Durbin-Levinson recursive method

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Durbin-Levinson recursive method"

Transcript

1 Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again from scratch; the procedure is a method for computing important theoretical quantities. 9 ottobre / 19

2 Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because Idea it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again from scratch; the procedure is a method for computing important theoretical quantities. ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( X 1 P L(X2,...,X n)x 1 ) Note ( X 1 P L(X2,...,X n)x 1 ) is orthogonal to the previous. 9 ottobre / 19

3 Durbin-Levinson, 2 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Check orthogonality condition to find a: i > 1 : ˆX n+1 X n+1, X i = P L(X2,...,X n)x n+1 X n+1, X i + a X 1 P L(X2,...,X n)x 1, X i = last step coming from the definitions of projections (i = 2... n). 9 ottobre / 19

4 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( X 1 P L(X2,...,X n)x 1 ) Check orthogonality condition with i = 1: 9 ottobre / 19

5 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( X 1 P L(X2,...,X n)x 1 ) Check orthogonality condition with i = 1: 0 = ˆX n+1 X n+1, X 1 P L(X2,...,X n)x 1 9 ottobre / 19

6 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Check orthogonality condition with i = 1: 0 = ˆX n+1 X n+1, X 1 P L(X2,...,X n)x 1 = P L(X2,...,X n)x n+1 X n+1, X 1 P L(X2,...,X n)x 1 +a X 1 P L(X2,...,X n)x ottobre / 19

7 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Check orthogonality condition with i = 1: 0 = ˆX n+1 X n+1, X 1 P L(X2,...,X n)x 1 = P L(X2,...,X n)x n+1 X n+1, X 1 P L(X2,...,X n)x 1 +a X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 + a X 1 P L(X2,...,X n)x ottobre / 19

8 Durbin-Levinson, 3 ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( X 1 P L(X2,...,X n)x 1 ) Check orthogonality condition with i = 1: 0 = ˆX n+1 X n+1, X 1 P L(X2,...,X n)x 1 = P L(X2,...,X n)x n+1 X n+1, X 1 P L(X2,...,X n)x 1 +a X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 + a X 1 P L(X2,...,X n)x 1 2 = a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x ottobre / 19

9 Durbin-Levinson. 4 We tried ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 and found a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 v 1 n 1 with v n 1 = E( ˆX n X n 2 ) = X n P L(X1,...,X n 1 )X n 2 = X 1 P L(X2,...,X n)x ottobre / 19

10 Durbin-Levinson. 4 We tried ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 and found a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 v 1 n 1 with v n 1 = E( ˆX n X n 2 ) = X n P L(X1,...,X n 1 )X n 2 = X 1 P L(X2,...,X n)x 1 2. We write ˆX n+1 = ϕ n,1 X n + + ϕ n,n X 1 = n ϕ n,j X n+1 j 9 ottobre / 19

11 Durbin-Levinson. 4 We tried ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 and found a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 v 1 n 1 with v n 1 = E( ˆX n X n 2 ) = X n P L(X1,...,X n 1 )X n 2 = X 1 P L(X2,...,X n)x 1 2. We write ˆX n+1 = ϕ n,1 X n + + ϕ n,n X 1 = n ϕ n,j X n+1 j so that P L(X2,...,X n)x n+1 = n 1 ϕ n 1,j X n+1 j 9 ottobre / 19

12 Durbin-Levinson. 4 We tried ˆX n+1 = P L(X1,...,X n)x n+1 = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 and found a = X n+1, X 1 P L(X2,...,X n)x 1 X 1 P L(X2,...,X n)x 1 2 = X n+1, X 1 P L(X2,...,X n)x 1 v 1 n 1 with v n 1 = E( ˆX n X n 2 ) = X n P L(X1,...,X n 1 )X n 2 = X 1 P L(X2,...,X n)x 1 2. We write ˆX n+1 = ϕ n,1 X n + + ϕ n,n X 1 = n ϕ n,j X n+1 j so that P L(X2,...,X n)x n+1 = n 1 and substituting we get a recursion. ϕ n 1,j X n+1 j 9 ottobre / 19

13 Durbin-Levinson algorithm. 5 ˆX n+1 = n ϕ n,j X n+1 j = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Hence ϕ n,n = a = X n+1, X 1 P L(X2,...,X n)x 1 vn 1 1 n 1 = γ(n) ϕ n 1,j γ(n j) v 1 n 1. 9 ottobre / 19

14 Durbin-Levinson algorithm. 6 Then from n n 1 n 1 ϕ n,j X n+1 j = ϕ n 1,j X n+1 j + a(x 1 ϕ n 1,j X j+1 ) n 1 n 1 = ϕ n 1,j X n+1 j + a(x 1 ϕ n 1,n k X n+1 k ) k=1 one sees ϕ n,j = ϕ n 1,j aϕ n 1,n j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 9 ottobre / 19

15 Durbin-Levinson algorithm. 6 Then from n n 1 n 1 ϕ n,j X n+1 j = ϕ n 1,j X n+1 j + a(x 1 ϕ n 1,j X j+1 ) n 1 n 1 = ϕ n 1,j X n+1 j + a(x 1 ϕ n 1,n k X n+1 k ) k=1 one sees ϕ n,j = ϕ n 1,j aϕ n 1,n j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 We need also a recursive procedure for v n. 9 ottobre / 19

16 Durbin-Levinson algorithm. 7 n v n = E( ˆX n+1 X n+1 2 ) = γ 0 ϕ n,j γ(j) n 1 = γ 0 ϕ n,n γ(n) (ϕ n 1,j ϕ n,n ϕ n 1,n j )γ(j) n 1 n 1 = γ 0 ϕ n 1,j γ(j) ϕ n,n γ(n) ϕ n 1,n j γ(j) ( ) = v n 1 ϕ n,n ϕ n,n v n 1 = v n 1 1 ϕ 2 n,n. The terms in red are equal because of the definition ϕ n,n. 9 ottobre / 19

17 Durbin-Levinson algorithm. 7 v n = E( ˆX n+1 X n+1 2 ) = γ 0 n ϕ n,j γ(j) n 1 = γ 0 ϕ n,n γ(n) (ϕ n 1,j ϕ n,n ϕ n 1,n j )γ(j) n 1 n 1 = γ 0 ϕ n 1,j γ(j) ϕ n,n γ(n) ϕ n 1,n j γ(j) = v n 1 ϕ n,n ϕ n,n v n 1 = v n 1 ( 1 ϕ 2 n,n ). The terms in red are equal because of the definition ϕ n,n. The final formula v n = ( 1 ϕ 2 n,n) vn 1 shows that ϕ n,n determines the decrease of predictive error with increasing n. 9 ottobre / 19

18 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) 9 ottobre / 19

19 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) v 0 = ρ(1) 9 ottobre / 19

20 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2) 9 ottobre / 19

21 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2). n 1 ϕ n,n = γ(n) ϕ n 1,j γ(n j) v 1 n 1 9 ottobre / 19

22 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2). n 1 ϕ n,n = γ(n) ϕ n 1,j γ(n j) v 1 n 1 ϕ n,j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 9 ottobre / 19

23 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2). n 1 ϕ n,n = γ(n) ϕ n 1,j γ(n j) v 1 n 1 ϕ n,j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 v n = ( 1 ϕ 2 n,n) vn 1. 9 ottobre / 19

24 Durbin-Levinson algorithm. Summary v 0 = E( X 1 ˆX 1 2 ) = E( X 1 2 ) = γ(0) ϕ 1,1 = γ(1) = ρ(1) v 0 v 1 = ( 1 ϕ 2 ) 1,1 v0 = γ(0) ( 1 ρ(1) 2). n 1 ϕ n,n = γ(n) ϕ n 1,j γ(n j) v 1 n 1 ϕ n,j = ϕ n 1,j ϕ n,n ϕ n 1,n j j = 1... n 1 v n = ( 1 ϕ 2 n,n) vn 1. One could divide everything by γ(0) and work with ACF instead of ACVF 9 ottobre / 19

25 Durbin-Levinson algorithm for AR(1) X t stationary with X t = φx t 1 + Z t, Z t WN(0, σ 2 ) and E(X s Z t ) = 0 if s < t 9 ottobre / 19

26 Durbin-Levinson algorithm for AR(1) X t stationary with X t = φx t 1 + Z t, Z t WN(0, σ 2 ) and E(X s Z t ) = 0 if s < t = γ(h) = σ2 φ h 1 φ 2. 9 ottobre / 19

27 Durbin-Levinson algorithm for AR(1) X t stationary with X t = φx t 1 + Z t, Z t WN(0, σ 2 ) and E(X s Z t ) = 0 if s < t = γ(h) = σ2 φ h 1 φ 2. v 0 = σ2 1 φ 2, ϕ 1,1 = φ, v 1 = σ 2, 9 ottobre / 19

28 Durbin-Levinson algorithm for AR(1) X t stationary with X t = φx t 1 + Z t, Z t WN(0, σ 2 ) and E(X s Z t ) = 0 if s < t = γ(h) = σ2 φ h 1 φ 2. ϕ 2,2 = σ2 v 0 = 1 φ 2, ϕ 1,1 = φ, v 1 = σ 2, [ σ 2 φ 2 1 φ 2 ϕ σ2 φ 1 φ 2 ] v 1 1 = 0. ϕ 2,1 = ϕ 1,1, v 2 = v 1, ϕ n,1 = φ, ϕ n,j = 0 j > 1, v n = v 1 = σ 2. 9 ottobre / 19

29 Durbin-Levinson algorithm for MA(1) X t = Z t ϑz t 1, Z t WN(0, σ 2 ), γ(0) = σ 2 (1 + ϑ 2 ), γ(1) = σ 2 ϑ. 9 ottobre / 19

30 Durbin-Levinson algorithm for MA(1) X t = Z t ϑz t 1, Z t WN(0, σ 2 ), γ(0) = σ 2 (1 + ϑ 2 ), γ(1) = σ 2 ϑ. v 0 = σ 2 (1 + ϑ 2 ) ϕ 1,1 = ϑ 1 + ϑ 2 9 ottobre / 19

31 Durbin-Levinson algorithm for MA(1) X t = Z t ϑz t 1, Z t WN(0, σ 2 ), γ(0) = σ 2 (1 + ϑ 2 ), γ(1) = σ 2 ϑ. v 0 = σ 2 (1 + ϑ 2 ) ϕ 1,1 = ϑ 1 + ϑ 2 v 1 = σ2 (1 + ϑ 2 + ϑ 4 ) 1 + ϑ 2 ϕ 2,2 = 1 + ϑ 2 + ϑ 4... v 2 = σ2 (1 + ϑ 2 + ϑ 4 + ϑ 6 ) 1 + ϑ 2 + ϑ 4... ϑ 2 9 ottobre / 19

32 Durbin-Levinson algorithm for MA(1) X t = Z t ϑz t 1, Z t WN(0, σ 2 ), γ(0) = σ 2 (1 + ϑ 2 ), γ(1) = σ 2 ϑ. v 0 = σ 2 (1 + ϑ 2 ) ϕ 1,1 = ϑ 1 + ϑ 2 v 1 = σ2 (1 + ϑ 2 + ϑ 4 ) 1 + ϑ 2 ϕ 2,2 = 1 + ϑ 2 + ϑ 4... v 2 = σ2 (1 + ϑ 2 + ϑ 4 + ϑ 6 ) 1 + ϑ 2 + ϑ 4... Remarks: Computations are long and tedious. v n converges (slowly) towards σ 2 (the white-noise variance) if ϑ < 1. ϑ 2 9 ottobre / 19

33 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. 9 ottobre / 19

34 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. Then γ(h) = σ 2 cos(ωh). 9 ottobre / 19

35 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. Then γ(h) = σ 2 cos(ωh). v 0 = σ 2 ϕ 1,1 = cos(ω) 9 ottobre / 19

36 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. Then γ(h) = σ 2 cos(ωh). v 0 = σ 2 v 1 = σ 2 (1 cos 2 (ω)) = σ 2 sin 2 (ω) ϕ 1,1 = cos(ω) ϕ 2,2 = cos(2ω) cos2 (ω) sin 2 (ω) = 1 9 ottobre / 19

37 Durbin-Levinson for sinusoidal wave X t = B cos(ωt) + C sin(ωt), with ω R, E(B) = E(C) = E(BC) = 0, V(B) = V(C) = σ 2. Then γ(h) = σ 2 cos(ωh). v 0 = σ 2 v 1 = σ 2 (1 cos 2 (ω)) = σ 2 sin 2 (ω) v 2 = 0 = X n+1 = P L(Xn,Xn 1 )X n+1. ϕ 1,1 = cos(ω) ϕ 2,2 = cos(2ω) cos2 (ω) sin 2 (ω) = 1 9 ottobre / 19

38 Partial auto-correlation For a stationary process {X t } α(h) the partial auto-correlation represents the correlation between X t and X t+h, after removing the effect of intermediate values. 9 ottobre / 19

39 Partial auto-correlation For a stationary process {X t } α(h) the partial auto-correlation represents the correlation between X t and X t+h, after removing the effect of intermediate values. Definition: α(1) = ρ(x t, X t+1 ) = ρ(1). α(h) = ρ(x t P L(Xt+1,...,X t+h 1 )X t, X t+h P L(Xt+1,...,X t+h 1 )X t+h ) h > 1. 9 ottobre / 19

40 Partial auto-correlation For a stationary process {X t } α(h) the partial auto-correlation represents the correlation between X t and X t+h, after removing the effect of intermediate values. Definition: α(1) = ρ(x t, X t+1 ) = ρ(1). α(h) = ρ(x t P L(Xt+1,...,X t+h 1 )X t, X t+h P L(Xt+1,...,X t+h 1 )X t+h ) h > 1. α(h) = E((X t P L(Xt+1,...,X t+h 1 )X t )(X t+h P L(Xt+1,...,X t+h 1 )X t+h )) V(X t P L(Xt+1,...,X t+h 1 )X t ) = X 1 P L(X2,...,X h )X 1, X h+1 P L(X2,...,X h )X h+1 X 1 P L(X2,...,X h )X 1 2 = X 1, X h+1 P L(X2,...,X h )X h+1 X 1 P L(X2,...,X h )X 1 2 = ϕ h,h. 9 ottobre / 19

41 Partial auto-correlation For a stationary process {X t } α(h) the partial auto-correlation represents the correlation between X t and X t+h, after removing the effect of intermediate values. Definition: α(1) = ρ(x t, X t+1 ) = ρ(1). α(h) = ρ(x t P L(Xt+1,...,X t+h 1 )X t, X t+h P L(Xt+1,...,X t+h 1 )X t+h ) h > 1. α(h) = E((X t P L(Xt+1,...,X t+h 1 )X t )(X t+h P L(Xt+1,...,X t+h 1 )X t+h )) V(X t P L(Xt+1,...,X t+h 1 )X t ) = X 1 P L(X2,...,X h )X 1, X h+1 P L(X2,...,X h )X h+1 X 1 P L(X2,...,X h )X 1 2 = X 1, X h+1 P L(X2,...,X h )X h+1 X 1 P L(X2,...,X h )X 1 2 = ϕ h,h. Durbin-Levinson s algorithm is a method to compute α( ). 9 ottobre / 19

42 Remember in fact Durbin-Levinson algorithm. 5 ˆX n+1 = n ϕ n,j X n+1 j = P L(X2,...,X n)x n+1 + a ( ) X 1 P L(X2,...,X n)x 1 Hence ϕ n,n = a = X n+1, X 1 P L(X2,...,X n)x 1 vn 1 1 n 1 = γ(n) ϕ n 1,j γ(n j) v 1 n 1. 9 ottobre / 19

43 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). 9 ottobre / 19

44 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). k=1 9 ottobre / 19

45 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). 9 ottobre / 19

46 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). Then ϕ p,p = α(p) = φ p, ϕ h,h = 0 if h > p, i.e. α(h) = 0 for h > p. 9 ottobre / 19

47 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). Then ϕ p,p = α(p) = φ p, ϕ h,h = 0 if h > p, i.e. α(h) = 0 for h > p. {X t } MA(1) = α(h) = ϑ h /(1 + ϑ ϑ 2h ) (long computation) 9 ottobre / 19

48 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). Then ϕ p,p = α(p) = φ p, ϕ h,h = 0 if h > p, i.e. α(h) = 0 for h > p. {X t } MA(1) = α(h) = ϑ h /(1 + ϑ ϑ 2h ) (long computation) PACF of AR processes has finite support, while PACF of MA is always non-zero. This is the opposite as for ACF. 9 ottobre / 19

49 Examples of PACF {X t } AR(1), = α(1) = φ, α(h) = 0 for h > 1 (seen before). {X t } AR(p), i.e. stationary proces s.t. p X t = φ k X t k + Z t, {Z t } WN(0, σ 2 ). If t p, k=1 P L(X1,...,X t)x t+1 = p k=1 φ kx t+1 k (check). Then ϕ p,p = α(p) = φ p, ϕ h,h = 0 if h > p, i.e. α(h) = 0 for h > p. {X t } MA(1) = α(h) = ϑ h /(1 + ϑ ϑ 2h ) (long computation) PACF of AR processes has finite support, while PACF of MA is always non-zero. This is the opposite as for ACF. Sample PACF. Apply Durbin-Levinson algorithm to ˆγ( ). 9 ottobre / 19

50 Sample ACF and PACF Oveshort data ACF Lag Partial ACF Lag 9 ottobre / 19

51 Sample ACF of Huron: AR(1) fit ACF of detrended Huron data ACF Lag 9 ottobre / 19

52 Sample ACF of Huron: AR(1) fit ACF of detrended Huron data ACF Add theoretical ACF of AR(1) with φ = Lag 9 ottobre / 19

53 Sample ACF of Huron: AR(1) fit ACF of detrended Huron data ACF Lag Add confidence intervals, assuming φ = 0.79 (different from book). 9 ottobre / 19

54 Sample ACF and PACF of Huron data Huron data ACF Lag Partial ACF PACF suggests use of an AR(2) model. Lag 9 ottobre / 19

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Solutions to selected problems in Brockwell and Davis. Spring 2003

Solutions to selected problems in Brockwell and Davis. Spring 2003 Solutions to selected problems in Brockwell and Davis Anna Carlsund Henrik Hult Spring 003 This document contains solutions to selected problems in Peter J. Brockwell and Richard A. Davis, Introduction

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Πτυχιακή Εργασία Φοιτητής: ΜIΧΑΗΛ ΖΑΓΟΡΙΑΝΑΚΟΣ ΑΜ: 38133 Επιβλέπων Καθηγητής Καθηγητής Ε.

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5. Microelectronics: ircuit nalysis and Design, 4 th edition hapter 5 y D.. Neamen xercise Solutions xercise Solutions X5. ( β ).0 β 4. β 40. 0.0085 hapter 5 β 40. α 0.999 β 4..0 0.0085.95 X5. O 00 O n 3

Διαβάστε περισσότερα

Tutorial on Multinomial Logistic Regression

Tutorial on Multinomial Logistic Regression Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

Door Hinge replacement (Rear Left Door)

Door Hinge replacement (Rear Left Door) Door Hinge replacement (Rear Left Door) We will continue the previous article by replacing the hinges of the rear left hand side door. I will use again the same procedure and means I employed during the

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Stationary ARMA Processes

Stationary ARMA Processes Stationary ARMA Processes Eduardo Rossi University of Pavia October 2013 Rossi Stationary ARMA Financial Econometrics - 2013 1 / 45 Moving Average of order 1 (MA(1)) Y t = µ + ɛ t + θɛ t 1 t = 1,..., T

Διαβάστε περισσότερα

6.003: Signals and Systems

6.003: Signals and Systems 6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

Elements of Information Theory

Elements of Information Theory Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure

Διαβάστε περισσότερα

(C) 2010 Pearson Education, Inc. All rights reserved.

(C) 2010 Pearson Education, Inc. All rights reserved. Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

SOAP API. https://bulksmsn.gr. Table of Contents

SOAP API. https://bulksmsn.gr. Table of Contents SOAP API https://bulksmsn.gr Table of Contents Send SMS...2 Query SMS...3 Multiple Query SMS...4 Credits...5 Save Contact...5 Delete Contact...7 Delete Message...8 Email: sales@bulksmsn.gr, Τηλ: 211 850

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα