# Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 March 10, 2011

2 Contents 1 Introduction to Data Sample Mean Interquartile Range Outlier Detection Mean Absolute Deviation Variance Standard Deviation Coefficient of Variation Empirical Rule for Standard Deviation Chebyshev s Rule Linear Transformations Z-Score Covariance Correlation Combining Data Sets Probability and Random Variables Definition of Probability Addition Rule Complement Rule Conditional Probability Independence Joint Probability x2 Matrix Bayes Theorem Probability Function Cumulative Distribution Function Expected Value Variance of a Random Variable Linear Transformations of Random Variables Joint Distribution Function

3 2.15 Marginal Distributions Independence of Random Variables Conditional Distribution of Random Variables Conditional Expectation of Random Variables Covariance of Random Variables Correlation of Random Variables Combinations of Random Variables Probability Distributions Combinations Binomial Distribution Formula Characteristics of Binomial Distributions Probability of an Interval Z-Score for Normal Distribution Central Limit Theorem Confidence Intervals Confidence Interval Sample Proportion Central Limit Theorem for Proportions Confidence Interval for Proportions Confidence Interval for Correlation Confidence Interval for Difference in Proportions Confidence Interval for Difference in Means Hypothesis Testing Test Statistic for Population Mean Test Statistic for Proportion Test Statistic for Two Samples Test Statistic for Two Proportions Test Statistic for Chi-Square Test

4 6 Regression Residual Least Squares Method Coefficient of Determination Standard Error Regression Test Statistic Confidence Interval for Predicting an Average Confidence Interval for Predicting a Value Adjusted Coefficient of Determination Overall F-Test Standardized Residuals Logistic Function

5 1 Introduction to Data 1.1 Sample Mean 1.2 Interquartile Range x = 1 n x i n i=1 IQR = Q3 Q1 1.3 Outlier Detection An observation x i in a set of data is considered an outlier if x i > Q IQR x i < Q1 1.5 IQR 1.4 Mean Absolute Deviation 1.5 Variance MAD = 1 n x i x n i=1 s 2 x = nx=1 (x i x) 2 n Standard Deviation 1.7 Coefficient of Variation nx=1 (x i x) s x = 2 n 1 ( s x) CV = 100% 5

6 1.8 Empirical Rule for Standard Deviation For mound-shaped, symmetric data: 68% of the data is in the interval ( x s x, x + s x ) 95% of the data is in the interval ( x 2s x, x + 2s x ) 1.9 Chebyshev s Rule For any set of data, the proportion of data that lines within k standard deviations of the mean is at least 1 1 k Linear Transformations V ar(a + bx) = b 2 V ar(x) Average(a + bx) = a + b(average(x)) StdDev(a + bx) = b StdDev(X) Q i (a + bx) = a + bq i IQR(a + bx) = b IQR(X) 1.11 Z-Score To obtain a set of data with mean 0 and variance 1: 1.12 Covariance z = X X s x s xy = 1 n 1 Covariance > 0: Larger X Larger Y Covariance < 0 : Larger X Smaller Y Cov(X, X) = V ar(x) n (x i x)(y i ȳ) i=1 6

7 1.13 Correlation r xy = s xy s x s y 1.14 Combining Data Sets Z = a X + bȳ V ar(z) = a 2 s 2 X + b 2 s 2 Y + 2(ab)s XY 2 Probability and Random Variables 2.1 Definition of Probability P (event) = outcomes where the event occurs total outcomes 2.2 Addition Rule P (A B) = P (A) + P (B) P (A B) 2.3 Complement Rule P (Ā) = 1 P (A) 2.4 Conditional Probability P (A B) = P (A B) P (B) 2.5 Independence Two events A and B are said to be independent if: P (A B) = P (A) P (B A) = P (B) 7

8 2.6 Joint Probability If two events A and B are independent: P (A B) = P (A) P (B) 2.7 2x2 Matrix B B A P (A B) = P (B) P (A B) P (A B) = P ( B) P (A B) Ā P (Ā B) = P (Ā) P (B Ā) P (Ā B) = P (Ā) P ( B Ā) 2.8 Bayes Theorem P (B A) = 2.9 Probability Function P (A B) P (B) P (A B) P (B) + P (A B) P ( B) P X (x) = P (X = x) 2.10 Cumulative Distribution Function 2.11 Expected Value F X (x 0 ) = P (X x 0 ) = P X (x) x x 0 µ X = E(X) = 2.12 Variance of a Random Variable all x i x i P (x i ) σx 2 = V ar(x) = E((X µ X ) 2 ) = (x i µ) 2 P (x i ) all x i σx 2 = E(X 2 ) µ 2 X = E(X 2 ) E(X) 2 8

9 2.13 Linear Transformations of Random Variables E(a + bx) = a + be(x) = a + bµ X V ar(a + bx) = b 2 σx 2 E(a) = a V ar(a) = Joint Distribution Function P X,Y (x, y) = P (X = x Y = y) 2.15 Marginal Distributions P X (x) = y P Y (y) = x P X,Y (x, y) P X,Y (x, y) 2.16 Independence of Random Variables Two random variables X and Y are independent if x, y: P X,Y (x, y) = P X (x) P Y (y) P X Y (X = x Y = y) = P (X = x) 2.17 Conditional Distribution of Random Variables P X Y (X = x Y = y) = P X,Y (x, y) P Y (y) 2.18 Conditional Expectation of Random Variables E(X Y = y) = all x xp (X = x Y = y) 2.19 Covariance of Random Variables σ X,Y = Cov(X, Y ) = E((X µ X )(Y µ Y )) = E(XY ) E(X) E(Y ) where E(XY ) = xyp (X = x, Y = y) 9

10 2.20 Correlation of Random Variables ρ = σ X,Y σ X σ Y 2.21 Combinations of Random Variables If X and Y are independent: E(X + Y ) = E(X) + E(Y ) V ar(x + Y ) = V ar(x) + V ar(y ) If X and Y are not independent: E(X + Y ) = E(X) + E(Y ) V ar(x + Y ) = V ar(x) + V ar(y ) + 2Cov(X, Y ) General case: E((a + bx) + (c + dy )) = a + be(x) + c + de(y ) V ar((a + bx) + (c + dy )) = b 2 V ar(x) + d 2 V ar(y ) + 2(bd)Cov(X, Y ) 3 Probability Distributions 3.1 Combinations ( ) n = x n! x!(n x)! 3.2 Binomial Distribution Formula P (x) = n! x!(n x)! px q n x 10

11 3.3 Characteristics of Binomial Distributions µ = E(X) = np σ 2 = npq σ = npq 3.4 Probability of an Interval P (a X b) = F X (b) F X (a) where F X is the CDF, such that F X (X x) = x f(x) dx 3.5 Z-Score for Normal Distribution If X N(µ, σ 2 ), then Z = X µ σ N(0, 1). Therefore: P (a X b) = P ( a µ σ Z b µ σ ) 3.6 Central Limit Theorem If random samples are taken from any population with mean µ and variance σ 2, as the sample size n increases, the distribution approaches a normal distribution with µ X = µ and σ 2 X = σ2 n. 4 Confidence Intervals 4.1 Confidence Interval x ± z α/2 σ n 4.2 Sample Proportion ˆp = X = 1 n X i n i=1 11

12 4.3 Central Limit Theorem for Proportions ˆp N ( p, ) p(1 p) n 4.4 Confidence Interval for Proportions ˆp(1 ˆp) ˆp ± z α/2 n 4.5 Confidence Interval for Correlation r ± r 2 n Confidence Interval for Difference in Proportions (ˆp 1 ˆp 2 ) ± z α/2 ˆp1 (1 ˆp 1 ) n 1 + ˆp 2(1 ˆp 2 ) n Confidence Interval for Difference in Means 5 Hypothesis Testing (µ 1 µ 2 ) ± z α/2 s 2 X n 1 + s2 Y n Test Statistic for Population Mean z stat = x µ 0 σ/ n 5.2 Test Statistic for Proportion T = ˆp p 0 p 0 (1 p 0 )/n 12

13 5.3 Test Statistic for Two Samples T = X 1 X 2 s 2 1 n 1 + s2 2 n Test Statistic for Two Proportions T = ˆp 1 ˆp 2 ˆp(1 ˆp)( 1 n n 2 ) 5.5 Test Statistic for Chi-Square Test where e i = np i χ 2 = (o i e i ) 2 e i 6 Regression 6.1 Residual e i = Y i Ŷi 6.2 Least Squares Method We can minimize (Y i b 0 b 1 X i ) 2 = (Y i Ŷi) 2 = e 2 i by using the coefficients: b 1 = ni=1 (X i X)(Y i Ȳ ) ni=1 (X i X) = r XY 2 b 0 = Ȳ b 1 X ( ) sy s X 6.3 Coefficient of Determination R 2 = SSR SST = 1 SSE SST 13

14 6.4 Standard Error s e = SSE n k 1 = 6.5 Regression Test Statistic SSE SSE n 2 = df error T = b 1 β 1 s b Confidence Interval for Predicting an Average ( 1 b 0 + b 1 X new ± 1.96 s e n + (X new X) 2 ) 1/2 (n 1)s 2 X 6.6 Confidence Interval for Predicting a Value ( b 0 + b 1 X ± 1.96 s e n + (X new X) 2 ) 1/2 (n 1)s 2 X 6.7 Adjusted Coefficient of Determination 6.8 Overall F-Test adjusted R 2 = 1 f = 6.9 Standardized Residuals 6.10 Logistic Function SSE/(n k 1) SST/(n 1) SSR/k SSE/(n k 1) r i = e i ɛ i s e σ f(x) = N(0, 1) ex 1 + e = exp(x) x 1 + exp(x) 14

### Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

### Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

### FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

### TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα

### Solution Series 9. i=1 x i and i=1 x i.

Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

### Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

Chapter 5, 6 Multiple Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 Vector Random Variables A vector r.v. X is a function X : S R n, where S is the

Διαβάστε περισσότερα

### Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

### Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores

Διαβάστε περισσότερα

### 5.4 The Poisson Distribution.

The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

### PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia

Διαβάστε περισσότερα

### Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

### ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

### Probability and Random Processes (Part II)

Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

### Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)

Διαβάστε περισσότερα

### 519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.

Διαβάστε περισσότερα

### Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

### χ 2 test ανεξαρτησίας

χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ

Διαβάστε περισσότερα

### Solutions to Exercise Sheet 5

Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

### Supplementary Appendix

Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

### APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

### ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata

One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is

Διαβάστε περισσότερα

### SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### Fundamentals of Probability: A First Course. Anirban DasGupta

Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3

Διαβάστε περισσότερα

### An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

### Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

### Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

### Lampiran 1 Output SPSS MODEL I

67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables

Διαβάστε περισσότερα

### ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης

Διαβάστε περισσότερα

### k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

### Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

### Δείγμα πριν τις διορθώσεις

Εισαγωγή Α ΜΕΡΟΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Εισαγωγή 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or Αnalytical Statistics)

Διαβάστε περισσότερα

### ( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.

STAT 531 Statistical Methods for Quality Improvement Homework 3 4.8 n = 8; x = 17 psi; σ = psi (a) µ = 15; α =.5 Test H : µ = 15 vs. H 1 : µ > 15. Reject H if Z > Z α. x µ 17 15 Z = = =.88 σ n 8 Z α =

Διαβάστε περισσότερα

### Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

### + ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

### Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23

Περιεχόμενα Πρόλογος 17 Μέρος A ΚΕΦΑΛΑΙΟ 1 23 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 23 1.1 Εισαγωγή 23 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 24 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or

Διαβάστε περισσότερα

### 6.3 Forecasting ARMA processes

122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

### Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

### ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

### Exercise 2: The form of the generalized likelihood ratio

Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:

Διαβάστε περισσότερα

### ΕΥΡΕΤΗΡΙΟ ΕΛΛΗΝΙΚΩΝ ΟΡΩΝ

ΕΥΡΕΤΗΡΙΟ ΕΛΛΗΝΙΚΩΝ ΟΡΩΝ Α Αθροιστική συνάρτηση κατανομής, 70, 317 σχετική συχνότητα, 321 Αθροιστικός κανόνας, 57, 60 Ακολουθία δοκιμών Bernoulli, 118 Ακρίβεια, 501 Αμεροληψία, 252 Αναμενόμενη τιμή, 73

Διαβάστε περισσότερα

### Homework for 1/27 Due 2/5

Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

### Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

### ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΑΣΚΗΣΗ, ΕΡΓΟΣΠΙΡΟΜΕΤΡΙΑ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ» ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Μεθοδολογία έρευνας και στατιστική 2. ΚΩΔ.

Διαβάστε περισσότερα

### SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

### Gaussian related distributions

Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### Harold s Statistics Probability Density Functions Cheat Sheet 30 May PDF Selection Tree to Describe a Single Population

Harold s Statistics Probability Density Functions Cheat Sheet 30 May 2016 PDF Selection Tree to Describe a Single Population Qualitative Quantitative Copyright 2016 by Harold Toomey, WyzAnt Tutor 1 Discrete

Διαβάστε περισσότερα

### HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και

Διαβάστε περισσότερα

### Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

### LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.

LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA

Διαβάστε περισσότερα

### Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

### 5. Choice under Uncertainty

5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

### Repeated measures Επαναληπτικές μετρήσεις

ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση

Διαβάστε περισσότερα

### ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

### Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

### Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

### SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

### Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio

Statistical Tools for SWGTOX Method Validation of 11 Benzodiazepines in Whole Blood by SPE and GC/MS Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio Disclaimer Neither I nor any member of my immediate

Διαβάστε περισσότερα

### Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

### Theorem 8 Let φ be the most powerful size α test of H

Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

### Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

### HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά

Διαβάστε περισσότερα

### Module 5. February 14, h 0min

Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

### Anti-Final CS/SE 3341 SOLUTIONS

CS/SE 3341 SOLUTIONS Anti-Final 1. Users call help desk every 15 minutes, on the average. There is one help desk specialist on duty, and her average service time is 9 minutes. Modeling the help desk as

Διαβάστε περισσότερα

### Στατιστική Ανάλυση Δεδομένων II. Γραμμική Παλινδρόμηση με το S.P.S.S.

Στατιστική Ανάλυση Δεδομένων II Γραμμική Παλινδρόμηση με το S.P.S.S. μέρος Α (απλή παλινδρόμηση) Νίκος Τσάντας Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά και Σύγχρονες Εφαρμογές Ακαδημαϊκό

Διαβάστε περισσότερα

### List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7 Mensuration Surface area of shere

Διαβάστε περισσότερα

### HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

### 255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total

Διαβάστε περισσότερα

### 1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis

Διαβάστε περισσότερα

### Bayes Rule and its Applications

Bayes Rule and its Applications Bayes Rule: P (B k A) = P (A B k )P (B k )/ n i= P (A B i )P (B i ) Example : In a certain factory, machines A, B, and C are all producing springs of the same length. Of

Διαβάστε περισσότερα

### 6. MAXIMUM LIKELIHOOD ESTIMATION

6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

### 1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs

Διαβάστε περισσότερα

### ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

### Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

### Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014

Διαβάστε περισσότερα

### Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...

Διαβάστε περισσότερα

### 1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm

HASIL PENELITIAN 1. Hasil Pengukuran Kadar TNF-α DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm NO KADAR ( pg/ml) ABSORBANSI 1. 0 0.055 2. 15.6 0.207 3. 31.5 0.368 4. 62.5 0.624

Διαβάστε περισσότερα

### ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο

ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια

Διαβάστε περισσότερα

### ΣΥΣΧΕΤΙΣΗ & ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ & ΠΑΛΙΝΔΡΟΜΗΣΗ Για να προσδιορίσουμε την ύπαρξη σχέσης μεταξύ μεταβλητών, χρησιμοποιούμε την ανάλυση συσχέτισης. Για να προβλέψουμε την τιμή μιας μεταβλητής (εξαρτημένη μεταβλητή) με τη βοήθεια

Διαβάστε περισσότερα

### w o = R 1 p. (1) R = p =. = 1

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

### Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

### ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ Σκοπός Οι δειγματικοί χώροι, ανάλογα με τη φύση και τον τρόπο έκφρασης των ενδεχομένων τους κατατάσσονται σε ποσοτικούς και ποιοτικούς. Προφανώς ο υπολογισμός πιθανοτήτων

Διαβάστε περισσότερα

### Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται

Διαβάστε περισσότερα

### p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

### HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

### A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

### ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

### ΔPersediaan = Persediaan t+1 - Persediaan t

Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000

Διαβάστε περισσότερα