Αλγόριθμοι και Πολυπλοκότητα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγόριθμοι και Πολυπλοκότητα"

Transcript

1 Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

2 Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος, 2008 Sanjoy Dasgupta, Christos Papadimitriou και Umesh Vazirani, Αλγόριθμοι, Εκδόσεις Κλειδάριθμος, 2008 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, Third Edition, MIT Press, 2009 Kurt Mehlhorn and Peter Sanders, Algorithms and Data Structures: The basic toolbox, Springer, 2008 Το μάθημα θα βασιστεί στο πρώτο βιβλίο, το οποίο και προτείνω να διαλέξετε. Χαροκόπειο Πανεπιστήμιο 2/14

3 Αντιπροσωπευτικά Προβλήματα Θα δούμε σύντομα τους ορισμούς μερικών βασικών και αντιπροσωπευτικών αλγοριθμικών προβλήματων. Χρονοπρογραμματισμός Διαστημάτων Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων Διμερές Ταίριασμα Ανεξάρτητο Σύνολο Χαροκόπειο Πανεπιστήμιο 3/14

4 Χρονοπρογραμματισμός Διαστημάτων Έχουμε ένα πόρο (π.χ αίθουσα, υπερυπολογιστή, κ.τ.λ) και αιτήματα χρήσης του πόρου αυτού της μορφής (s, f) -- αίτημα χρήσης του πόρου από την ώρα s μέχρι την ώρα f. Ο πόρος χρησιμοποιείται το πολύ από ένα άτομο τη φορά. Το ζητούμενο είναι να διαλέξουμε ένα υποσύνολο των αιτημάτων, που να μην επικαλύπτονται χρονικά, και να μεγιστοποιηθεί ο αριθμός των αιτημάτων που θα γίνουν αποδεκτά. Χαροκόπειο Πανεπιστήμιο 4/14

5 Χρονοπρογραμματισμός Διαστημάτων Θα δούμε σύντομα πως το πρόβλημα λύνεται αποδοτικά με ένα αλγόριθμο που ανήκει στην κατηγορία των "άπληστων αλγορίθμων" (greedy algorithms). Χαροκόπειο Πανεπιστήμιο 5/14

6 Σταθμισμένος Χρονοπρογραμματισμός Διαστημάτων Γενίκευση του προηγούμενου προβλήματος όπου κάθε αίτημα i με περιορισμούς (s i, f i ) έχει μια βαρύτητα v i > 0 (weight). Στόχος είναι να βρούμε ένα συμβατό υποσύνολο αιτημάτων με μέγιστη συνολική τιμή. Η πιο γενική αυτή μορφή δεν λύνεται πλέον με "άπληστο" αλγόριθμο. Θα χρησιμοποιήσουμε μια τεχνική, το δυναμικό προγραμματισμό (dynamic programming), που δομεί τη βέλτιστη τιμή πάνω σε όλες τις δυνατές λύσεις με ένα συμπαγή, πινακοποιημένο τρόπο ο οποίος οδηγεί σε έναν πολύ αποδοτικό αλγόριθμο. Χαροκόπειο Πανεπιστήμιο 6/14

7 Διμερές Ταίριασμα Ένα γράφημα G(V, E) είναι διμερές (bipartite) αν το σύνολο των κόμβων του V μπορεί να διαμεριστεί σε σύνολα A και B με τέτοιο τρόπο ώστε η κάθε ακμή να έχει το ένα άκρο στο A και το άλλο στο B. a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 Χαροκόπειο Πανεπιστήμιο 7/14

8 Διμερές Ταίριασμα Ένα ταίριασμα (matching) σε ένα γράφημα G(V, E) είναι ένα σύνολο ακμών M E με την ιδιότητα ότι κάθε κόμβος εμφανίζεται το πολύ σε μια ακμή του M. Το M είναι ένα τέλειο ταίριασμα αν κάθε κόμβος εμφανίζεται σε μία μόνο ακμή του M. Με ταιριάσματα μοντελοποιούμε προβλήματα ανάθεσης, για παράδειγμα ανάθεση υπολογιστικών εργασιών σε υπολογιστές όπου μια ακμή υποδηλώνει την ικανότητα του εκάστοτε υπολογιστή να διεκπεραιώσει την λειτουργία. Χαροκόπειο Πανεπιστήμιο 8/14

9 Διμερές Ταίριασμα πρόβλημα Διμερούς Ταιριάσματος (Bipartite matching problem) Δεδομένου ενός διμερούς γραφήματος G, βρείτε ένα ταίριασμα μέγιστου μεγέθους. Θα δούμε μια κομψή και αποδοτική τεχνική για την εύρεση του μέγιστου ταιριάσματος η οποία με επαγωγικό τρόπο δομεί όλο και μεγαλύτερα ταιριάσματα. Χαροκόπειο Πανεπιστήμιο 9/14

10 Ανεξάρτητο Σύνολο Δεδομένου ενός γραφήματος G = (V, E) λέμε ότι ένα σύνολο κόμβων S V είναι ανεξάρτητο (independent) αν δεν υπάρχουν στο S κόμβοι που να ενώνονται ανά δύο με μια ακμή. Το πρόβλημα Ανεξάρτητου Συνόλου είναι το εξής: Δεδομένου ενός γραφήματος G, βρείτε ένα ανεξάρτητο σύνολο που να είναι όσο το δυνατόν μεγαλύτερο. Χαροκόπειο Πανεπιστήμιο 10/14

11 Ανεξάρτητο Σύνολο Το πρόβλημα κωδικοποιεί καταστάσεις όπου θέλουμε να επιλέξουμε αντικείμενα από μια συλλογή αντικειμένων και υπάρχουν κατά ζεύγη διενέξεις μεταξύ ορισμένων αντικειμένων. Το πρόβλημα είναι ένα εξαιρετικά γενικό πρόβλημα. Τα προβλήματα χρονοπρογραμματισμού διαστημάτων και το διμερές ταίριασμα μπορούν να λυθούν ως ειδικές περιπτώσεις του προβλήματος αυτού. Χαροκόπειο Πανεπιστήμιο 11/14

12 Ανεξάρτητο Σύνολο Έστω το παραπάνω γράφημα Χαροκόπειο Πανεπιστήμιο 12/14

13 Ανεξάρτητο Σύνολο Το παραπάνω σύνολο είναι ανεξάρτητο με μέγεθος 3. Χαροκόπειο Πανεπιστήμιο 12/14

14 Ανεξάρτητο Σύνολο Το παραπάνω σύνολο είναι μέγιστο ανεξάρτητο με μέγεθος 4 Χαροκόπειο Πανεπιστήμιο 12/14

15 Χρονοπρογραμματισμός Διαστημάτων και Ανεξάρτητο Σύνολο Ορίζουμε ένα γράφημα G όπου οι κόμβοι είναι τα χρονικά διαστήματα και υπάρχει ακμή μεταξύ δύο κόμβων εάν τα αντίστοιχα διαστήματα επικαλύπτονται. Τα ανεξάρτητα σύνολα του G είναι τα συμβατά υποσύνολα των χρονικών διαστημάτων. Εαν βρούμε ένα μέγιστο ανεξάρτητο υποσύνολο τότε έχουμε βρει και ένα μέγιστο συμβατό υποσύνολο διαστημάτων. Χαροκόπειο Πανεπιστήμιο 13/14

16 Ανεξάρτητο Σύνολο Κατάσταση Λύσης Προς το παρόν δεν είναι γνωστός κάποιος αποδοτικός αλγόριθμος για το πρόβλημα του ανεξάρτητου συνόλου Εικάζεται πως δεν υπάρχει τέτοιος αλγόριθμος Ο προφανής αλγόριθμος "ωμής βίας" (brute force) που ελέγχει όλα τα δυνατά υποσύνολα κόμβων και διαλέγει το μεγαλύτερο ανεξάρτητο, είναι πολύ αργός και πιθανώς το καλύτερο δυνατό. Το πρόβλημα ανήκει σε μια μεγάλη κατηγορία προβλημάτων που ονομάζονται NP-πλήρη. Δεν είναι γνωστός κανένας αποδοτικός αλγόριθμος για κανένα από αυτά τα προβλήματα, τα οποία είναι όλα ισοδύναμα με την έννοια πως ένας αποδοτικός αλγόριθμος για ένα από αυτά θα υπονοούσε έναν αποδοτικό αλγόριθμο για όλα. Χαροκόπειο Πανεπιστήμιο 14/14

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Οργανωτικά ιδάσκοντες:. Φωτάκης (και Σ. Ζάχος στο μτπχ.) Βοηθοί διδασκαλίας

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός ΙΙΙ - Java

Δομημένος Προγραμματισμός ΙΙΙ - Java Δομημένος Προγραμματισμός ΙΙΙ - Παύλος Εφραιμίδης 1 Το μάθημα Αντικείμενο-Περιεχόμενα μαθήματος Τρόπος Διδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόμενα Μαθήματος Εισαγωγή στους Αλγόριθμους

Διαβάστε περισσότερα

Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 4 Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 4.1 Χρονοπρογραµµατισµός Διαστηµάτων Χρονοπρογραµµατισµός Διαστηµάτων Το πρόβληµα.

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα

Διαβάστε περισσότερα

Δομές Δεδομένων. Παύλος Εφραιμίδης

Δομές Δεδομένων. Παύλος Εφραιμίδης Παύλος Εφραιμίδης 1 Το μάθημα Αντικείμενο-Περιεχόμενα μαθήματος Τρόπος Διδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόμενα Μαθήματος Εισαγωγή στις και τους Αλγορίθμους Μελέτη και υλοποίηση

Διαβάστε περισσότερα

οµηµένος Προγραµµατισµός ΙΙΙ - Java Παύλος Εφραιµίδης οµηµένος Προγρ. ΙΙΙ - 1 Java Το Μάθηµα

οµηµένος Προγραµµατισµός ΙΙΙ - Java Παύλος Εφραιµίδης οµηµένος Προγρ. ΙΙΙ - 1 Java Το Μάθηµα οµηµένος Προγραµµατισµός ΙΙΙ - Παύλος Εφραιµίδης 1 Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόµενα Μαθήµατος Εισαγωγή στους Αλγόριθµους

Διαβάστε περισσότερα

οµηµένος Προγραµµατισµός ΙΙΙ - Java

οµηµένος Προγραµµατισµός ΙΙΙ - Java οµηµένος Προγραµµατισµός ΙΙΙ - Παύλος Εφραιµίδης 1 Το µάθηµα Αντικείµενο-Περιεχόµενα µαθήµατος Τρόπος ιδασκαλίας Εργαστήριο Βιβλίο, Βιβλιογραφία On-line Υλικό 2 Περιεχόµενα Μαθήµατος Εισαγωγή στους Αλγόριθµους

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Κάποια Αντιπροσωπευτικά Προβλήµατα. Έκδοση 1.3, 29/02/2012. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 1. Εισαγωγή: Κάποια Αντιπροσωπευτικά Προβλήµατα. Έκδοση 1.3, 29/02/2012. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 1 Εισαγωγή: Κάποια Αντιπροσωπευτικά Προβλήµατα Έκδοση 1.3, 29/02/2012 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.1 Ένα πρώτο πρόβληµα: Ευσταθές Ταίριασµα Ταίριασµα

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Σχολιασµένη Βιβλιογραϕία Χρηστος. Ζαρολιαγκης Καθηγητής Τµήµα Μηχ/κων Υπολογιστών & Πληροϕορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Φεβρουάριος 2013 1 Περίληψη

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr Πότε και πού; Παρασκευή, 15.00-17.30 Αίθουσα 101 Βιβλιογραφία (I) ΑΛΓΟΡΙΘΜΟΙ Sanjoy Dasgupta Christos Papadimitriou

Διαβάστε περισσότερα

Chapter 9: NP-Complete Problems

Chapter 9: NP-Complete Problems Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ψευδοτυχαίοι Αριθμοί Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Ψευδοτυχαίοι Αριθμοί Μια γεννήτρια ψευδοτυχαίων αριθμών είναι

Διαβάστε περισσότερα

Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010

Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010 Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 4: Πίνακες. Δρ. Γεώργιος Σίσιας Τμήμα Μηχανικών Πληροφορικής ΤΕ

Δομές Δεδομένων. Ενότητα 4: Πίνακες. Δρ. Γεώργιος Σίσιας Τμήμα Μηχανικών Πληροφορικής ΤΕ Δομές Δεδομένων Ενότητα 4: Πίνακες Δρ. Γεώργιος Σίσιας Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Ενότητα 4 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Γλώσσες & Τεχνικές 4 ο Εξάμηνο - Ενότητα 1 - Εισαγωγή στην Τεχνητή Νοημοσύνη Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Τμήμα Πληροφορικής A.T.E.I. ΘΕΣΣΑΛΟΝΙΚΗΣ Rethinking University Teaching!!!

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 4η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ευσταθές Ταίριασμα Πρόβλημα Ευσταθούς Ταιριάσματος

Διαβάστε περισσότερα

DOMES DEDOMENWN KAI ANALUSH ALGORIJMWN. ParousÐash 8: Huffman Encoding

DOMES DEDOMENWN KAI ANALUSH ALGORIJMWN. ParousÐash 8: Huffman Encoding DOMES DEDOMENWN KAI ANALUSH ALGORIJMWN Fjinìpwro 2006 Didˆskwn: I. M lhc ParousÐash 8: Huffman Encoding Euˆggeloc DoÔroc 8.1 SumpÐesh Keimènou (Text Compression) Στον τομέα των υπολογιστών, παρά τη συνεχή

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232

Διαβάστε περισσότερα

Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες

Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες Μια Επισκόπηση της Ύλης & Μερικές Οδηγίες Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Γενικά Σχόλια (1) 2 Για το τελικό διαγώνισμα θα χρειαστείτε: Φοιτητική

Διαβάστε περισσότερα

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Άπληστοι Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άπληστοι Αλγόριθμοι... για προβλήματα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Chapter 7, 8 : Completeness

Chapter 7, 8 : Completeness CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη

Διαβάστε περισσότερα

Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα...

Περιεχόμενα. 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25. 2. Βασικά στοιχεία ανάλυσης αλγορίθμων... 57. 3. Γραφήματα... Περιεχόμενα Σχετικά με τους συγγραφείς...3 Πρόλογος... 11 Πρόλογος της ελληνικής έκδοσης... 23 1. Εισαγωγή: Κάποια αντιπροσωπευτικά προβλήματα... 25 1.1 Ένα πρώτο πρόβλημα: Ευσταθές Ταίριασμα...25 1.2

Διαβάστε περισσότερα

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΜΑΤΙΚΗΣ Β ΕΞΑΜΗΝΟ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΜΑΤΙΚΗΣ Β ΕΞΑΜΗΝΟ Β ΕΞΑΜΗΝΟ Α/Α ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΣΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΚΑΡΑΜΠΑΤΖΟΣ Γ. «ΑΝΩΤΕΡΑ ΜΑΘΗΜΑΤΙΚΑ» Α. R. SPIEGEL (ΣΕΙΡΑ SCHAUM S) ΜΕΓΑΡΟ Κατάστημα 8 Τηλ: 0-097 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΜΙΧΑΗΛ

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εισαγωγή ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Εισαγωγή Συστάσεις Ι Ποιός είμαι εγώ: Email: tsap@cs.uoi.gr Γραφείο: Β.3 Προτιμώμενες ώρες γραφείου: 11:00-18:00 Ενδιαφέροντα Web mining, Social networks, User Generated Content Mobile

Διαβάστε περισσότερα

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ

I student. Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ I student Μεθοδολογική προσέγγιση και απαιτήσεις για την ανάπτυξη των αλγορίθμων δρομολόγησης Χρυσοχόου Ευαγγελία Επιστημονικός Συνεργάτης ΙΜΕΤ Ινστιτούτο Bιώσιμης Κινητικότητας και Δικτύων Μεταφορών (ΙΜΕΤ)

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 19/05/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/21/2015 1 1 5/21/2015 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Βιβλιογραφία "C Προγραμματισμός", Deitel & Deitel, Πέμπτη Έκδοση, Εκδόσεις

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι

ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες Παύλος Εφραιμίδης Δομές Δεδομένων και Αλγόριθμοι Παύλος Εφραιμίδης 1 περιεχόμενα αλγόριθμοι τεχνολογία αλγορίθμων 2 αλγόριθμοι αλγόριθμος: οποιαδήποτε καλά ορισμένη υπολογιστική διαδικασία που δέχεται κάποια τιμή ή κάποιο σύνολο τιμών, και δίνεικάποιατιμήήκάποιοσύνολοτιμώνως

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Προσεγγιστικοί Αλγόριθμοι του Προβλήματος του Περιοδεύοντος Πωλητή Approximation

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2015-2016

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2015-2016 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Τµήµα Πληροφορικής Φθινοπωρινό Εξάµηνο 2015-2016 Ευάγγελος Μαρκάκης Επικ. Καθηγητής Τι θα µελετήσουµε? Πίνακες Β-δέντρα Δέντρα κόκκινου- µαύρου Δέντρα Σωροί Τυχαιοποιηµένα Δέντρα Ουρές

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ελάχιστα Γεννητικά Δένδρα Ελάχιστο Γεννητικό

Διαβάστε περισσότερα

ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ

ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ ΤΕΙ ΗΠΕΙΡΟΥ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ & ΔΙΟΙΚΗΣΗΣ ΥΛΟΠΟΙΗΣΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΔΡΟΜΟΛΟΓΗΣΗ ΚΑΙ ΠΟΛΥ-ΧΡΩΜΑΤΙΣΜΟ ΜΟΝΟΠΑΤΙΩΝ ΣΕ ΓΡΑΦΗΜΑΤΑ ΕΙΣΗΓΗΤΗΣ ΚΑΘΗΓΗΤΗΣ ΧΑΡΙΛΟΓΗΣ ΒΑΣΙΛΕΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΚΑΡΑΓΕΩΡΓΟΥ

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση

Συνδυαστική Βελτιστοποίηση Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 1 Άγγελος Σιφαλέρας sifalera@uom.gr 4 η Διάλεξη Τμήμα Εφαρμοσμένης Πληροφορικής, Παν. Μακεδονίας 2 Knapsack Problem, (1/9) Ένας επενδυτής διαθέτει ένα χρηματικό

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 3

Asset & Liability Management Διάλεξη 3 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

Διάλεξη 01: Δομές Δεδομένων και Αλγόριθμοι - Εισαγωγή

Διάλεξη 01: Δομές Δεδομένων και Αλγόριθμοι - Εισαγωγή 1 Διάλεξη 01: Δομές Δεδομένων και Αλγόριθμοι - Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Δεδομένα και Ενδόμνημη Αναπαράσταση τους - Οργάνωση Δεδομένων

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Μωυσιάδης Πολυχρόνης, Ανδρεάδης Ιωάννης Τμήμα Μαθηματικών Α.Π.Θ. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζεται μία μελέτη για την ελάχιστη διαδρομή σε δίκτυα μεταβλητού

Διαβάστε περισσότερα

ΣΥΝΟΛΙΚΟΣ ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ ΣΥΓΓΡΑΜΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2010-2011

ΣΥΝΟΛΙΚΟΣ ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ ΣΥΓΓΡΑΜΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2010-2011 T.E.I. ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ Αριθ.αποφ.Γ.Σ πρακτικό 4/4-3-00 ΣΥΝΟΛΙΚΟΣ ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ ΣΥΓΓΡΑΜΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Αλγοριθμική Θεωρία Παιγνίων

Αλγοριθμική Θεωρία Παιγνίων Αλγοριθμική Θεωρία Παιγνίων ιδάσκοντες: E. Ζάχος, Α. Παγουρτζής,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πολύπλοκα Συστήματα

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

711 Πληροφορικής ΤΕΙ Αθήνας

711 Πληροφορικής ΤΕΙ Αθήνας 711 Πληροφορικής ΤΕΙ Αθήνας Το Τμήμα Πληροφορικής του ΤΕΙ Αθήνας ιδρύθηκε και δέχτηκε τους πρώτους του σπουδαστές τον Οκτώβριο του 1983, ταυτόχρονα δηλαδή με την έναρξη ισχύος του νόμου 1404/83 για τα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ ΣΥΓΓΡΑΜΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2010-2011

ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ ΣΥΓΓΡΑΜΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2010-2011 Syggrammata PLH_010-011 Telikos_EYDOXOS A.E.I.: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΙΚΗΣ ΣΥΝΕΛΕΥΣΗΣ ΤΜΗΜΑΤΟΣ: ΤΟΜΕΑΣ: ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Detecting Duplicates over Distributed Data Sources. Δημήτρης Σουραβλιάς

Detecting Duplicates over Distributed Data Sources. Δημήτρης Σουραβλιάς Detecting Duplicates over Distributed Data Sources Δημήτρης Σουραβλιάς Δομή παρουσίασης Εισαγωγή Ορισμός του προβλήματος Παράδειγμα Αρχιτεκτονικές ανίχνευσης διπλότυπων Γενικές παρατηρήσεις Αναφορές DMOD

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΤΑΣΚΕΥΗΣ ΚΑΙ ΜΕΛΕΤΗ ΠΡΟΒΛΗΜΑΤΩΝ ΧΡΩΜΑΤΙΣΜΟΥ ΚΛΑΣΕΩΝ ΤΕΛΕΙΩΝ ΓΡΑΦΗΜΑΤΩΝ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΤΑΣΚΕΥΗΣ ΚΑΙ ΜΕΛΕΤΗ ΠΡΟΒΛΗΜΑΤΩΝ ΧΡΩΜΑΤΙΣΜΟΥ ΚΛΑΣΕΩΝ ΤΕΛΕΙΩΝ ΓΡΑΦΗΜΑΤΩΝ ΑΛΓΟΡΙΘΜΟΙ ΚΑΤΑΣΚΕΥΗΣ ΚΑΙ ΜΕΛΕΤΗ ΠΡΟΒΛΗΜΑΤΩΝ ΧΡΩΜΑΤΙΣΜΟΥ ΚΛΑΣΕΩΝ ΤΕΛΕΙΩΝ ΓΡΑΦΗΜΑΤΩΝ Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος

Διαβάστε περισσότερα

ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ ΣΥΓΓΡΑΜΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2011-2012

ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ ΣΥΓΓΡΑΜΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2011-2012 Συγγράμματα 011-01 Συνολικός - Εύδοξος 1-09-011 A.E.I.: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΙΚΗΣ ΣΥΝΕΛΕΥΣΗΣ ΤΜΗΜΑΤΟΣ: ΤΟΜΕΑΣ: ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 9: Αναδρομικότητα. Δρ. Γεώργιος Σίσιας Τμήμα Μηχανικών Πληροφορικής ΤΕ

Δομές Δεδομένων. Ενότητα 9: Αναδρομικότητα. Δρ. Γεώργιος Σίσιας Τμήμα Μηχανικών Πληροφορικής ΤΕ Δομές Δεδομένων Ενότητα 9: Αναδρομικότητα Δρ. Γεώργιος Σίσιας Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Syggrammata PLHR 2008-09 Internet ΕΞ. Υ/ΥΕ/ΕΕ ΔΙΔΑΣΚΩΝ Α/Α ΤΙΤΛΟΣ ΣΥΓΓΡΑΜΜΑΤΟΣ ΣΥΓΓΡΑΦΕΑΣ ΕΚΔΟΤΙΚΟΣ ΟΙΚΟΣ

Syggrammata PLHR 2008-09 Internet ΕΞ. Υ/ΥΕ/ΕΕ ΔΙΔΑΣΚΩΝ Α/Α ΤΙΤΛΟΣ ΣΥΓΓΡΑΜΜΑΤΟΣ ΣΥΓΓΡΑΦΕΑΣ ΕΚΔΟΤΙΚΟΣ ΟΙΚΟΣ Syggrammata PLHR 008-09 Internet A.E.I.: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΙΚΗΣ ΣΥΝΕΛΕΥΣΗΣ ΤΜΗΜΑΤΟΣ: - 5-008 ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ ΣΥΓΓΡΑΜΜΑΤΩΝ

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

Αθήνα, 13/06/2014 Αριθ. Πρωτ.:49793 Τα μέλη της Ειδικής Επταμελούς Επιτροπής (σύμφωνα με τον πίνακα αποδεκτών) Π Ρ Ο Σ Κ Λ Η Σ Η

Αθήνα, 13/06/2014 Αριθ. Πρωτ.:49793 Τα μέλη της Ειδικής Επταμελούς Επιτροπής (σύμφωνα με τον πίνακα αποδεκτών) Π Ρ Ο Σ Κ Λ Η Σ Η Αθήνα, 13/06/2014 Αριθ. Πρωτ.:49793 Προς: Κοιν.: Τα μέλη της Ειδικής Επταμελούς Επιτροπής (σύμφωνα με τον πίνακα αποδεκτών) Σύμφωνα με τον πίνακα αποδεκτών Π Ρ Ο Σ Κ Λ Η Σ Η Καλούνται τα τακτικά μέλη της

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ: ΥΠΟΛΟΓΙΣΤΕΣ & ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΑΔΙΚΤΥΟΥ

ΠΛΗΡΟΦΟΡΙΚΗ: ΥΠΟΛΟΓΙΣΤΕΣ & ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΑΔΙΚΤΥΟΥ ΠΛΗΡΟΦΟΡΙΚΗ: ΥΠΟΛΟΓΙΣΤΕΣ & ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΑΔΙΚΤΥΟΥ kv@hua.gr Στόχος Μαθήματος Εισαγωγή σε Βασικούς Όρους Πληροφορικής και Τηλεματικής. Εφαρμογές Τηλεματικής. Αναφορά στις κοινωνικές επιπτώσεις των Υπολογιστών.

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ * Α/Α ΤΙΤΛΟΣ ΣΥΓΓΡΑΜΜΑΤΟΣ* ΣΥΓΓΡΑΦΕΑΣ* ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΟ- ΔΙΟΙΚΗΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ-ΤΟΜΟΣ Α

ΔΙΔΑΣΚΩΝ * Α/Α ΤΙΤΛΟΣ ΣΥΓΓΡΑΜΜΑΤΟΣ* ΣΥΓΓΡΑΦΕΑΣ* ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΟ- ΔΙΟΙΚΗΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ-ΤΟΜΟΣ Α A.E.I.: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ: ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΗΜΕΡΟΜΗΝΙΑ ΣΥΝΕΛΕΥΣΗΣ ΤΜΗΜΑΤΟΣ: 5-6-04 ΣΥΝΟΛΙΚΟΣ ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΠΡΟΣ ΕΠΙΛΟΓΗ ΔΙΔΑΚΤΙΚΩΝ

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Μεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μεταγλωττιστές Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2011-2012 Ανοδική Κατασκευή Συντακτικού Δέντρου κατασκευή δέντρου

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα