...,X n)x 1 = P L(X2,...,X n)x n+1 X n+1, X 1 P L(X2,...,X n)x 1 +a X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 + a X 1 P L(X2,...,X n)x 1 2 = a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x ottobre / 19

9 Durbin-Levinson. 4 We tried ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 and found a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 v 1 n 1 with v n 1 = E( ˆX n X n 2 ) = X n P L(X1,...,X n 1 )X n 2 = X 1 P L(X2,...,X n)x ottobre / 19

10 Durbin-Levinson. 4 We tried ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 and found a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 v 1 n 1 with v n 1 = E( ˆX n X n 2 ) = X n P L(X1,...,X n 1 )X n 2 = X 1 P L(X2,...,X n)x 1 2. We write ˆX n+1 = ϕ n,1 X n + + ϕ n,n X 1 = n ϕ n,j X n+1 j 9 ottobre / 19

11 Durbin-Levinson. 4 We tried ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 and found a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 v 1 n 1 with v n 1 = E( ˆX n X n 2 ) = X n P L(X1,...,X n 1 )X n 2 = X 1 P L(X2,...,X n)x 1 2. We write ˆX n+1 = ϕ n,1 X n + + ϕ n,n X 1 = n ϕ n,j X n+1 j so that P L(X2,...,X n)x n+1 = n 1 ϕ n 1,j X n+1 j 9 ottobre / 19

12 Durbin-Levinson. 4 We tried ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 and found a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 v 1 n 1 with v n 1 = E( ˆX n X n 2 ) = X n P L(X1,...,X n 1 )X n 2 = X 1 P L(X2,...,X n)x 1 2. We write ˆX n+1 = ϕ n,1 X n + + ϕ n,n X 1 = n ϕ n,j X n+1 j so that P L(X2,...,X n)x n+1 = n 1 and substituting we get a recursion. ϕ n 1,j X n+1 j 9 ottobre / 19

13 Durbin-Levinson algorithm. 5 ˆX n+1 = n ϕ n,j X n+1 j = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Hence ϕ n,n = a = X n+1, X 1 P L(X2,...,X n)x 1 vn 1 1 n 1 = γ(n) ϕ n 1,j γ(n j) v 1 n 1. 9 ottobre / 19

14 Durbin-Levinson algorithm. 6 Then from n n 1 n 1 ϕ n,j X n+1 j = ϕ n 1,j X n+1 j + a(x 1 ϕ n 1,j X j+1 ) n 1 n 1 = ϕ n 1,j X n+1 j + a(x 1 ϕ n 1,n k X n+1 k ) k=1 one sees ϕ n,j = ϕ n 1,j aϕ n 1,n j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 9 ottobre / 19

15 Durbin-Levinson algorithm. 6 Then from n n 1 n 1 ϕ n,j X n+1 j = ϕ n 1,j X n+1 j + a(x 1 ϕ n 1,j X j+1 ) n 1 n 1 = ϕ n 1,j X n+1 j + a(x 1 ϕ n 1,n k X n+1 k ) k=1 one sees ϕ n,j = ϕ n 1,j aϕ n 1,n j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 We need also a recursive procedure for v n. 9 ottobre / 19

16 Durbin-Levinson algorithm. 7 n v n = E( ˆX n+1 X n+1 2 ) = γ 0 ϕ n,j γ(j) n 1 = γ 0 ϕ n,n γ(n) (ϕ n 1,j ϕ n,n ϕ n 1,n j )γ(j) n 1 n 1 = γ 0 ϕ n 1,j γ(j) ϕ n,n γ(n) ϕ n 1,n j γ(j) ( ) = v n 1 ϕ n,n ϕ n,n v n 1 = v n 1 1 ϕ 2 n,n. The terms in red are equal because of the definition ϕ n,n. 9 ottobre / 19

17 Durbin-Levinson algorithm. 7 v n = E( ˆX n+1 X n+1 2 ) = γ 0 n ϕ n,j γ(j) n 1 = γ 0 ϕ n,n γ(n) (ϕ n 1,j ϕ n,n ϕ n 1,n j )γ(j) n 1 n 1 = γ 0 ϕ n 1,j γ(j) ϕ n,n γ(n) ϕ n 1,n j γ(j) = v n 1 ϕ n,n ϕ n,n v n 1 = v n 1 ( 1 ϕ 2 n,n ). The terms in red are equal because of the definition ϕ n,n. The final formula v n = ( 1 ϕ 2 n,n) vn 1 shows that ϕ n,n determines the decrease of predictive error with increasing n. 9 ottobre / 19

18 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) 9 ottobre / 19

19 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) v 0 = ρ(1) 9 ottobre / 19

20 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2) 9 ottobre / 19

21 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2). n 1 ϕ n,n = γ(n) ϕ n 1,j γ(n j) v 1 n 1 9 ottobre / 19

22 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2). n 1 ϕ n,n = γ(n) ϕ n 1,j γ(n j) v 1 n 1 ϕ n,j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 9 ottobre / 19

23 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2). n 1 ϕ n,n = γ(n) ϕ n 1,j γ(n j) v 1 n 1 ϕ n,j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 v n = ( 1 ϕ 2 n,n) vn 1. 9 ottobre / 19

24 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2). n 1 ϕ n,n = γ(n) ϕ n 1,j γ(n j) v 1 n 1 ϕ n,j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 v n = ( 1 ϕ 2 n,n) vn 1. One could divide everything by γ(0) and work with ACF instead of ACVF 9 ottobre / 19

25 Durbin-Levinson algorithm for AR(1) X t stationary with X t = φx t 1 + Z t, Z t WN(0, σ 2 ) and E(X s Z t ) = 0 if s < t 9 ottobre / 19

26 Durbin-Levinson algorithm for AR(1) X t stationary with X t = φx t 1 + Z t, Z t WN(0, σ 2 ) and E(X s Z t ) = 0 if s < t = γ(h) = σ2 φ h 1 φ 2. 9 ottobre / 19

27 Durbin-Levinson algorithm for AR(1) X t stationary with X t = φx t 1 + Z t, Z t WN(0, σ 2 ) and E(X s Z t ) = 0 if s < t = γ(h) = σ2 φ h 1 φ 2. v 0 = σ2 1 φ 2, ϕ 1,1 = φ, v 1 = σ 2, 9 ottobre / 19

28 Durbin-Levinson algorithm for AR(1) X t stationary with X t = φx t 1 + Z t, Z t WN(0, σ 2 ) and E(X s Z t ) = 0 if s < t = γ(h) = σ2 φ h 1 φ 2. ϕ 2,2 = σ2 v 0 = 1 φ 2, ϕ 1,1 = φ, v 1 = σ 2, [ σ 2 φ 2 1 φ 2 ϕ σ2 φ 1 φ 2 ] v 1 1 = 0. ϕ 2,1 = ϕ 1,1, v 2 = v 1, ϕ n,1 = φ, ϕ n,j = 0 j > 1, v n = v 1 = σ 2. 9 ottobre / 19

29 Durbin-Levinson algorithm for MA(1) X t = Z t ϑz t 1, Z t WN(0, σ 2 ), γ(0) = σ 2 (1 + ϑ 2 ), γ(1) = σ 2 ϑ. 9 ottobre / 19

30 Durbin-Levinson algorithm for MA(1) X t = Z t ϑz t 1, Z t WN(0, σ 2 ), γ(0) = σ 2 (1 + ϑ 2 ), γ(1) = σ 2 ϑ. v 0 = σ 2 (1 + ϑ 2 ) ϕ 1,1 = ϑ 1 + ϑ 2 9 ottobre / 19

31 Durbin-Levinson algorithm for MA(1) X t = Z t ϑz t 1, Z t WN(0, σ 2 ), γ(0) = σ 2 (1 + ϑ 2 ), γ(1) = σ 2 ϑ. v 0 = σ 2 (1 + ϑ 2 ) ϕ 1,1 = ϑ 1 + ϑ 2 v 1 = σ2 (1 + ϑ 2 + ϑ 4 ) 1 + ϑ 2 ϕ 2,2 = 1 + ϑ 2 + ϑ 4... v 2 = σ2 (1 + ϑ 2 + ϑ 4 + ϑ 6 ) 1 + ϑ 2 + ϑ 4... ϑ 2 9 ottobre / 19

32 Durbin-Levinson algorithm for MA(1) X t = Z t ϑz t 1, Z t WN(0, σ 2 ), γ(0) = σ 2 (1 + ϑ 2 ), γ(1) = σ 2 ϑ. v 0 = σ 2 (1 + ϑ 2 ) ϕ 1,1 = ϑ 1 + ϑ 2 v 1 = σ2 (1 + ϑ 2 + ϑ 4 ) 1 + ϑ 2 ϕ 2,2 = 1 + ϑ 2 + ϑ 4... v 2 = σ2 (1 + ϑ 2 + ϑ 4 + ϑ 6 ) 1 + ϑ 2 + ϑ 4... Remarks: Computations are long and tedious. v n converges (slowly) towards σ 2 (the white-noise variance) if ϑ < 1. ϑ 2 9 ottobre / 19

33 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. 9 ottobre / 19

34 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. Then γ(h) = σ 2 cos(ωh). 9 ottobre / 19

35 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. Then γ(h) = σ 2 cos(ωh). v 0 = σ 2 ϕ 1,1 = cos(ω) 9 ottobre / 19

36 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. Then γ(h) = σ 2 cos(ωh). v 0 = σ 2 v 1 = σ 2 (1 cos 2 (ω)) = σ 2 sin 2 (ω) ϕ 1,1 = cos(ω) ϕ 2,2 = cos(2ω) cos2 (ω) sin 2 (ω) = 1 9 ottobre / 19

37 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. Then γ(h) = σ 2 cos(ωh). v 0 = σ 2 v 1 = σ 2 (1 cos 2 (ω)) = σ 2 sin 2 (ω) v 2 = 0 = X n+1 = P L(Xn,Xn 1 )X n+1. ϕ 1,1 = cos(ω) ϕ 2,2 = cos(2ω) cos2 (ω) sin 2 (ω) = 1 9 ottobre / 19

38 Partial auto-correlation For a stationary process {X t } α(h) the partial auto-correlation represents the correlation between X t and X t+h, after removing the effect of intermediate values. 9 ottobre / 19

39 Partial auto-correlation For a stationary process {X t } α(h) the partial auto-correlation represents the correlation between X t and X t+h, after removing the effect of intermediate values. Definition: α(1) = ρ(x t, X t+1 ) = ρ(1). α(h) = ρ(x t P L(Xt+1,...,X t+h 1 )X t, X t+h P L(Xt+1,...,X t+h 1 )X t+h ) h > 1. 9 ottobre / 19

40 Partial auto-correlation For a stationary process {X t } α(h) the partial auto-correlation represents the correlation between X t and X t+h, after removing the effect of intermediate values. Definition: α(1) = ρ(x t, X t+1 ) = ρ(1). α(h) = ρ(x t P L(Xt+1,...,X t+h 1 )X t, X t+h P L(Xt+1,...,X t+h 1 )X t+h ) h > 1. α(h) = E((X t P L(Xt+1,...,X t+h 1 )X t )(X t+h P L(Xt+1,...,X t+h 1 )X t+h )) V(X t P L(Xt+1,...,X t+h 1 )X t ) = X 1 P L(X2,...,X h )X 1, X h+1 P L(X2,...,X h )X h+1 X 1 P L(X2,...,X h )X 1 2 = X 1, X h+1 P L(X2,...,X h )X h+1 X 1 P L(X2,...,X h )X 1 2 = ϕ h,h. 9 ottobre / 19

41 Partial auto-correlation For a stationary process {X t } α(h) the partial auto-correlation represents the correlation between X t and X t+h, after removing the effect of intermediate values. Definition: α(1) = ρ(x t, X t+1 ) = ρ(1). α(h) = ρ(x t P L(Xt+1,...,X t+h 1 )X t, X t+h P L(Xt+1,...,X t+h 1 )X t+h ) h > 1. α(h) = E((X t P L(Xt+1,...,X t+h 1 )X t )(X t+h P L(Xt+1,...,X t+h 1 )X t+h )) V(X t P L(Xt+1,...,X t+h 1 )X t ) = X 1 P L(X2,...,X h )X 1, X h+1 P L(X2,...,X h )X h+1 X 1 P L(X2,...,X h )X 1 2 = X 1, X h+1 P L(X2,...,X h )X h+1 X 1 P L(X2,...,X h )X 1 2 = ϕ h,h. Durbin-Levinson s algorithm is a method to compute α( ). 9 ottobre / 19

42 Remember in fact Durbin-Levinson algorithm. 5 ˆX n+1 = n ϕ n,j X n+1 j = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Hence ϕ n,n = a = X n+1, X 1 P L(X2,...,X n)x 1 vn 1 1 n 1 = γ(n) ϕ n 1,j γ(n j) v 1 n 1. 9 ottobre / 19

43 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). 9 ottobre / 19

44 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). k=1 9 ottobre / 19

45 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). 9 ottobre / 19

46 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). Then ϕ p,p = α(p) = φ p, ϕ h,h = 0 if h > p, i.e. α(h) = 0 for h > p. 9 ottobre / 19

47 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). Then ϕ p,p = α(p) = φ p, ϕ h,h = 0 if h > p, i.e. α(h) = 0 for h > p. {X t } MA(1) = α(h) = ϑ h /(1 + ϑ ϑ 2h ) (long computation) 9 ottobre / 19

48 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). Then ϕ p,p = α(p) = φ p, ϕ h,h = 0 if h > p, i.e. α(h) = 0 for h > p. {X t } MA(1) = α(h) = ϑ h /(1 + ϑ ϑ 2h ) (long computation) PACF of AR processes has finite support, while PACF of MA is always non-zero. This is the opposite as for ACF. 9 ottobre / 19

49 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). Then ϕ p,p = α(p) = φ p, ϕ h,h = 0 if h > p, i.e. α(h) = 0 for h > p. {X t } MA(1) = α(h) = ϑ h /(1 + ϑ ϑ 2h ) (long computation) PACF of AR processes has finite support, while PACF of MA is always non-zero. This is the opposite as for ACF. Sample PACF. Apply Durbin-Levinson algorithm to ˆγ( ). 9 ottobre / 19

50 Sample ACF and PACF Oveshort data ACF Lag Partial ACF Lag 9 ottobre / 19

51 Sample ACF of Huron: AR(1) fit ACF of detrended Huron data ACF Lag 9 ottobre / 19

52 Sample ACF of Huron: AR(1) fit ACF of detrended Huron data ACF Add theoretical ACF of AR(1) with φ = Lag 9 ottobre / 19

53 Sample ACF of Huron: AR(1) fit ACF of detrended Huron data ACF Lag Add confidence intervals, assuming φ = 0.79 (different from book). 9 ottobre / 19

54 Sample ACF and PACF of Huron data Huron data ACF Lag Partial ACF PACF suggests use of an AR(2) model. Lag 9 ottobre / 19

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

MAT Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm

MAT Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm MAT 3379 - Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm You will be allowed to have one A4 sheet (one-sided) of notes date: Monday, Febraury 29, Midterm 1 Topics 1 Evaluate

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Module 5. February 14, h 0min

Module 5. February 14, h 0min Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Asymptotic distribution of MLE

Asymptotic distribution of MLE Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those

Διαβάστε περισσότερα

ARMA Models: I VIII 1

ARMA Models: I VIII 1 ARMA Models: I autoregressive moving-average (ARMA) processes play a key role in time series analysis for any positive integer p & any purely nondeterministic process {X t } with ACVF {γ X (h)}, there

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα