Δομές Δεδομένων. Δημήτρης Μιχαήλ. Συμβολοσειρές. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
|
|
- Ἀρτεμίσιος Φιλιππίδης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Δομές Δεδομένων Συμβολοσειρές Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
2 Συμβολοσειρές Συμβολοσειρές και προβλήματα που αφορούν συμβολοσειρές εμφανίζονται τόσο συχνά που αξίζουν ξεχωριστή μελέτη όσο αναφορά τις δομές δεδομένων. Χαροκόπειο Πανεπιστήμιο 2/33
3 Συμβολοσειρές Μία συμβολοσειρά είναι ουσιαστικά ένας πίνακας ακεραίων. Συνήθως όμως επιλέγουμε να διαχωρίζουμε μεταξύ ενός πίνακα ακεραίων και μιας συμβολοσειράς χαρακτήρων από ένα αλφάβητο. Χαροκόπειο Πανεπιστήμιο 3/33
4 Αλφάβητο Έστω Σ ένα γνησίως διατεταγμένο (συνήθως πεπερασμένο) σύνολο, που ονομάζεται το αλφάβητο. Τα στοιχεία του Σ ονομάζονται χαρακτήρες. Για δύο χαρακτήρες a Σ και b Σ γράφουμε α < β για να συμβολίσουμε πως ο χαρακτήρας α είναι μικρότερος από τον β. Χαροκόπειο Πανεπιστήμιο 4/33
5 Συμβολοσειρές Μία συμβολοσειρά S από το Σ ορίζεται ως μία ακολουθία χαρακτήρων a Σ. Γράφουμε S για να συμβολίσουμε το μήκος της S (αριθμό χαρακτήρων). Συμβολίζουμε με S i τον i-οστό χαρακτήρα της S. Γράφουμε S ij για την υποσυμβολοσειρά της S από τον χαρακτήρα i έως και τον χαρακτήρα j. Εάν S, T είναι δύο συμβολοσειρές, συμβολίζουμε με ST την παράθεση τους. Χαροκόπειο Πανεπιστήμιο 5/33
6 Σύγκριση Συμβολοσειρών Έστω a, b Σ και S, T δύο συμβολοσειρές πάνω στο Σ. Γράφουμε as < bt ή η συμβολοσειρά as είναι λεξικογραφικά μικρότερη της bt εάν a < b ή a = b και S < T. Η κενή λέξη ϵ θεωρείται μικρότερη από οποιαδήποτε μη-κενή συμβολοσειρά. Επίσης γράφουμε S T για να συμβολίσουμε πως S < T ή S = T. Χαροκόπειο Πανεπιστήμιο 6/33
7 Πρόθεμα, επίθεμα, υποσυμβολοσειρές πρόθεμα (prefix) Ένα πρόθεμα μιας συμβολοσειράς S προκύπτει αφαιρώντας μηδέν ή περισσότερους χαρακτήρες από το τέλος της S. π.χ η συμβολοσειρά ban είναι πρόθεμα της banana επίθεμα (suffix) Ένα επίθεμα μιας συμβολοσειράς S προκύπτει αφαιρώντας μηδέν ή περισσότερους χαρακτήρες από την αρχή της S. π.χ η συμβολοσειρά nana είναι επίθεμα της banana Χαροκόπειο Πανεπιστήμιο 7/33
8 Πρόθεμα, επίθεμα, υποσυμβολοσειρές υποσυμβολοσειρά (substring) Μια υποσυμβολοσειρά μιας συμβολοσειράς S προκύπτει αφαιρώντας ένα πρόθεμα και ένα επίθεμα από την S. γνήσιο πρόθεμα, επίθεμα ή υποσυμβολοσειρά Έστω X ένα πρόθεμα, επίθεμα ή υποσυμβολοσειρά μιας συμβολοσειράς S. Ονομάζετε γνήσιο(α) σε περίπτωση που X ϵ και X S. Χαροκόπειο Πανεπιστήμιο 8/33
9 Υποακολουθία υποακολουθία (subsequence) Οποιαδήποτε συμβολοσειρά προκύπτει σβήνοντας μηδέν ή περισσότερα σύμβολα, όχι υποχρεωτικά συνεχόμενα, από την συμβολοσειρά S. π.χ η συμβολοσειρά baaa είναι υποακολουθία της banana Χαροκόπειο Πανεπιστήμιο 9/33
10 Ταίριασμα Συμβολοσειράς String-Matching Problem Το πρόβλημα Ταιριάσματος Προτύπου ή Συμβολοσειράς (Pattern-Matching ή String-Matching Problem) αφορά τον εντοπισμό όλων των εμφανίσεων μίας δεδομένης συμβολοσειράς-λέξης-προτύπου σε μία άλλη συμβολοσειρά-κείμενο συνήθως μεγαλύτερου μήκους. Χαροκόπειο Πανεπιστήμιο 10/33
11 Ταίριασμα Συμβολοσειράς String-Matching Problem Το πρόβλημα Ταιριάσματος Προτύπου ή Συμβολοσειράς (Pattern-Matching ή String-Matching Problem) αφορά τον εντοπισμό όλων των εμφανίσεων μίας δεδομένης συμβολοσειράς-λέξης-προτύπου σε μία άλλη συμβολοσειρά-κείμενο συνήθως μεγαλύτερου μήκους. Χωρίζεται σε δύο βασικές κατηγορίες, το ακριβές και το προσεγγιστικό ταίριασμα. Χαροκόπειο Πανεπιστήμιο 10/33
12 Ακριβές Ταίριασμα Συμβολοσειράς Δεδομένου μίας συμβολοσειράς κειμένου T μήκους n και μίας συμβολοσειράς προτύπου P μήκους m n, βρείτε όλες τις εμφανίσεις του προτύπου P στο κείμενο T. Χαροκόπειο Πανεπιστήμιο 11/33
13 Ακριβές Ταίριασμα Συμβολοσειράς Δεδομένου μίας συμβολοσειράς κειμένου T μήκους n και μίας συμβολοσειράς προτύπου P μήκους m n, βρείτε όλες τις εμφανίσεις του προτύπου P στο κείμενο T. Η προφανής λύση αναζήτησης πέρνει O(mn) συγκρίσεις αφού αναζητά όλο το πρότυπο για κάθε θέση του κειμένου. Πιο προχωρημένες τεχνικές λύνουν το πρόβλημα σε O(m + n) συγκρίσεις στην χειρότερη περίπτωση που είναι το βέλτιστο. Χαροκόπειο Πανεπιστήμιο 11/33
14 Στατικό Κείμενο - Πολλά Ερωτήματα Πολλές φορές το κείμενο είναι στατικό και το γνωρίζουμε εξαρχής και πρέπει να απαντήσουμε σε πολλά ερωτήματα που εμφανίζονται ένα ένα. Ευρετήριο Σε αυτή την περίπτωση έχει νόημα να ξοδέψουμε χρόνο ώστε να χτίσουμε κάποιο ευρετήριο του κειμένου T ώστε να απαντάμε τα ερωτήματα αποδοτικά. Χαροκόπειο Πανεπιστήμιο 12/33
15 Βασικές Δομές Δεδομένων για Συμβολοσειρές Trie (prefix tree) Patricia Trie (radix tree) Suffix Tree Suffix Array Χαροκόπειο Πανεπιστήμιο 13/33
16 Trie Retrieval Ένα δέντρο αναζήτησης σχεδιασμένο αποκλειστικά για κλειδιά συμβολοσειρές. E. Fredkin. Trie Memory. Comm. ACM 3(9) pp Sept Χαροκόπειο Πανεπιστήμιο 14/33
17 Trie Retrieval a p k b p p r e a i w a n Παράδειγμα με κλειδιά apple l e i c h c r i s a n apricot peach pear o a kiwi t kiwis banana Χαροκόπειο Πανεπιστήμιο 15/33
18 Trie Retrieval a p k b l e p p r i c o t h c e i a w r i s a n a n a Ιδιότητες Κάθε κόμβος έχει το πολύ Σ παιδιά. Κάθε ακμή έχει ως ετικέτα έναν χαρακτήρα Σ. Κάθε κόμβος αντιστοιχεί με ένα κλειδί, την παράθεση των χαρακτήρων στο μονοπάτι από την ρίζα στον κόμβο. Χαροκόπειο Πανεπιστήμιο 15/33
19 Trie Retrieval a p k b l e p p r i c o t h c e i a w r i s a n a n a Ιδιότητες Η ρίζα αντιστοιχεί στην κενή συμβολοσειρά. Όλοι οι απόγονοι ενός κόμβου v έχουν κοινό πρόθεμα το κλειδί του κόμβου v. Οι τιμές που αντιστοιχούν στα κλειδιά αποθηκεύονται επάνω στους κόμβους. Χαροκόπειο Πανεπιστήμιο 15/33
20 Trie Αναζήτηση 1 tree Trie Search ( tree root, string P [ k.. m ] ) 2 { 3 if ( root is leaf ) 4 return root ; 5 6 tree child = root. child ( P [ k ] ) ; 7 if ( child == null ) 8 return null ; 9 10 return Trie Search ( child, P [ k m ] ) 11 } Ο αλγόριθμος αναζήτησης απλά ακολουθεί το μονοπάτι στο δέντρο ξεκινώντας με Trie-Search(root, P[0..m]). Χαροκόπειο Πανεπιστήμιο 16/33
21 Trie Εισαγωγή και διαγραφή Εισαγωγή Ακολουθούμε το μονοπάτι μέχρι είτε να βρούμε το κλειδί ή να βρούμε null. Εαν βρούμε null δημιουργούμε ένα καινούριο παρακλάδι με το υπόλοιπο της συμβολοσειράς. Διαγραφή Αναζητάμε την συμβολοσειρά και ακολουθούμε την ανάποδη διαδικασία. Διαγράφουμε κόμβους από το τέλος προς την ρίζα όσο δεν υπάρχει κάποιο άλλο παρακλάδι. Χαροκόπειο Πανεπιστήμιο 17/33
22 Trie Τύπος Κόμβου και Έυρεση Παιδιού Ο κόμβος σε ένα Trie μπορεί να περιέχει μέχρι και Σ παιδιά. Ποια αναπαράσταση να χρησιμοποιήσουμε και πόσο χρόνο χρειάζεται η λειτουργία t.child(i); Πίνακας με Σ δείκτες: χάσιμο χώρου, αλλά O(1) για child(c). Πίνακας κατακερματισμού: μικρότερο χάσιμο χώρου, child(c) σε αναμενόμενο O(1) Λίστα από δείκτες: λίγος χώρος, αλλά O( Σ ) για child(c) Ισοζυγισμένο δυαδικό δέντρο αναζήτησης: λίγος χώρος και O(log Σ ) για child(c) Χαροκόπειο Πανεπιστήμιο 18/33
23 Trie Ανάλυση Μέγεθος: O(N) στην χειρότερη περίπτωση όπου N ο συνολικός αριθμός χαρακτήρων των n συμβολοσειρών που είναι στο trie. Αναζήτηση, εισαγωγή και διαγραφή συμβολοσειράς μεγέθους m: O(m Σ ), O(m log Σ ) ή O(m) ανάλογα με είδος κόμβου. Ένα ισοζυγισμένο δυαδικό δέντρο αναζήτησης με κλειδιά συμβολοσειρές θα ήθελε O(m log n). Παρατήρηση: Οι αλυσίδες κόμβων με ένα παιδί δεν είναι αποδοτικές. Χαροκόπειο Πανεπιστήμιο 19/33
24 Patricia Trie Το όνομα Patricia προέρχεται από το ακρώνυμο PATRICIA: Practical Algorithm To Retrieve Information Coded In Alphanumeric Χαροκόπειο Πανεπιστήμιο 20/33
25 Patricia Trie Το όνομα Patricia προέρχεται από το ακρώνυμο PATRICIA: Practical Algorithm To Retrieve Information Coded In Alphanumeric Επιλύει το πρόβλημα των tries λόγω των κόμβων με ένα μοναδικό παιδί. Αντικαθιστούμε μία αλυσίδα από κόμβους με ένα παιδί, με μία ακμή που έχει συμβολοσειρά ως ετικέτα. Χαροκόπειο Πανεπιστήμιο 20/33
26 Patricia Trie Οι ακμές μπορούν πλέον να περιέχουν συμβολοσειρές αντί μόνο έναν χαρακτήρα. a p k b p e i a p r a w n l i c r i a ap pea kiwi banana e c o h s n a ple ricot ch r s t Κάθε μη-φύλλο εκτός από την ρίζα έχει τουλάχιστον δύο παιδιά. Χαροκόπειο Πανεπιστήμιο 21/33
27 Ταίριασμα Συμβολοσειράς Πρόβλημα Δεδομένου μίας συμβολοσειράς κειμένου T μήκους n και μίας συμβολοσειράς προτύπου P μήκους m n, βρείτε όλες τις εμφανίσεις του προτύπου P στο κείμενο T. T = "bananas" P = "na" Επαναδιατύπωση Θέλουμε να βρούμε όλα τα επιθέματα (suffixes) του T που περιέχουν το πρότυπο P ως πρόθεμα (prefix). bananas ananas nanas anas nas as s Χαροκόπειο Πανεπιστήμιο 22/33
28 Επιθεματικά Δέντρα Suffix Tree Ένα επιθεματικό (Suffix) δέντρο για μία συμβολοσειρά T είναι ένα Patricia Trie που περιέχει όλα τα επιθέματα της T. Χαροκόπειο Πανεπιστήμιο 23/33
29 Επιθεματικά Δέντρα Suffix Tree nas na s a s bananas na nas s s bananas ananas nanas anas nas as s Χαροκόπειο Πανεπιστήμιο 24/33
30 Επιθεματικά Δέντρα Suffix Tree Ένα επιθεματικό δέντρο μίας συμβολοσειράς-κειμένου T μεγέθους n χαρακτήρων μπορεί να κατασκευαστεί σε χρόνο O(n) εάν το μέγεθος του αλφάβητου είναι πολυωνυμικό [Farach 1997]. Χαροκόπειο Πανεπιστήμιο 25/33
31 Επιθεματικά Δέντρα Suffix Tree Πόσο χρόνο πέρνει η αναζήτηση μίας συμβολοσειράς (προτύπο) P μεγέθους m χαρακτήρων εάν έχουμε ήδη κατασκευάσει ένα επιθεματικό δέντρο για την συμβολοσειρά (κείμενο) T μεγέθους n; Χαροκόπειο Πανεπιστήμιο 26/33
32 Επιθεματικά Δέντρα Suffix Tree Πόσο χρόνο πέρνει η αναζήτηση μίας συμβολοσειράς (προτύπο) P μεγέθους m χαρακτήρων εάν έχουμε ήδη κατασκευάσει ένα επιθεματικό δέντρο για την συμβολοσειρά (κείμενο) T μεγέθους n; Η αναζήτηση είναι όπως στα Patricia Trees και πέρνει χρόνο O(m) ανεξάρτητο από το μέγεθος του κειμένου T. Χαροκόπειο Πανεπιστήμιο 26/33
33 Επιθεματικά Δέντρα Suffix Tree Πολλές επιπλέον λειτουργίες μπορούν να γίνουν αποδοτικά με την χρήση επιθεματικών δέντρων. Για περισσότερες πληροφορίες Gusfield, Dan: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. USA: Cambridge University Press, ISBN Χαροκόπειο Πανεπιστήμιο 27/33
34 Επιθεματικός Πίνακας Suffix Array Ένας επιθεματικός πίνακας (suffix array) είναι ένας πίνακας ακεραίων με τις αρχικές θέσεις των επιθεμάτων μίας συμβολοσειράς T ταξινομημένες κατά λεξικογραφική σειρά. Χαροκόπειο Πανεπιστήμιο 28/33
35 Επιθεματικός Πίνακας Suffix Array Η λέξη bananas έχει 8 επιθέματα μαζί με την κενή συμβολοσειρά b a n a n a s Χαροκόπειο Πανεπιστήμιο 29/33
36 Επιθεματικός Πίνακας Suffix Array Η λέξη bananas έχει 8 επιθέματα μαζί με την κενή συμβολοσειρά b a n a n a s Κατασκευάζουμε έναν πίνακα που στην θέση i περιέχει την θέση που ξεκινάει το επίθεμα που είναι i-οστό λεξικογραφικά. anas ananas as bananas nanas nas s Χαροκόπειο Πανεπιστήμιο 29/33
37 Επιθεματικός Πίνακας Suffix Array Ένας επιθεματικός πίνακας μπορεί να κατασκευαστεί σε χρόνο O(n) όπου n είναι ο αριθμός χαρακτήρων της συμβολοσειράς εισόδου. Σε περίπτωση που υπάρχει ήδη ένα επιθεματικό δέντρο, μπορούμε να κατασκευάσουμε έναν επιθεματικό πίνακα με μία λεξιγραφική διάσχιση κατά βάθος, δηλαδή μία διάσχιση κατά βάθος όπου επισκεπτόμαστε τα παιδιά ενός κόμβου με λεξικογραφική σειρά. Χαροκόπειο Πανεπιστήμιο 30/33
38 Ταίριασμα Συμβολοσειράς Suffix Array Πρόβλημα Θέλουμε να βρούμε όλα τα επιθέματα (suffixes) του T που περιέχουν το πρότυπο P ως πρόθεμα (prefix). Τα επιθέματα είναι ταξινομημένα λεξικογραφικά και άρα όλα τα επιθέματα που ψάχνουμε εμφανίζονται σειριακά. Κάνουμε δύο δυαδικές αναζητήσεις για να βρούμε την μικρότερη θέση i του πίνακα όπου το P είναι πρόθεμα του i-oστού επιθέματος και την μεγαλύτερη θέση j όπου το P είναι πρόθεμα του j-οστού επιθέματος. Χαροκόπειο Πανεπιστήμιο 31/33
39 Ταίριασμα Συμβολοσειράς Suffix Array Πρόβλημα Θέλουμε να βρούμε όλα τα επιθέματα (suffixes) του T που περιέχουν το πρότυπο P ως πρόθεμα (prefix). Κάθε δυαδική αναζήτηση χρειάζεται χρόνο O(m log n) αφού κάθε σύγκριση μπορεί να πάρει χρόνο O(m) και έχουμε n προθέματα. Χρησιμοποιώντας λίγο παραπάνω χώρο, ο χρόνο αυτός μπορεί να βελτιωθεί σε O(m + log n). Χαροκόπειο Πανεπιστήμιο 32/33
40 Βιβλιογραφία Gusfield, Dan: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. USA: Cambridge University Press, Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Χαροκόπειο Πανεπιστήμιο 33/33
Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.
Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από
Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D
Dynamic dictionary matching problem Έχουμε ένα σύνολο πρότυπων D = { P1, P2,..., Pk } oπου D το λεξικό και ένα αυθαίρετο κειμενο T [1,n] To σύνολο των πρότυπων αλλάζει με το χρόνο (ρεαλιστική συνθήκη).
Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα
Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται
Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.
Πρώτο Σύνολο Ασκήσεων 2014-2015 Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Ερώτημα 1 Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Ο αλγόριθμος εύρεσης
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Κεφ.11: Ευρετήρια και Κατακερματισμός
Κεφ.11: Ευρετήρια και Κατακερματισμός Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Κεφ. 11: Ευρετήρια-Βασική θεωρία Μηχανισμοί ευρετηρίου χρησιμοποιούνται για την επιτάχυνση
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
Κεφάλαιο 10 Ψηφιακά Λεξικά
Κεφάλαιο 10 Ψηφιακά Λεξικά Περιεχόμενα 10.1 Εισαγωγή... 213 10.2 Ψηφιακά Δένδρα... 214 10.3 Υλοποίηση σε Java... 222 10.4 Συμπιεσμένα και τριαδικά ψηφιακά δένδρα... 223 Ασκήσεις... 225 Βιβλιογραφία...
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Ο Αλγόριθμος FP-Growth
Ο Αλγόριθμος FP-Growth Με λίγα λόγια: Ο αλγόριθμος χρησιμοποιεί μια συμπιεσμένη αναπαράσταση της βάσης των συναλλαγών με τη μορφή ενός FP-δέντρου Το δέντρο μοιάζει με προθεματικό δέντρο - prefix tree (trie)
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων
Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από
Ανάλυση Συσχέτισης IΙ
Ανάλυση Συσχέτισης IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 ΟΑλγόριθμοςFP-Growth Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΚΑΝΟΝΕΣ
Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M
Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Δέντρα Δυαδικά Δέντρα Δυαδικά Δέντρα Αναζήτησης (inary Search Trees) http://aetos.it.teithe.gr/~demos/teaching_r.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί
Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή σε δενδρικές δομές δεδομένων, -
Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ
ΤΕΧΝΟΛΟΓΙΕΣ ΠΟΛΥΜΕΣΩΝ Κείμενα Ν. Μ. Σγούρος (sgouros@unipi.gr) Επεξεργασία Κειμένων Αναζήτηση Ακολουθιακή Αναζήτηση, Δομές Trie Συμπίεση Huffmann Coding, Run-Length Encoding, Burrows- Wheeler Κρυπτογράφηση
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
Δομές Δεδομένων Εργαστηριακή Άσκηση 2012-2013. Γκόγκος Νίκος Α.Μ.: 4973 Έτος: 3 ο Email: gkogkos@ceid.upatras.gr. Εισαγωγικά:
Δομές Δεδομένων Εργαστηριακή Άσκηση 2012-2013 Γκόγκος Νίκος Α.Μ.: 4973 Έτος: 3 ο Email: gkogkos@ceid.upatras.gr Εισαγωγικά: Η υλοποίηση του project έχει γίνει σε python [2.7]. Τα python modules είναι αυτόνομα
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος
Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος
Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr
Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων
Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή
Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y
Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί
Μπαλτάς Αλέξανδρος 21 Απριλίου 2015
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ B- Trees Δομές Δεδομένων Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ampaltas@ceid.upatras.gr Περιεχόμενα 1. Εισαγωγή 2. Ορισμός B- tree 3. Αναζήτηση σε B- tree 4. Ένθεση σε
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2017-2018 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε
Πληροφορική 2. Δομές δεδομένων και αρχείων
Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: FP-Growth Ευχαριστίες Xρησιμοποιήθηκε επιπλέον υλικό από τα βιβλία «Εισαγωγή στην Εξόρυξη και τις Αποθήκες Δεδομένων» «Introduction to Data
Union Find, Λεξικό. Δημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Union Find, Λεξικό Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Διαμερίσεων Συνόλου Στοιχεία σύμπαντος διαμερίζονται σε κλάσεις ισοδυναμίας
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος,
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research
ΑΛΓΟΡΙΘΜΟΙ ΜΕ C ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής CMOR Lab Computational Methodologies and Operations Research Δέντρα (5) Τ ένα δέντρο i ένας κόμβος στο επίπεδο k j ένας κόμβος στο επίπεδο k+1 } :
Δυναμικός Κατακερματισμός
Δυναμικός Κατακερματισμός Καλό για βάση δεδομένων που μεγαλώνει και συρρικνώνεται σε μέγεθος Επιτρέπει τη δυναμική τροποποίηση της συνάρτησης κατακερματισμού Επεκτάσιμος κατακερματισμός μια μορφή δυναμικού
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #11 Suffix Arrays Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης Το παρόν
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2018-2019 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Κεφάλαιο 3 ο : Εισαγωγή στο δέντρο επιθεµάτων (Suffix Tree) και στις Εφαρµογές του
Κεφάλαιο 3 ο : Εισαγωγή στο δέντρο επιθεµάτων (Suffix Tree) και στις Εφαρµογές του Στα πλαίσια αυτού του κεφαλαίου παρουσιάζουµε δυο ευέλικτες δενδρικές δοµές: το έντρο Επιθεµάτων (Suffix Tree) και το
Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1
Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα
Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,
Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία
Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1
Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
9. Κόκκινα-Μαύρα Δέντρα
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,
επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S
Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο
Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων
ΗΥ360 Αρχεία και Βάσεις εδοµένων
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Tutorial B-Trees, B+Trees Μπαριτάκης Παύλος 2018-2019 Ιδιότητες B-trees Χρήση για μείωση των προσπελάσεων στον δίσκο Επέκταση των Binary Search Trees
Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1
Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου
Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Μεταγλωττιστές Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μια σημείωση από τον Α. Δελή για το άρθρο: W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, Comms of the ACM, 33(), June 10,
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
Κεφάλαιο 6 Ουρές Προτεραιότητας
Κεφάλαιο 6 Ουρές Προτεραιότητας Περιεχόμενα 6.1 Ο αφηρημένος τύπος δεδομένων ουράς προτεραιότητας... 114 6.2 Ουρές προτεραιότητας με στοιχειώδεις δομές δεδομένων... 115 6.3 Δυαδικός σωρός... 116 6.3.1
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι
Φροντιστήριο: Επανάληψη για την ενδιάμεση εξέταση Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Μαθηματική Επαγωγή Να αποδείξετε ότι 1 3 5... (2 1) 2 για >0. Απόδειξη: Επαληθεύουμε
Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035).
Βασικές Δοµές Δεδοµένων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Γραµµικές Δοµές Δεδοµένων Πίνακες Λίστες Στοίβες Ουρές Γράφοι Δέντρα Γραµµικές Δοµές Πίνακας (array) A[0] A[1] A[2] A[ ] A[n-1] Προκαθορισµένη
οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing)
Διάλεξη 22: Τεχνικές Κατακερματισμού I (Hashing) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανασκόπηση Προβλήματος και Προκαταρκτικών Λύσεων Bit Διανύσματα Τεχνικές Κατακερματισμού & Συναρτήσεις
Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι. Εαρινό Εξάμηνο Lec 05 & & 26 /02/2019 Διδάσκων: Γεώργιος Χρ.
Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι Εαρινό Εξάμηνο 2018-2019 Lec 05 & 06 25 & 26 /02/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Φάσεις μεταγλώττισης Αρχικό Πρόγραμμα Λεκτική Ανάλυση λεκτικές μονάδες
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου
Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Δομές Δεδομένων (Εργ.) Ακ. Έτος 2017-18 Διδάσκων: Ευάγγελος Σπύρου Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης 1. Στόχος του εργαστηρίου Στόχος του δέκατου εργαστηρίου
Περιεχόμενα. Περιεχόμενα
Περιεχόμενα xv Περιεχόμενα 1 Αρχές της Java... 1 1.1 Προκαταρκτικά: Κλάσεις, Τύποι και Αντικείμενα... 2 1.1.1 Βασικοί Τύποι... 5 1.1.2 Αντικείμενα... 7 1.1.3 Τύποι Enum... 14 1.2 Μέθοδοι... 15 1.3 Εκφράσεις...
Πρόβληµα (ADT) Λεξικού. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2
Πρόβληµα (ADT) Λεξικού Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Λεξικό, Union - Find 2 Πρόβληµα (ADT) Λεξικού Δυναµικά µεταβαλλόµενη συλλογή αντικειµένων που αναγνωρίζονται µε κλειδί (π.χ. κατάλογοι,
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:
Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές
Αλγόριθμοι Ταξινόμησης Μέρος 4
Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας
8.6 Κλάσεις και αντικείμενα 8.7 Δείκτες σε γλώσσα μηχανής
ΚΕΦΑΛΑΙΟ 8: Αφαιρετικές έννοιες δεδομένων 8.1 Βασικές έννοιες δομών δεδομένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δομών δεδομένων 8.4 Μια σύντομη μελέτη περίπτωσης 8.4 Προσαρμοσμένοι τύποι δεδομένων 8.6
Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Αλγόριθμοι Ωμή Βία http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ωμή Βία Είναι μία άμεση προσέγγιση που βασίζεται στην εκφώνηση του προβλήματος και
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά
Διάλεξη 14: Δέντρα IV - B-Δένδρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 14: Δέντρα IV - B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις - Άλλα Δέντρα: Β-δένδρα, Β+-δέντρα,