Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο"

Transcript

1 Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

2 Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που αξίζουν ξεχωριστή μελέτη όσο αναφορά τις δομές δεδομένων. Χαροκόπειο Πανεπιστήμιο 2/33

3 Συμβολοσειρές Μία συμβολοσειρά είναι ουσιαστικά ένας πίνακας ακεραίων. Συνήθως όμως επιλέγουμε να διαχωρίζουμε μεταξύ ενός πίνακα ακεραίων και μιας συμβολοσειράς χαρακτήρων από ένα αλφάβητο. Χαροκόπειο Πανεπιστήμιο 3/33

4 Αλφάβητο Έστω Σ ένα γνησίως διατεταγμένο (συνήθως πεπερασμένο) σύνολο, που ονομάζεται το αλφάβητο. Τα στοιχεία του Σ ονομάζονται χαρακτήρες. Για δύο χαρακτήρες a Σ και b Σ γράφουμε α < β για να συμβολίσουμε πως ο χαρακτήρας α είναι μικρότερος από τον β. Χαροκόπειο Πανεπιστήμιο 4/33

5 Συμβολοσειρές Μία συμβολοσειρά S από το Σ ορίζεται ως μία ακολουθία χαρακτήρων a Σ. Γράφουμε S για να συμβολίσουμε το μήκος της S (αριθμό χαρακτήρων). Συμβολίζουμε με S i τον i-οστό χαρακτήρα της S. Γράφουμε S ij για την υποσυμβολοσειρά της S από τον χαρακτήρα i έως και τον χαρακτήρα j. Εάν S, T είναι δύο συμβολοσειρές, συμβολίζουμε με ST την παράθεση τους. Χαροκόπειο Πανεπιστήμιο 5/33

6 Σύγκριση Συμβολοσειρών Έστω a, b Σ και S, T δύο συμβολοσειρές πάνω στο Σ. Γράφουμε as < bt ή η συμβολοσειρά as είναι λεξικογραφικά μικρότερη της bt εάν a < b ή a = b και S < T. Η κενή λέξη ϵ θεωρείται μικρότερη από οποιαδήποτε μη-κενή συμβολοσειρά. Επίσης γράφουμε S T για να συμβολίσουμε πως S < T ή S = T. Χαροκόπειο Πανεπιστήμιο 6/33

7 Πρόθεμα, επίθεμα, υποσυμβολοσειρές πρόθεμα (prefix) Ένα πρόθεμα μιας συμβολοσειράς S προκύπτει αφαιρώντας μηδέν ή περισσότερους χαρακτήρες από το τέλος της S. π.χ η συμβολοσειρά ban είναι πρόθεμα της banana επίθεμα (suffix) Ένα επίθεμα μιας συμβολοσειράς S προκύπτει αφαιρώντας μηδέν ή περισσότερους χαρακτήρες από την αρχή της S. π.χ η συμβολοσειρά nana είναι επίθεμα της banana Χαροκόπειο Πανεπιστήμιο 7/33

8 Πρόθεμα, επίθεμα, υποσυμβολοσειρές υποσυμβολοσειρά (substring) Μια υποσυμβολοσειρά μιας συμβολοσειράς S προκύπτει αφαιρώντας ένα πρόθεμα και ένα επίθεμα από την S. γνήσιο πρόθεμα, επίθεμα ή υποσυμβολοσειρά Έστω X ένα πρόθεμα, επίθεμα ή υποσυμβολοσειρά μιας συμβολοσειράς S. Ονομάζετε γνήσιο(α) σε περίπτωση που X ϵ και X S. Χαροκόπειο Πανεπιστήμιο 8/33

9 Υποακολουθία υποακολουθία (subsequence) Οποιαδήποτε συμβολοσειρά προκύπτει σβήνοντας μηδέν ή περισσότερα σύμβολα, όχι υποχρεωτικά συνεχόμενα, από την συμβολοσειρά S. π.χ η συμβολοσειρά baaa είναι υποακολουθία της banana Χαροκόπειο Πανεπιστήμιο 9/33

10 Ταίριασμα Συμβολοσειράς String-Matching Problem Το πρόβλημα Ταιριάσματος Προτύπου ή Συμβολοσειράς (Pattern-Matching ή String-Matching Problem) αφορά τον εντοπισμό όλων των εμφανίσεων μίας δεδομένης συμβολοσειράς-λέξης-προτύπου σε μία άλλη συμβολοσειρά-κείμενο συνήθως μεγαλύτερου μήκους. Χαροκόπειο Πανεπιστήμιο 10/33

11 Ταίριασμα Συμβολοσειράς String-Matching Problem Το πρόβλημα Ταιριάσματος Προτύπου ή Συμβολοσειράς (Pattern-Matching ή String-Matching Problem) αφορά τον εντοπισμό όλων των εμφανίσεων μίας δεδομένης συμβολοσειράς-λέξης-προτύπου σε μία άλλη συμβολοσειρά-κείμενο συνήθως μεγαλύτερου μήκους. Χωρίζεται σε δύο βασικές κατηγορίες, το ακριβές και το προσεγγιστικό ταίριασμα. Χαροκόπειο Πανεπιστήμιο 10/33

12 Ακριβές Ταίριασμα Συμβολοσειράς Δεδομένου μίας συμβολοσειράς κειμένου T μήκους n και μίας συμβολοσειράς προτύπου P μήκους m n, βρείτε όλες τις εμφανίσεις του προτύπου P στο κείμενο T. Χαροκόπειο Πανεπιστήμιο 11/33

13 Ακριβές Ταίριασμα Συμβολοσειράς Δεδομένου μίας συμβολοσειράς κειμένου T μήκους n και μίας συμβολοσειράς προτύπου P μήκους m n, βρείτε όλες τις εμφανίσεις του προτύπου P στο κείμενο T. Η προφανής λύση αναζήτησης πέρνει O(mn) συγκρίσεις αφού αναζητά όλο το πρότυπο για κάθε θέση του κειμένου. Πιο προχωρημένες τεχνικές λύνουν το πρόβλημα σε O(m + n) συγκρίσεις στην χειρότερη περίπτωση που είναι το βέλτιστο. Χαροκόπειο Πανεπιστήμιο 11/33

14 Στατικό Κείμενο - Πολλά Ερωτήματα Πολλές φορές το κείμενο είναι στατικό και το γνωρίζουμε εξαρχής και πρέπει να απαντήσουμε σε πολλά ερωτήματα που εμφανίζονται ένα ένα. Ευρετήριο Σε αυτή την περίπτωση έχει νόημα να ξοδέψουμε χρόνο ώστε να χτίσουμε κάποιο ευρετήριο του κειμένου T ώστε να απαντάμε τα ερωτήματα αποδοτικά. Χαροκόπειο Πανεπιστήμιο 12/33

15 Βασικές Δομές Δεδομένων για Συμβολοσειρές Trie (prefix tree) Patricia Trie (radix tree) Suffix Tree Suffix Array Χαροκόπειο Πανεπιστήμιο 13/33

16 Trie Retrieval Ένα δέντρο αναζήτησης σχεδιασμένο αποκλειστικά για κλειδιά συμβολοσειρές. E. Fredkin. Trie Memory. Comm. ACM 3(9) pp Sept Χαροκόπειο Πανεπιστήμιο 14/33

17 Trie Retrieval a p k b p p r e a i w a n Παράδειγμα με κλειδιά apple l e i c h c r i s a n apricot peach pear o a kiwi t kiwis banana Χαροκόπειο Πανεπιστήμιο 15/33

18 Trie Retrieval a p k b l e p p r i c o t h c e i a w r i s a n a n a Ιδιότητες Κάθε κόμβος έχει το πολύ Σ παιδιά. Κάθε ακμή έχει ως ετικέτα έναν χαρακτήρα Σ. Κάθε κόμβος αντιστοιχεί με ένα κλειδί, την παράθεση των χαρακτήρων στο μονοπάτι από την ρίζα στον κόμβο. Χαροκόπειο Πανεπιστήμιο 15/33

19 Trie Retrieval a p k b l e p p r i c o t h c e i a w r i s a n a n a Ιδιότητες Η ρίζα αντιστοιχεί στην κενή συμβολοσειρά. Όλοι οι απόγονοι ενός κόμβου v έχουν κοινό πρόθεμα το κλειδί του κόμβου v. Οι τιμές που αντιστοιχούν στα κλειδιά αποθηκεύονται επάνω στους κόμβους. Χαροκόπειο Πανεπιστήμιο 15/33

20 Trie Αναζήτηση 1 tree Trie Search ( tree root, string P [ k.. m ] ) 2 { 3 if ( root is leaf ) 4 return root ; 5 6 tree child = root. child ( P [ k ] ) ; 7 if ( child == null ) 8 return null ; 9 10 return Trie Search ( child, P [ k m ] ) 11 } Ο αλγόριθμος αναζήτησης απλά ακολουθεί το μονοπάτι στο δέντρο ξεκινώντας με Trie-Search(root, P[0..m]). Χαροκόπειο Πανεπιστήμιο 16/33

21 Trie Εισαγωγή και διαγραφή Εισαγωγή Ακολουθούμε το μονοπάτι μέχρι είτε να βρούμε το κλειδί ή να βρούμε null. Εαν βρούμε null δημιουργούμε ένα καινούριο παρακλάδι με το υπόλοιπο της συμβολοσειράς. Διαγραφή Αναζητάμε την συμβολοσειρά και ακολουθούμε την ανάποδη διαδικασία. Διαγράφουμε κόμβους από το τέλος προς την ρίζα όσο δεν υπάρχει κάποιο άλλο παρακλάδι. Χαροκόπειο Πανεπιστήμιο 17/33

22 Trie Τύπος Κόμβου και Έυρεση Παιδιού Ο κόμβος σε ένα Trie μπορεί να περιέχει μέχρι και Σ παιδιά. Ποια αναπαράσταση να χρησιμοποιήσουμε και πόσο χρόνο χρειάζεται η λειτουργία t.child(i); Πίνακας με Σ δείκτες: χάσιμο χώρου, αλλά O(1) για child(c). Πίνακας κατακερματισμού: μικρότερο χάσιμο χώρου, child(c) σε αναμενόμενο O(1) Λίστα από δείκτες: λίγος χώρος, αλλά O( Σ ) για child(c) Ισοζυγισμένο δυαδικό δέντρο αναζήτησης: λίγος χώρος και O(log Σ ) για child(c) Χαροκόπειο Πανεπιστήμιο 18/33

23 Trie Ανάλυση Μέγεθος: O(N) στην χειρότερη περίπτωση όπου N ο συνολικός αριθμός χαρακτήρων των n συμβολοσειρών που είναι στο trie. Αναζήτηση, εισαγωγή και διαγραφή συμβολοσειράς μεγέθους m: O(m Σ ), O(m log Σ ) ή O(m) ανάλογα με είδος κόμβου. Ένα ισοζυγισμένο δυαδικό δέντρο αναζήτησης με κλειδιά συμβολοσειρές θα ήθελε O(m log n). Παρατήρηση: Οι αλυσίδες κόμβων με ένα παιδί δεν είναι αποδοτικές. Χαροκόπειο Πανεπιστήμιο 19/33

24 Patricia Trie Το όνομα Patricia προέρχεται από το ακρώνυμο PATRICIA: Practical Algorithm To Retrieve Information Coded In Alphanumeric Χαροκόπειο Πανεπιστήμιο 20/33

25 Patricia Trie Το όνομα Patricia προέρχεται από το ακρώνυμο PATRICIA: Practical Algorithm To Retrieve Information Coded In Alphanumeric Επιλύει το πρόβλημα των tries λόγω των κόμβων με ένα μοναδικό παιδί. Αντικαθιστούμε μία αλυσίδα από κόμβους με ένα παιδί, με μία ακμή που έχει συμβολοσειρά ως ετικέτα. Χαροκόπειο Πανεπιστήμιο 20/33

26 Patricia Trie Οι ακμές μπορούν πλέον να περιέχουν συμβολοσειρές αντί μόνο έναν χαρακτήρα. a p k b p e i a p r a w n l i c r i a ap pea kiwi banana e c o h s n a ple ricot ch r s t Κάθε μη-φύλλο εκτός από την ρίζα έχει τουλάχιστον δύο παιδιά. Χαροκόπειο Πανεπιστήμιο 21/33

27 Ταίριασμα Συμβολοσειράς Πρόβλημα Δεδομένου μίας συμβολοσειράς κειμένου T μήκους n και μίας συμβολοσειράς προτύπου P μήκους m n, βρείτε όλες τις εμφανίσεις του προτύπου P στο κείμενο T. T = "bananas" P = "na" Επαναδιατύπωση Θέλουμε να βρούμε όλα τα επιθέματα (suffixes) του T που περιέχουν το πρότυπο P ως πρόθεμα (prefix). bananas ananas nanas anas nas as s Χαροκόπειο Πανεπιστήμιο 22/33

28 Επιθεματικά Δέντρα Suffix Tree Ένα επιθεματικό (Suffix) δέντρο για μία συμβολοσειρά T είναι ένα Patricia Trie που περιέχει όλα τα επιθέματα της T. Χαροκόπειο Πανεπιστήμιο 23/33

29 Επιθεματικά Δέντρα Suffix Tree nas na s a s bananas na nas s s bananas ananas nanas anas nas as s Χαροκόπειο Πανεπιστήμιο 24/33

30 Επιθεματικά Δέντρα Suffix Tree Ένα επιθεματικό δέντρο μίας συμβολοσειράς-κειμένου T μεγέθους n χαρακτήρων μπορεί να κατασκευαστεί σε χρόνο O(n) εάν το μέγεθος του αλφάβητου είναι πολυωνυμικό [Farach 1997]. Χαροκόπειο Πανεπιστήμιο 25/33

31 Επιθεματικά Δέντρα Suffix Tree Πόσο χρόνο πέρνει η αναζήτηση μίας συμβολοσειράς (προτύπο) P μεγέθους m χαρακτήρων εάν έχουμε ήδη κατασκευάσει ένα επιθεματικό δέντρο για την συμβολοσειρά (κείμενο) T μεγέθους n; Χαροκόπειο Πανεπιστήμιο 26/33

32 Επιθεματικά Δέντρα Suffix Tree Πόσο χρόνο πέρνει η αναζήτηση μίας συμβολοσειράς (προτύπο) P μεγέθους m χαρακτήρων εάν έχουμε ήδη κατασκευάσει ένα επιθεματικό δέντρο για την συμβολοσειρά (κείμενο) T μεγέθους n; Η αναζήτηση είναι όπως στα Patricia Trees και πέρνει χρόνο O(m) ανεξάρτητο από το μέγεθος του κειμένου T. Χαροκόπειο Πανεπιστήμιο 26/33

33 Επιθεματικά Δέντρα Suffix Tree Πολλές επιπλέον λειτουργίες μπορούν να γίνουν αποδοτικά με την χρήση επιθεματικών δέντρων. Για περισσότερες πληροφορίες Gusfield, Dan: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. USA: Cambridge University Press, ISBN Χαροκόπειο Πανεπιστήμιο 27/33

34 Επιθεματικός Πίνακας Suffix Array Ένας επιθεματικός πίνακας (suffix array) είναι ένας πίνακας ακεραίων με τις αρχικές θέσεις των επιθεμάτων μίας συμβολοσειράς T ταξινομημένες κατά λεξικογραφική σειρά. Χαροκόπειο Πανεπιστήμιο 28/33

35 Επιθεματικός Πίνακας Suffix Array Η λέξη bananas έχει 8 επιθέματα μαζί με την κενή συμβολοσειρά b a n a n a s Χαροκόπειο Πανεπιστήμιο 29/33

36 Επιθεματικός Πίνακας Suffix Array Η λέξη bananas έχει 8 επιθέματα μαζί με την κενή συμβολοσειρά b a n a n a s Κατασκευάζουμε έναν πίνακα που στην θέση i περιέχει την θέση που ξεκινάει το επίθεμα που είναι i-οστό λεξικογραφικά. anas ananas as bananas nanas nas s Χαροκόπειο Πανεπιστήμιο 29/33

37 Επιθεματικός Πίνακας Suffix Array Ένας επιθεματικός πίνακας μπορεί να κατασκευαστεί σε χρόνο O(n) όπου n είναι ο αριθμός χαρακτήρων της συμβολοσειράς εισόδου. Σε περίπτωση που υπάρχει ήδη ένα επιθεματικό δέντρο, μπορούμε να κατασκευάσουμε έναν επιθεματικό πίνακα με μία λεξιγραφική διάσχιση κατά βάθος, δηλαδή μία διάσχιση κατά βάθος όπου επισκεπτόμαστε τα παιδιά ενός κόμβου με λεξικογραφική σειρά. Χαροκόπειο Πανεπιστήμιο 30/33

38 Ταίριασμα Συμβολοσειράς Suffix Array Πρόβλημα Θέλουμε να βρούμε όλα τα επιθέματα (suffixes) του T που περιέχουν το πρότυπο P ως πρόθεμα (prefix). Τα επιθέματα είναι ταξινομημένα λεξικογραφικά και άρα όλα τα επιθέματα που ψάχνουμε εμφανίζονται σειριακά. Κάνουμε δύο δυαδικές αναζητήσεις για να βρούμε την μικρότερη θέση i του πίνακα όπου το P είναι πρόθεμα του i-oστού επιθέματος και την μεγαλύτερη θέση j όπου το P είναι πρόθεμα του j-οστού επιθέματος. Χαροκόπειο Πανεπιστήμιο 31/33

39 Ταίριασμα Συμβολοσειράς Suffix Array Πρόβλημα Θέλουμε να βρούμε όλα τα επιθέματα (suffixes) του T που περιέχουν το πρότυπο P ως πρόθεμα (prefix). Κάθε δυαδική αναζήτηση χρειάζεται χρόνο O(m log n) αφού κάθε σύγκριση μπορεί να πάρει χρόνο O(m) και έχουμε n προθέματα. Χρησιμοποιώντας λίγο παραπάνω χώρο, ο χρόνο αυτός μπορεί να βελτιωθεί σε O(m + log n). Χαροκόπειο Πανεπιστήμιο 32/33

40 Βιβλιογραφία Gusfield, Dan: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. USA: Cambridge University Press, Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Χαροκόπειο Πανεπιστήμιο 33/33

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D Dynamic dictionary matching problem Έχουμε ένα σύνολο πρότυπων D = { P1, P2,..., Pk } oπου D το λεξικό και ένα αυθαίρετο κειμενο T [1,n] To σύνολο των πρότυπων αλλάζει με το χρόνο (ρεαλιστική συνθήκη).

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Πρώτο Σύνολο Ασκήσεων 2014-2015 Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Ερώτημα 1 Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Ο αλγόριθμος εύρεσης

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Ο Αλγόριθμος FP-Growth

Ο Αλγόριθμος FP-Growth Ο Αλγόριθμος FP-Growth Με λίγα λόγια: Ο αλγόριθμος χρησιμοποιεί μια συμπιεσμένη αναπαράσταση της βάσης των συναλλαγών με τη μορφή ενός FP-δέντρου Το δέντρο μοιάζει με προθεματικό δέντρο - prefix tree (trie)

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων

Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι

Διαβάστε περισσότερα

Ανάλυση Συσχέτισης IΙ

Ανάλυση Συσχέτισης IΙ Ανάλυση Συσχέτισης IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 ΟΑλγόριθμοςFP-Growth Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΚΑΝΟΝΕΣ

Διαβάστε περισσότερα

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Δέντρα Δυαδικά Δέντρα Δυαδικά Δέντρα Αναζήτησης (inary Search Trees) http://aetos.it.teithe.gr/~demos/teaching_r.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Μπαλτάς Αλέξανδρος 21 Απριλίου 2015

Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ B- Trees Δομές Δεδομένων Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ampaltas@ceid.upatras.gr Περιεχόμενα 1. Εισαγωγή 2. Ορισμός B- tree 3. Αναζήτηση σε B- tree 4. Ένθεση σε

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Δομές Δεδομένων Εργαστηριακή Άσκηση 2012-2013. Γκόγκος Νίκος Α.Μ.: 4973 Έτος: 3 ο Email: gkogkos@ceid.upatras.gr. Εισαγωγικά:

Δομές Δεδομένων Εργαστηριακή Άσκηση 2012-2013. Γκόγκος Νίκος Α.Μ.: 4973 Έτος: 3 ο Email: gkogkos@ceid.upatras.gr. Εισαγωγικά: Δομές Δεδομένων Εργαστηριακή Άσκηση 2012-2013 Γκόγκος Νίκος Α.Μ.: 4973 Έτος: 3 ο Email: gkogkos@ceid.upatras.gr Εισαγωγικά: Η υλοποίηση του project έχει γίνει σε python [2.7]. Τα python modules είναι αυτόνομα

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ

ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ Κείμενα Ν. Μ. Σγούρος (sgouros@unipi.gr) Επεξεργασία Κειμένων Αναζήτηση Ακολουθιακή Αναζήτηση, Δομές Trie Συμπίεση Huffmann Coding, Run-Length Encoding, Burrows- Wheeler Κρυπτογράφηση

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Πληροφορική 2. Δομές δεδομένων και αρχείων

Πληροφορική 2. Δομές δεδομένων και αρχείων Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: FP-Growth Ευχαριστίες Xρησιμοποιήθηκε επιπλέον υλικό από τα βιβλία «Εισαγωγή στην Εξόρυξη και τις Αποθήκες Δεδομένων» «Introduction to Data

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Κεφάλαιο 3 ο : Εισαγωγή στο δέντρο επιθεµάτων (Suffix Tree) και στις Εφαρµογές του

Κεφάλαιο 3 ο : Εισαγωγή στο δέντρο επιθεµάτων (Suffix Tree) και στις Εφαρµογές του Κεφάλαιο 3 ο : Εισαγωγή στο δέντρο επιθεµάτων (Suffix Tree) και στις Εφαρµογές του Στα πλαίσια αυτού του κεφαλαίου παρουσιάζουµε δυο ευέλικτες δενδρικές δοµές: το έντρο Επιθεµάτων (Suffix Tree) και το

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research ΑΛΓΟΡΙΘΜΟΙ ΜΕ C ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής CMOR Lab Computational Methodologies and Operations Research Δέντρα (5) Τ ένα δέντρο i ένας κόμβος στο επίπεδο k j ένας κόμβος στο επίπεδο k+1 } :

Διαβάστε περισσότερα

9. Κόκκινα-Μαύρα Δέντρα

9. Κόκκινα-Μαύρα Δέντρα Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων

Διαβάστε περισσότερα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος,

Διαβάστε περισσότερα

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #11 Suffix Arrays Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης Το παρόν

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990,

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990, ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μια σημείωση από τον Α. Δελή για το άρθρο: W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, Comms of the ACM, 33(), June 10,

Διαβάστε περισσότερα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 4

Αλγόριθμοι Ταξινόμησης Μέρος 4 Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να

Διαβάστε περισσότερα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Αλγόριθμοι Ωμή Βία http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ωμή Βία Είναι μία άμεση προσέγγιση που βασίζεται στην εκφώνηση του προβλήματος και

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)

Διαβάστε περισσότερα

Περιεχόμενα. Περιεχόμενα

Περιεχόμενα. Περιεχόμενα Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...

Διαβάστε περισσότερα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035).

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035). Βασικές Δοµές Δεδοµένων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Γραµµικές Δοµές Δεδοµένων Πίνακες Λίστες Στοίβες Ουρές Γράφοι Δέντρα Γραµµικές Δοµές Πίνακας (array) A[0] A[1] A[2] A[ ] A[n-1] Προκαθορισµένη

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

8.6 Κλάσεις και αντικείμενα 8.7 Δείκτες σε γλώσσα μηχανής

8.6 Κλάσεις και αντικείμενα 8.7 Δείκτες σε γλώσσα μηχανής ΚΕΦΑΛΑΙΟ 8: Αφαιρετικές έννοιες δεδομένων 8.1 Βασικές έννοιες δομών δεδομένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δομών δεδομένων 8.4 Μια σύντομη μελέτη περίπτωσης 8.4 Προσαρμοσμένοι τύποι δεδομένων 8.6

Διαβάστε περισσότερα

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)

Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Κατακερµατισµός. Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετημένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινομημένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Αλγόριθμοι Συμβολοσειρών

Αλγόριθμοι Συμβολοσειρών 12 Αλγόριθμοι Συμβολοσειρών Περιεχόμενα Κεφαλαίου 12.1 Ορισμός Προβλήματος και Αλγόριθμος Ωμής Βίας... 348 12.2 Αλγόριθμος Rabin-Karp................... 350 12.3 Αλγόριθμος Boyer-Moore-Horspool.............

Διαβάστε περισσότερα

AVL-trees C++ implementation

AVL-trees C++ implementation Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ AVL-trees C++ implementation Δομές Δεδομένων Μάριος Κενδέα 31 Μαρτίου 2015 kendea@ceid.upatras.gr Εισαγωγή (1/3) Δυαδικά Δένδρα Αναζήτησης:

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης Δένδρα στα οποία κάθε κόμβος μπορεί να αποθηκεύει ένα ή περισσότερα κλειδιά. Κόμβος με d διακλαδώσεις : k 1 k 2 k 3 k 4 d-1 διατεταγμένα κλειδιά d διατεταγμένα παιδιά

Διαβάστε περισσότερα

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

Κεφάλαιο 2.4 Matrix Algorithms

Κεφάλαιο 2.4 Matrix Algorithms Κεφάλαιο 2.4 Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Κατασκευή ΝxNxN Mesh of trees (1/3) Στον ΝxNxN κύβο προσθέτω τους εξής κόμβους:

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Υλοποίηση Δυαδικού Σωρού σε γλώσσα Java Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σωρός Μεγίστου ως ΑΤΔ Ένας σωρός μεγίστου (max heap) είναι ένας ΑΤΔ που

Διαβάστε περισσότερα

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Μάθημα 22: Δυαδικά δέντρα (Binary Trees)

Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Trees Page 1 Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Ένα δένδρο είναι δυαδικό αν όλοι οι κόμβοι του έχουν βαθμό (degree)

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

Ανάκτηση πληροφορίας

Ανάκτηση πληροφορίας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ανάκτηση πληροφορίας Ενότητα 6: Ο Αντεστραμμένος Κατάλογος Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια

Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου που καλείται

Διαβάστε περισσότερα

Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια

Ευρετήρια. Πρωτεύον ευρετήριο (primary index): ορισμένο στο κλειδί διάταξης του αρχείου. Ευρετήρια. Ευρετήρια. Ευρετήρια Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου που καλείται

Διαβάστε περισσότερα