Κεφάλαιο 1. Εισαγωγή: Κάποια Αντιπροσωπευτικά Προβλήµατα. Έκδοση 1.3, 29/02/2012. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 1. Εισαγωγή: Κάποια Αντιπροσωπευτικά Προβλήµατα. Έκδοση 1.3, 29/02/2012. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne."

Transcript

1 Κεφάλαιο 1 Εισαγωγή: Κάποια Αντιπροσωπευτικά Προβλήµατα Έκδοση 1.3, 29/02/2012 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1

2 1.1 Ένα πρώτο πρόβληµα: Ευσταθές Ταίριασµα

3 Ταίριασµα Γιατρών µε Νοσοκοµεία Στόχος. Δεδοµένου ενός συνόλου προτιµήσεων µεταξύ νοσοκοµείων και νέων γιατρών, να σχεδιάσουµε µία αυτοεπιβαλλόµενη (self-reinforcing) διαδικασία προσλήψεων. Ασταθές ζευγάρι: το ζευγάρι υποψήφιος x και νοσοκοµείο y είναι ασταθές εάν: ο x προτιµάει το y σε σχέση µε το νοσοκοµείο στο οποίο έχει προσληφθεί. το y προτιµάει τον x σε σχέση µε κάποιον από τους υποψηφίους που έχει επιλέξει. Ευσταθής ανάθεση. Ανάθεση που δεν περιλαµβάνει ασταθή ζευγάρια. Είναι µια φυσική και λογική απαίτηση. Η επιθυµία/προτίµηση κάθε οντότητας (υποψήφιος ή νοσοκοµείο) να κρατήσει την τρέχουσα επιλογή του θα εµποδίσει οποιαδήποτε αλλαγή στην τρέχουσα ανάθεση. 3

4 το πρόβληµα του ευσταθούς ταιριάσµατος Σκοπός. Δίνονται n άντρες και n γυναίκες και ζητείται ένα κατάλληλο" ταίριασµα. Κάθε άτοµο βαθµολογεί τα άτοµα του αντίθετου φύλου. Κάθε άντρας απαριθµεί τις γυναίκες σε φθίνουσα σειρά προτίµησης. Κάθε γυναίκα απαριθµεί τους άντρες σε φθίνουσα σειρά προτίµησης. 1η προτίµηση 3η προτίµηση 1η προτίµηση 3η προτίµηση 1 st 2 nd 3 rd Φώτης Άννα Βίκυ Γιώτα Χάρης Βίκυ Άννα Γιώτα Τάκης Άννα Βίκυ Γιώτα προτιµήσεις των αντρών 1 st 2 nd 3 rd Άννα Χάρης Φώτης Τάκης Βίκυ Φώτης Χάρης Τάκης Γιώτα Φώτης Χάρης Τάκης προτιµήσεις των γυναικών 4

5 ευσταθές ταίριασµα τέλειο ταίριασµα: ο καθένα αντιστοιχίζεται µονογαµικά. Κάθε άντρας παίρνει ακριβώς µία γυναίκα. Κάθε γυναίκα παίρνει ακριβώς έναν άντρα. ευστάθεια: δεν υπάρχει ζευγάρι µε κίνητρο να υπονοµεύσει την αντιστοίχιση µε συνδυασµένη ενέργεια. Σε ταίριασµα M, ένα ζευγάρι m-w που δεν έχει συνδεθεί είναι ασταθές εάν ο άντρας m και η γυναίκα w προτιµούν ο ένας τον άλλο σε σχέση µε τους τρέχοντες συντρόφους τους. Οι m και w από το ασταθές ζευγάρι m-w θα ωφεληθούν αµοιβαία εάν κλεφτούν. ευσταθές ταίριασµα: ένα τέλειο ταίριασµα χωρίς ασταθή ζευγάρια. το πρόβληµα του ευσταθούς ταιριάσµατος: δεδοµένων των προτιµήσεων n αντρών και n γυναικών, να βρεθεί ένα σταθερό ταίριασµα, εάν υπάρχει. 5

6 ευσταθές ταίριασµα Ερώτηση. Είναι το ταίριασµα Φ-Γ, Χ-B, Τ-A ευσταθές; 1η προτίµηση 3η προτίµηση 1η προτίµηση 3η προτίµηση 1 st 2 nd 3 rd Φώτης Άννα Βίκυ Γιώτα Χάρης Βίκυ Άννα Γιώτα Τάκης Άννα Βίκυ Γιώτα προτιµήσεις των αντρών 1 st 2 nd 3 rd Άννα Χάρης Φώτης Τάκης Βίκυ Φώτης Χάρης Τάκης Γιώτα Φώτης Χάρης Τάκης προτιµήσεις των γυναικών 6

7 ευσταθές ταίριασµα Ε. Είναι το ταίριασµα Φ-Γ, Χ-B, Τ-A ευσταθές; A. Όχι. Η Βίκυ και ο Φώτης θα τα φτιάξουν. 1η προτίµηση 3η προτίµηση 1η προτίµηση 3η προτίµηση 1 st 2 nd 3 rd 1 st 2 nd 3 rd Φώτης Άννα Βίκυ Γιώτα Χάρης Βίκυ Άννα Γιώτα Τάκης Άννα Βίκυ Γιώτα προτιµήσεις των αντρών Άννα Χάρης Φώτης Τάκης Βίκυ Φώτης Χάρης Τάκης Γιώτα Φώτης Χάρης Τάκης προτιµήσεις των γυναικών 7

8 ευσταθές ταίριασµα Ε. Είναι το ταίριασµα Φ-A, Χ-B, Τ-Γ ευσταθές; A. Ναι. 1η προτίµηση 3η προτίµηση 1η προτίµηση 3η προτίµηση 1 st 2 nd 3 rd 1 st 2 nd 3 rd Φώτης Άννα Βίκυ Γιώτα Χάρης Βίκυ Άννα Γιώτα Τάκης Άννα Βίκυ Γιώτα προτιµήσεις των αντρών Άννα Χάρης Φώτης Τάκης Βίκυ Φώτης Χάρης Τάκης Γιώτα Φώτης Χάρης Τάκης προτιµήσεις των γυναικών 8

9 το πρόβληµα του ευσταθούς συγκατοίκου Ε. Υπάρχουν πάντοτε ευσταθή ταιριάσµατα; A. Η απάντηση δεν είναι προφανής. πρόβληµα ευσταθούς συγκατοίκου. 2n άτοµα, και κάθε άτοµο απαριθµεί τους υπόλοιπους σε φθίνουσα σειρά προτίµησης από το 1 έως το 2n-1. να αναθέσουµε συγκατοίκους ώστε να µην υπάρχουν ασταθή ζευγάρια. 1 st 2 nd 3 rd Σε ορολογία θεωρίας παιγνίων: είναι ο πυρήνας (core) του συνεργατικού παιγνίου µη-κενός; Αδάµ Βασίλης Γιώργος Β Γ A Γ A Β Δ Δ Δ A-B, Γ-Δ A-Γ, B-Δ A-Δ, B-Γ B-Γ ασταθές A-B ασταθές A-Γ ασταθές Δηµήτρης A Β Γ Παρατήρηση. Ευσταθή ταιριάσµατα µπορεί να µην υπάρχουν πάντοτε για το πρόβληµα του ευσταθούς συγκατοίκου. 9

10 Αλγόριθµος Propose-And-Reject Αλγόριθµος Propose-and-Reject. [Gale-Shapley 1962] Μια µέθοδος που βρίσκει ένα ευσταθές ταίριασµα. Αρχικά όλα τα άτοµα είναι ελεύθερα. while (κάποιος άνδρας είναι ελεύθερος και υπάρχει γυναίκα στην οποία δεν έχει προτείνει) { Επέλεξε έναν τέτοιο άνδρα w = 1 η στη λίστα του m, από όσες δεν έχει προτείνει ακόµα if (w είναι ελεύθερη) αρραβωνιάζονται οι m και w else if (w προτιµάει m από τον τωρινό αρραβωνιαστικό της m') αρραβωνιάζονται οι m και w, και ο m' µένει ελεύθερος else w απορρίπτει την πρόταση του m } 10

11 απόδειξη ορθότητας: Τερµατισµός Παρατήρηση 1. Οι άντρες κάνουν προτάσεις στις γυναίκες σε φθίνουσα σειρά προτίµησης. Παρατήρηση 2. Αφότου αρραβωνιαστεί πρώτη φορά µια γυναίκα δεν µένει ξανά µόνη. Μπορεί απλά να αντικαθιστά τον αρραβώνα της µε αρραβώνα µεγαλύτερης προτίµησης. Ισχυρισµός. Ο αλγόριθµος τερµατίζει µετά από το πολύ n 2 επαναλήψεις του βρόχου while. Απ. Με κάθε εκτέλεση του βρόχου while ένας άντρας κάνει πρόταση σε µία γυναίκα. Υπάρχουν n 2 πιθανές προτάσεις. Ισχυρισµός. Στο παρακάτω παράδειγµα οι προτιµήσεις έχουν επιλεγεί έτσι ώστε ο αλγόριθµος Gale-Shapley να εκτελέσει πολλές φορές το βρόχο while (εάν κάνουν προτάσεις οι άντρες). 1 st 2 nd 3 rd 4 th 5 th 1 st 2 nd 3 rd 4 th 5 th Κώστας A B Γ Δ E Άννα Η Φ Χ Τ Κ Ηλίας B Γ Δ A E Βίκυ Φ Χ Τ Κ Η Φώτης Γ Δ A B E Γιώτα Χ Τ Κ Η Φ Χάρης Δ A B Γ E Δανάη Τ Κ Η Φ Χ Τάκης A B Γ Δ E Ελένη Κ Η Φ Χ Τ απαιτούνται n(n-1) + 1 προτάσεις 11

12 απόδειξη ορθότητας: τέλειο ταίριασµα Ισχυρισµός. Όλοι οι άντρες και όλες οι γυναίκες αποκτούν ταίρι. Pf. (απαγωγή σε άτοπο) Υποθέτουµε, για την απαγωγή σε άτοπο, ότι ο Τάκης δεν έχει ταίρι όταν τερµατίσει ο αλγόριθµος. Αυτό σηµαίνει ότι θα υπάρχει κάποια γυναίκα, πχ. η Άννα που επίσης δε θα έχει ταίρι όταν τερµατίσει ο αλγόριθµος. Από την παρατήρηση 2, η Άννα δεν έχει δεχθεί καµία πρόταση. Όµως, ο Τάκης έχει προτείνει σε όλες, εφόσον καταλήγει να είναι χωρίς ταίρι. 12

13 απόδειξη ορθότητας: ευστάθεια Ισχυρισµός. Δεν υπάρχουν ασταθή ζευγάρια. Απόδειξη. (απαγωγή σε άτοπο) Έστω ότι σε ένα ταίριασµα S* που υπολογίστηκε µε τον αλγόρθµο Gale- Shapley υπάρχουν δύο ασταθή ζευγάρια m-w και m -w για τα οποία ισχύει: Ο m προτιµά την w από την w και η w προτιµά τον m από τον m. Περίπτωση 1: Ο m δεν πρότεινε στην w. Ο m προτιµάει την w του έναντι της w. το m-w είναι ευσταθές. οι άντρες κάνουν προτάσεις σε φθίνουσα σειρά προτίµησης S* Άννα-Χάρης Βίκυ-Τάκης... Περίπτωση 2: Ο m έκανε πρόταση στην w. η w απέρριψε τον m (άµεσα ή µετά από λίγο) η w προτιµάει το m της έναντι του m. το m -w είναι ευσταθές. οι γυναίκες µόνο βελτιώνουν τον αρραβώνα τους Σε κάθε περίπτωση λοιπόν, το m-w είναι ευσταθές άτοπο. 13

14 σύνοψη Πρόβληµα ευσταθούς ταιριάσµατος. Δίνονται n άντρες και n γυναίκες και οι προτιµήσεις τους και ζητείται να βρεθεί ένα ευσταθές ταίριασµα, εάν υπάρχει. Αλγόριθµος Gale-Shapley. Εγγυάται την εύρεση ευσταθούς ταιριάσµατος για κάθε στιγµιότυπο του προβλήµατος. Ερώτηµα. Πως θα υλοποιήσουµε τον αλγόριθµο GS αποδοτικά; Ερώτηµα. Εάν υπάρχουν περισσότερα του ενός ευσταθή ταιριάσµατα, ποιο θα βρει ο αλγόριθµος GS; 14

15 αποδοτική υλοποίηση αποδοτική υλοποίηση. Θα περιγράψουµε µια υλοποίηση µε πολυπλοκότητα χρόνου O(n 2 ). Αναπαράσταση αντρών και γυναικών. Ας ονοµάσουµε τους άντρες 1,, n. Ας ονοµάσουµε τις γυναίκες 1',, n'. Αρραβώνες. Διατηρούµε µια λίστα ελεύθερων αντρών, πχ., δε µια ουρά (queue). Διατηρούµε δύο πίνακες wife[m], and husband[w]. δίνουµε σε ένα κελί στην τιµή 0 εάν το αντίστοιχο άτοµο είναι ελεύθερο εάν ο m αρραβωνιαστεί µε την w τότε wife[m]=w και husband[w]=m Οι άντρες κάνουν προτάσεις. Για κάθε άντρα, διατηρούµε µια λίστα γυναικών, διατεταγµένη µε βάση τις προτιµήσεις του. Διατηρούµε έναν πίνακα count[m] που καταγράφει το πλήθος των προτάσεων που έκανε κάθε άντρας m. 15

16 αποδοτική υλοποίηση Οι γυναίκες αποδέχονται/απορρίπτουν. Προτιµάει η γυναίκα w τον άντρα m από τον άντρα m'? Για κάθε γυναίκα, δηµιουργούµε µια αντίστροφη λίστα προτιµήσεων µε τους άντρες. Απαιτείται O(n) χρόνος προ-επεξεργασίας για την αντιστροφή. Μετά µπορούµε να αποφασίσουµε σε σταθερό χρόνο (constant time) εάν µια γυναίκα προτιµάει έναν άντρα έναντι ενός άλλου. Amy 1 st 2 nd 3 rd 4 th 5 th 6 th 7 th 8 th Pref Amy Inverse 4 th 8 th 2 nd 5 th 6 th 7 th 3 rd 1 st for i = 1 to n inverse[pref[i]] = i Η Άννα προτιµάει τον άντρα 3 από τον άντρα 6, εφόσον inverse[3] < inverse[6]

17 κατανόηση της λύσης Ερώτηµα. Για συγκεκριµένο στιγµιότυπο του προβλήµατος ενδέχεται να υπάρχουν περισσότερα του ενός ευσταθή ταιριάσµατα. Κάθε εκτέλεση του αλγορίθµου Gale-Shapley δίνει το ίδιο ευσταθές ταίριασµα (εάν για παράδειγµα εξετάσουµε τους άντρες µε διαφορετική σειρά); Εάν ναι, τότε ποιο είναι αυτό το ευσταθές ταίριασµα; Ένα στιγµιότυπο µε δύο ευσταθή ταιριάσµατα. A-Φ, B-Χ, C-Τ. A-Χ, B-Φ, C-Τ. 1 st 2 nd 3 rd 1 st 2 nd 3 rd Φώτης A B Γ Άννα Χ Φ Τ Χάρης B A Γ Βίκυ Φ Χ Τ Τάκης A B Γ Γιώτα Φ Χ Τ 17

18 κατανόηση της λύσης Ερώτηµα. Για δεδοµένο στιγµιότυπο του προβλήµατος, µπορεί να υπάρχουν αρκετά ευσταθή ταιριάσµατα. Όλες οι εκτελέσεις του αλγορίθµου Gale- Shapley δίνουν το ίδιο ευσταθές ταίριασµα; Αν ναι, τότε ποιο είναι αυτό το ευσταθές ταίριασµα? Ορισµός. Ο άντρας m είναι ένας έγκυρος σύντροφος της γυναίκας w εάν υπάρχει κάποιο ευσταθές ταίριασµα στο οποίο ο m και η w είναι ζευγάρι. Ανάθεση βέλτιστη για τους άντρες. Κάθε άντρας γίνεται ζευγάρι µε την καλύτερη (υψηλότερη στις προτιµήσεις του) από τις έγκυρες συντρόφους του. Ισχυρισµός. Όλες οι εκτελέσεις του αλγορίθµου GS δίνουν ανάθεση βέλτιστη για τους άντρες, η οποία είναι ένα ευσταθές ταίριασµα! Είναι µάλλον µη αναµενόµενο ότι η ανάθεση που βέλτιστη για τους άντρες είναι τέλεια (όλοι οι άντρες έχουν ταίρι), πολύ περισσότερο δε ότι είναι και ευσταθής (ή µήπως είναι αναµενόµενο αυτό;). Ταυτόχρονα βέλτιστη για κάθε έναν και για όλους τους άντρες. 18

19 βέλτιστο για τους άντρες Ισχυρισµός. Το ταίριασµα S* του αλγορίθµου GS είναι βέλτιστο για τους άντρες. Απόδειξη. (µε απαγωγή σε άτοπο) Έστω ότι στο ευσταθές ταίριασµα S* που υπολογίστηκε µε τον αλγόριθµο GS υπάρχουν ένας ή περισσότεροι άντρες που δεν έχουν γίνει ζευγάρι µε τη βέλτιστη σύντροφό τους. Όλοι οι άντρες κάνουν προτάσεις σε φθίνουσα κάποιος άντρας απορρίπτεται από µία έγκυρη σύντροφό του κατά την εκτέλεση του αλγορίθµου GS. Έστω ότι m είναι ο πρώτος άντρας που απορρίφθηκε από άλλη έγκυρη σύντροφό του (η οποία υποχρεωτικά θα είναι υψηλότερης προτίµησης για τον m). Έστω w η πρώτη έγκυρη σύντροφος του m που τον απέρριψε. S Έστω ότι στο S* όταν η w απορρίπτει τον m, Άννα-Χάρης συνάπτει δεσµό ή διατηρεί δεσµό µε έναν άντρα, έστω m, τον οποίο προτιµάει έναντι του m. Βίκυ-Τάκης Δηλαδή: Στο S* η w απέρριψε τον m και είναι µε τον m τον οποίο προτιµάει έναντι του m... 19

20 βέλτιστο για τους άντρες (συνέχεια) Ισχυρισµός. Το ταίριασµα S* του αλγορίθµου GS είναι βέλτιστο για τους άντρες. Απόδειξη. (µε απαγωγή σε άτοπο) Έχουµε µείνει στο ότι: Στο S* η w απέρριψε τον m και είναι µε τον m τον οποίο προτιµάει έναντι του m Εφόσον w είναι έγκυρη σύντροφος του m θα υπάρχει ευσταθές ταίριασµα S όπου m και w είναι ζευγάρι. Στο S ο m υποχρεωτικά θα έχει άλλο ταίρι, έστω την w. Ο m δεν έχει απορριφθεί από έγκυρη σύντροφο όταν ο m δέχεται την απόρριψη από την w. Εποµένως ο m προτιµάει την w έναντι της w. Όµως η w προτιµάει τον m από τον m. Εποµένως το m -w είναι ένα ασταθές ζεύγος στο S. Άρα το S δεν είναι ευσταθές ταίριασµα -> άτοπο. εφόσον αυτή είναι η πρώτη απόρριψη από έγκυρη σύντροφο στην εκτέλεση του αλγορίθµου S Άννα-Χάρης Βίκυ-Τάκης... 20

21 σύνοψη ευσταθούς ταιριάσµατος Πρόβληµα ευσταθούς ταιριάσµατος. Δεδοµένων των προτιµήσεων n αντρών και n γυναικών, να βρεθεί ένα ευσταθές ταίριασµα. δεν υπάρχει άντρας και γυναίκα, που δεν είναι ζευγάρι, αλλά προτιµούν ο ένας τον άλλο περισσότερο από ότι τον τρέχοντα σύντροφό τους Αλγόριθµος Gale-Shapley. Βρίσκει ένα ευσταθές ταίριασµα σε χρόνο O(n 2 ). Βέλτιστο για άντρες. Όταν οι άντρες είναι αυτοί που κάνουν τις προτάσεις στον αλγόριθµο GS, κάθε άντρας αντιστοιχίζεται µε τη βέλτιστη έγκυρη σύντροφο. η w είναι έγκυρη σύντροφος του m εάν υπάρχει κάποιο ευσταθές ταίριασµα όπου ο m και η w είναι ζευγάρι Ερώτηµα. Η ιδιότητα του βέλτιστου για τους άντρες ισχύει σε βάρος των γυναικών; 21

22 Χείριστο για τις Γυναίκες Χείριστη ανάθεση για γυναίκες. Κάθε γυναίκα αντιστοιχίζεται µε τον χειρότερο από τους έγκυρους συντρόφους της. Ισχυρισµός. Ο αλγόριθµος GS βρίσκει ένα χείριστο για τις γυναίκες ευσταθές ταίριασµα S*. Απόδειξη. Έστω ότι m-w είναι ζευγάρι στο S*, και ότι ο m δεν είναι ο χειρότερος έγκυρος σύντροφος για την w. Υπάρχει ευσταθές ταίριασµα S στο οποίο η w αντιστοιχίζεται µε έναν άντρα, έστω m, τον οποίο προτιµάει λιγότερο από τον m. Έστω w η σύντροφος του m στο S. Ο m προτιµάει την w έναντι της w. ισχύει η βέλτιστη ανάθεση για τους άντρες στο S* Εποµένως, στο S οι m και w θα προτιµούσαν να είναι ζευγάρι και εποµένως m-w είναι ένα ασταθές ζεύγος στο S. S Άννα-Χάρης Βίκυ-Τάκης... 22

23 Επεκτάσεις: Αντιστοίχιση Γιατρών σε Νοσοκοµεία Αντιστοιχία: άντρες νοσοκοµεία, γυναίκες γιατροί. Παραλλαγή 1. Κάποιοι συµµετέχοντες δηλώνουν κάποιες αναθέσεις ως µη αποδεκτές. πχ. η γιατρός Α δεν δέχεται να εργαστεί στην Αθήνα Παραλλαγή 2. Το πλήθος των αντρών και γυναικών δεν είναι το ίδιο. Παραλλαγή 3. Περιορισµένη πολυγαµία. Ορισµός. Το ταίριασµα S είναι ασταθές εάν υπάρχει νοσοκοµείο h και γιατρός r τέτοια ώστε: το νοσοκοµείο X επιθυµεί να προσλάβει 3 γιατρούς h και r είναι αµοιβαία αποδεκτά, και είτε ο r είναι χωρίς αντιστοίχιση, είτε ο r προτιµάει το h έναντι του τρέχοντος νοσοκοµείου του, και είτε το h δεν έχει καλύψει όλες τις θέσεις του, είτε ο h προτιµάει τον r σε σχέση µε έναν τουλάχιστον από τους γιατρούς που του ανατέθηκαν. 23

24 Εφαρµογή: Ανάθεση γιατρών σε νοσοκοµεία Πρόγραµµα NRMP. (National Resident Matching Program) Χρησιµοποιήθηκε αµέσως µετά το Δεύτερο Παγκόσµιο πόλεµο. Μέσα Μαρτίου, 23,000+ γιατροί. Το δίληµµα του Αποµακρυσµένου Νοσοκοµείου. Ορισµένα νοσοκοµεία (κυρίως σε αγροτικές/αποµακρυσµένες περιοχές) δεν ήταν δηµοφιλή και πολλοί γιατροί δήλωναν ότι δεν αποδέχονταν να πάνε σε αυτά. προτού διαδοθεί η χρήση των υπολογιστών Τα αποµακρυσµένα νοσοκοµεία δεν κάλυπταν τις θέσεις τους στο πρόγραµµα ταιριάσµατος NRMP. Πως µπορούµε να βρούµε ένα ευσταθές ταίριασµα που ευνοεί τα αποµακρυσµένα νοσοκοµεία? Θεώρηµα Αποµακρυσµένων Νοσοκοµείων (Rural Hospital Theorem). Τα αποµακρυσµένα νοσοκοµεία παίρνουν ακριβώς το ίδιο σύνολο γιατρών σε κάθε ευσταθές ταίριασµα! 24

25 Απάτη: Κίνητρο για ψευδείς δηλώσεις στον αλγόριθµο Gale-Shapley Ερώτηση. Μπορεί να υπάρχει κίνητρο να δηλώσει ένα άτοµο ψευδή στοιχεία για τις προτιµήσεις του/της στον αλγόριθµο Gale-Shapley; Υποθέτουµε ότι γνωρίζουµε ότι θα εκτελεστεί ο αλγόριθµος Gale-Shapley µε τις προτάσεις να γίνονται από τους άντρες. Υποθέτουµε ότι γνωρίζουµε τις προτιµήσεις όλων των υπολοίπων ατόµων. Απάντηση. Όχι, για όλους τους άντρες. Ναι, για ορισµένες γυναίκες. Κανένας µηχανισµός (mechanism) δεν µπορεί να εγγυηθεί ένα ευσταθές ταίριασµα και ταυτόχρονα να εξαλείψει κάθε κίνητρο για ψευδείς δηλώσεις. 1 st 2 nd 3 rd Φώτης 1 st A 2 nd B Γ 3 rd πραγµατικές προτιµήσεις των γυναικών Άννα Βίκυ Γιώτα Χ Φ Φ Φ Χ Χ Τ Τ Τ Χάρης B A Γ Τάκης A B προτιµήσεις των αντρών Γ η Άννα λέει ψέµατα Άννα Βίκυ 1 st 2 nd 3 rd Χ Τ Φ Φ Χ Τ Γιώτα Φ Χ Τ 25

26 1.2 Πέντε Αντιπροσωπευτικά Προβλήµατα

27 1. Χρονοπρογραµµατισµός Διαστηµάτων (Interval Scheduling) Είσοδος. Ένα σύνολο εργασιών (jobs) µα χρόνους εκκίνησης και χρόνους τερµατισµού. Σκοπός. Να βρεθεί µέγιστο υποσύνολο εργασιών που είναι συµβατές µεταξύ τους. συµβατές εργασίες: εργασίες που δεν επικαλύπτονται a b c d e f g h Χρόνος 27

28 Χρονοπρογραµµατισµός Διαστηµάτων (Interval Scheduling) Πολυπλοκότητα: Το πρόβληµα ανήκει στην κλάση P των προβληµάτων που επιτρέπουν λύση σε πολυωνυµικό χρόνο (polynomial time). Μία λύση: Όπως θα δούµε σε παρακάτω µάθηµα µπορεί να επιλυθεί µε έναν «άπληστο» (greedy) αλγόριθµο. Η χρήση απληστίας είναι µια αλγοριθµική τεχνική. 28

29 2. Σταθµισµένος χρονοπρογραµµατισµός διαστηµάτων (weighted interval scheduling) Είσοδος. Ένα σύνολο εργασιών µε χρόνους εκκίνησης, χρόνους τερµατισµού και βάρη. Σκοπός. Να βρεθεί υποσύνολο µεγίστου βάρους µε εργασίες που είναι συµβατές µεταξύ τους Χρόνος 29

30 Σταθµισµένος χρονοπρογραµµατισµός διαστηµάτων (weighted interval scheduling) Πολυπλοκότητα: Είναι πιο απαιτητικό πρόβληµα από τον απλό χρονοπρογραµµατισµό διαστηµάτων, όµως ανήκει και αυτό στην κλάση P (επιλύεται σε πολυωνυµικό χρόνο). Μία λύση: Με χρήση της αλγοριθµικής τεχνικής του δυναµικού προγραµµατισµού (dynamic programming) 30

31 3. Διµερές ταίριασµα (bipartite matching) Είσοδος. Διµερές γράφηµα. Σκοπός. Να βρεθεί ταίριασµα µε µέγιστο πλήθος ακµών. A 1 B 2 C 3 D 4 E 5 31

32 Διµερές ταίριασµα (bipartite matching) Πολυπλοκότητα: Ανήκει στην κλάση P (επιλύεται σε πολυωνυµικό χρόνο). Μια λύση: Με χρήση της αλγοριθµικής τεχνικής της επαύξησης (augmentation). Σταδιακά υπολογίζεται ένα όλο και µεγαλύτερο ταίριασµα οπισθοδροµώντας (backtracking) επιλεκτικά. 32

33 4. Ανεξάρτητο σύνολο (independent set) Είσοδος. Γράφηµα. Σκοπός. Να βρεθεί ανεξάρτητο σύνολο µε το µέγιστο πλήθος κορυφών. ανεξάρτητο σύνολο: υποσύνολο κορυφών τέτοιο ώστε δεν υπάρχει ακµή µεταξύ των κορυφών αυτών

34 Ανεξάρτητο σύνολο (independent set) Το πρόβληµα του ανεξάρτητου συνόλου: Ίσως δεν του φαίνεται µε την πρώτη µατιά, είναι όµως ένα πολύ γενικό πρόβληµα. Ο χρονοπρογραµµατισµός διαστηµάτων και το διµερές ταίριασµα µπορούν να κωδικοποιηθούν ως ειδικές περιπτώσεις του προβλήµατος του ανεξαρτήτου συνόλου. Αυτό σηµαίνει ότι ένας αλγόριθµος για το ανεξάρτητο σύνολο θα µπορούσε να επιλύσει τον χρονοπρογραµµατισµό διαστηµάτων, και το διµερές ταίριασµα. Αναγωγές: Ένας αλγόριθµος για το ανεξάρτητο σύνολο µπορεί να λύσει και το πρόβληµα του χρονοπρογραµµατισµού διαστηµάτων. Επίσης, ο ίδιος αλγόριθµος µπορεί να λύσει το πρόβληµα του διµερούς ταιριάσµατος. 34

35 Ανεξάρτητο σύνολο (independent set) Πολυπλοκότητα. Το πρόβληµα του ανεξαρτήτου συνόλου θεωρείται ότι δεν ανήκει στην κλάση P. Είναι γνωστό ότι είναι πλήρες για την κλάση NP (non-deterministic polynomial). Λύση. Δεν είναι γνωστός κάποιος πολυωνυµικός αλγόριθµος για την επίλυση του προβλήµατος. Εάν όµως µας δοθεί µια έτοιµη λύση, µπορούµε σε πολυωνυµικό χρόνο να επιβεβαιώσουµε την ορθότητα της λύσης. Παράδειγµα: Για ένα γράφηµα µε 1000 κόµβους θέλουµε να βρούµε εάν υπάρχει ανεξάρτητο σύνολο µεγέθους 100. Εύρεση ανεξάρτητου συνόλου: Δεν γνωρίζουµε αλγόριθµο πολυωνυµικού χρόνου που µπορεί να το κάνει αυτό. Επιβεβαίωση: Εάν όµως µας δοθεί ένα τέτοιο ανεξάρτητο σύνολο τότε µπορούµε σε πολυωνυµικό χρόνο να επιβεβαιώσουµε ότι πράγµατι είναι ένα τέτοιο ανεξάρτητο σύνολο. Παρατήρηση: Ίσως το θέµα της αποδοτικής επιβεβαίωσης να µοιάζει µικρής σηµασίας. Θα δούµε όµως (ξεκινώντας από το επόµενο πρόβληµα) ότι είναι ένα πολύ σηµαντικό κριτήριο. 35

36 5. Ανταγωνιστική χωροθέτηση υπηρεσιών (competitive facility location) Είσοδος. Γράφηµα µε βάρος σε κάθε κόµβο. Παίγνιο. Δύο παίκτες επιλέγουν κόµβους εναλλάξ. Δεν επιτρέπεται η επιλογή ενός κόµβου εάν έχει ήδη επιλεγεί κάποιος από τους γείτονές του. Σκοπός. Να επιλεγεί ένα υποσύνολο κόµβων µεγίστου βάρους Ο δεύτερος παίκτης µπορεί να εγγυηθεί συνολικό βάρος 20, όχι όµως

37 Ανταγωνιστική χωροθέτηση υπηρεσιών (competitive facility location) Πολυπλοκότητα. Φαίνεται να είναι µην ανήκει στην κλάση P αλλά ούτε και στην κλάση NP. Είναι πλήρες για την κλάση PSPACE. Επιβεβαίωση. Για συγκεκριµένο στιγµιότυπο του προβλήµατος µπορούµε να δείξουµε ότι ο παίκτης µπορεί πάντοτε να πετύχει πχ. σκορ τουλάχιστον 25; Εάν θεωρήσουµε ότι κάποιος γνωρίζει την απάντηση, µπορεί να µας πείσει και εµάς; Αρκετά επιτραπέζια παιχνίδια στρατηγικής είναι πλήρη για την κλάση PSPACE και εποµένως δεν γνωρίζουµε κάποιον αποδοτικό αλγόριθµο για την βέλτιστη επίλυσή τους. 37

38 Πέντε Αντιπροσωπευτικά Προβλήµατα 1. Χρονοπρογραµµατισµός διαστηµάτων: n log n άπληστος (greedy) αλγόριθµος. 2. Σταθµισµένος χρονοπρογραµµατισµός διαστηµάτων: n log n αλγόριθµος µε δυναµικό προγραµµατισµό A 1 3. Διµερές ταίριασµα: n k αλγόριθµος βασισµένος αλγόριθµο µέγιστης ροής. B 2 C 3 D 4 E 5 4. Ανεξάρτητο σύνολο: NP-πλήρης (NP-complete) Ανταγωνιστική χωροθέτηση εργασιών: PSPACE-πλήρης (PSPACEcomplete)

39 Επιπλέον Διαφάνειες

40 Πρόβληµα Ευσταθούς Ταιριάσµατος Σκοπός: Δεδοµένων n αντρών και n γυναικών, να βρεθεί ένα κατάλληλο ταίριασµα. Κάθε άτοµο ταξινοµεί τα άτοµα του αντίθετου φύλου. Κάθε άντρας δίνει λίστα µε τις γυναίκες σε σειρά προτεραιότητας από την πρώτη προτίµησή του προς την τελευταία. Κάθε γυναίκα δίνει λίστα µε τους άντρες σε σειρά προτεραιότητας από την πρώτη προτίµησή της προς τον τελευταία. πρώτη προτίµηση τελευταία προτίµηση 1 st 2 nd 3 rd 4 th 5 th Κώστας Βίκυ Άννα Δανάη Ελένη Clare Ηλίας Δανάη Βίκυ Άννα Clare Ελένη Φώτης Βίκυ Ελένη Clare Δανάη Άννα Χάρης Άννα Δανάη Clare Βίκυ Ελένη Τάκης Βίκυ Δανάη Άννα Ελένη Clare προτιµήσεις των αντρών 40

41 Πρόβληµα Ευσταθούς Ταιριάσµατος Σκοπός: Δεδοµένων n αντρών και n γυναικών, να βρεθεί ένα κατάλληλο ταίριασµα. Κάθε άτοµο ταξινοµεί τα άτοµα του αντίθετου φύλου. Κάθε άντρας δίνει λίστα µε τις γυναίκες σε σειρά προτεραιότητας από την πρώτη προτίµησή του προς την τελευταία. Κάθε γυναίκα δίνει λίστα µε τους άντρες σε σειρά προτεραιότητας από την πρώτη προτίµησή της προς τον τελευταία. πρώτη προτίµηση τελευταία προτίµηση 1 st 2 nd 3 rd 4 th 5 th Άννα Τάκης Ηλίας Wyatt Χάρης Φώτης Βίκυ Φώτης Wyatt Χάρης Ηλίας Τάκης Γιώτα Wyatt Φώτης Χάρης Τάκης Ηλίας Δανάη Ηλίας Τάκης Χάρης Φώτης Wyatt Ελένη Χάρης Wyatt Τάκης Φώτης Ηλίας προτιµήσεις των γυναικών 41

42 κατανόηση της λύσης Ισχυρισµός. Το ευσταθές ταίριασµα που είναι βέλτιστο για τους άντρες είναι ασθενώς Pareto βέλτιστο (weakly Pareto optimal). Απόδειξη. Δεν υπάρχει άλλο τέλειο ταίριασµα (είτε ευσταθές είτε ασταθές) όπου κάθε άντρας αντιστοιχίζεται σε αυστηρά υψηλότερη προτίµησή του Έστω Α η τελευταία γυναίκα σε κάποια εκτέλεση του αλγορίθµου GS που δέχεται µια πρόταση. Κανένας άντρας δεν έχει απορριφθεί από την Α, εφόσον ο αλγόριθµος τερµατίζει όταν η τελευταία γυναίκα δέχεται την πρώτη πρόταση. Κανένας άντρας που αντιστοιχίζεται µε την Α δεν µπορεί να είναι σε καλύτερη αντιστοίχιση από ότι στο βέλτιστο για τους άντρες ευσταθές ταίριασµα 42

43 πηγές/αναφορές Κεφάλαιο 1, Σχεδίαση Αλγορίθµων, J. Kleinberg and E. Tardos, Ελληνική έκδοση από τις Εκδ. Κλειδάριθµος 43

1.1 Ένα πρώτο πρόβληµα: Ευσταθές Ταίριασµα

1.1 Ένα πρώτο πρόβληµα: Ευσταθές Ταίριασµα Κεφάλαιο 1 Εισαγωγή: Κάποια Αντιπροσωπευτικά Προβλήµατα Βασισµένο στις αγγλικές διαφάνειες του Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 1.1 Ένα πρώτο πρόβληµα: Ευσταθές

Διαβάστε περισσότερα

Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 4η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ευσταθές Ταίριασμα Πρόβλημα Ευσταθούς Ταιριάσματος

Διαβάστε περισσότερα

Ευσταθές ταίριασμα. (υλικό βασισμένο στο βιβλίο. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Ευσταθές ταίριασμα. (υλικό βασισμένο στο βιβλίο. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Ευσταθές ταίριασμα (υλικό βασισμένο στο βιβλίο των Kleinberg Tardos) Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Ανάθεση Ειδικευόμενων Ιατρών σε Νοσοκομεία Πρόβλημα.

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 4η

Εισαγωγή στους Αλγορίθμους Ενότητα 4η Εισαγωγή στους Αλγορίθμους Ενότητα 4η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1, Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα

Διαβάστε περισσότερα

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Jon Kleinberg και Éva Tardos, Σχεδιασμός αλγορίθμων, Εκδόσεις Κλειδάριθμος,

Διαβάστε περισσότερα

Stable Matching. Παύλος Εφραιμίδης, Λέκτορας

Stable Matching. Παύλος Εφραιμίδης, Λέκτορας Stable Matching Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr 1 Ιστορία... Το 1962 οι Gale και Shapley δύο οικονομολόγοι μαθηματικοί (mathematical economists) έθεσαν το ερώτημα: Μπορούμε να σχεδιάσουμε

Διαβάστε περισσότερα

Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 4. Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 4 Άπληστοι Αλγόριθµοι (Greedy Algorithms) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 4.1 Χρονοπρογραµµατισµός Διαστηµάτων Χρονοπρογραµµατισµός Διαστηµάτων Το πρόβληµα.

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Βασικές Έννοιες Δοµών Δεδοµένων

Βασικές Έννοιες Δοµών Δεδοµένων Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Κεφάλαιο 4. Δυναµικός Προγραµµατισµός (Dynamic Programming) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 4. Δυναµικός Προγραµµατισµός (Dynamic Programming) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 4 Δυναµικός Προγραµµατισµός (Dynamic Programming) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Τεχνικές Σχεδίασης Αλγορίθµων Απληστία. Χτίζουµε µια λύση σταδιακά, βελτιστοποιώντας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών

ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Πέµπτη, 19/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι έχουµε δει µέχρι τώρα Κατευθυνόµενοι µη κατευθυνόµενοι

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91 Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 8η

Εισαγωγή στους Αλγορίθμους Ενότητα 8η Εισαγωγή στους Αλγορίθμους Ενότητα 8η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π

Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός συγκρίσεων π Περιορισμοί Αλγοριθμικής Ισχύος Κατηγοριοποίηση πολυπλοκοτήτων Κατώτερα φράγματα Κατώτερο φράγμα: εκτίμηση της ελάχιστης εργασίας που απαιτείται για την επίλυση ενός προβλήματος. Παραδείγματα: Αριθμός

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29

Διαβάστε περισσότερα

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του

Ταιριάσματα. Γράφημα. Ταίριασμα (matching) τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Ταιριάσματα Γράφημα Ταίριασμα (matching) Σύνολο ακμών τέτοιο ώστε κάθε κορυφή να εμφανίζεται σε το πολύ μια ακμή του Θέλουμε να βρούμε ένα μέγιστο ταίριασμα (δηλαδή με μέγιστο αριθμό ακμών) Ταιριάσματα

Διαβάστε περισσότερα

Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα

Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα Αλγόριθµοι Προσέγγισης για NP- ύσκολα Προβλήµατα Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 8η

Εισαγωγή στους Αλγορίθμους Ενότητα 8η Εισαγωγή στους Αλγορίθμους Ενότητα 8η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άπληστοι Αλγόριθμοι Χρονοπρογραμματισμός

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 9 P vs NP 1 / 13 Δυσκολία επίλυσης υπολογιστικών προβλημάτων Κάποια προβλήματα είναι εύκολα να λυθούν με

Διαβάστε περισσότερα

Κεφάλαιο 4. Αλγόριθµος του Dijkstra. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 4. Αλγόριθµος του Dijkstra. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο Αλγόριθµος του Dijkra Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. . Συντοµότερες Διαδροµές σε ένα Γράφηµα hore pah from Princeon CS deparmen o Einein' houe το πρόβληµα της

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ελάχιστα Γεννητικά Δένδρα Ελάχιστο Γεννητικό

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα

Υπολογιστική Πολυπλοκότητα

Υπολογιστική Πολυπλοκότητα Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθµου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση µεγέθους στιγµιότυπου εισόδου. Χρόνος, µνήµη, επεξεργαστές, επικοινωνία,

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

για NP-Δύσκολα Προβλήματα

για NP-Δύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 19/05/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/21/2015 1 1 5/21/2015 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα

Διαβάστε περισσότερα

Λίστα Λσ Προτίμησης Ανδρών. Έκτορας Βάσω Δήμητρα Άννα Ελένη Γεωργία. Βασίλης Δήμητρα Βάσω Άννα Γεωργία Ελένη Γιάννης Βάσω Ελένη Γεωργία Δήμητρα Άννα

Λίστα Λσ Προτίμησης Ανδρών. Έκτορας Βάσω Δήμητρα Άννα Ελένη Γεωργία. Βασίλης Δήμητρα Βάσω Άννα Γεωργία Ελένη Γιάννης Βάσω Ελένη Γεωργία Δήμητρα Άννα Βασίλης Βασίλης Γά Βασίλης Ανδρέας Βασίλης Βασίλης Βασίλης Ανδρέας Βασίλης Ο Ανδρέας κάνει πρόταση στην. Βασίλης Γά Βασίλης Ανδρέας Βασίλης Βασίλης Βασίλης Ανδρέας Βασίλης Βασίλης Γά Βασίλης Ανδρέας Βασίλης

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές

Αλγοριθμικές Τεχνικές Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος

Διαβάστε περισσότερα

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 4

Αλγόριθμοι Ταξινόμησης Μέρος 4 Αλγόριθμοι Ταξινόμησης Μέρος 4 Μανόλης Κουμπαράκης Δομές Δεδομένων και Τεχνικές 1 Μέθοδοι Ταξινόμησης Βασισμένοι σε Συγκρίσεις Κλειδιών Οι αλγόριθμοι ταξινόμησης που είδαμε μέχρι τώρα αποφασίζουν πώς να

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 5: ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ-ΑΝΑΓΩΓΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Διακριτά Μαθηματικά Τελική Εξέταση Απρίλιος 204 Σελ. από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

Χαροκόπειο Πανεπιστήμιο Τμήμα Πληροφορικής και Τηλεματικής. Διπλωματική εργασία. «Υλοποίηση αλγορίθμων βελτιστοποίησης ευσταθούς κατανομής»

Χαροκόπειο Πανεπιστήμιο Τμήμα Πληροφορικής και Τηλεματικής. Διπλωματική εργασία. «Υλοποίηση αλγορίθμων βελτιστοποίησης ευσταθούς κατανομής» Χαροκόπειο Πανεπιστήμιο Τμήμα Πληροφορικής και Τηλεματικής Διπλωματική εργασία «Υλοποίηση αλγορίθμων βελτιστοποίησης ευσταθούς κατανομής» Ευαγγελία Γιαννούση, itp13103 Επιβλέπων καθηγητής: Δρ. Παύλος Ειρηνάκης

Διαβάστε περισσότερα

Κλάση NP, NP-Complete Προβλήματα

Κλάση NP, NP-Complete Προβλήματα Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι

Διαβάστε περισσότερα

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο; Αποφασισιµότητα / Αναγνωρισιµότητα Ορέστης Τελέλης telelis@unipi.gr Μη Επιλύσιµα Προβλήµατα Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 2/12/2015 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/2015

Διαβάστε περισσότερα

Αξιολόγηση Ευριστικών Αλγορίθµων

Αξιολόγηση Ευριστικών Αλγορίθµων Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Προσεγγιστικοί Αλγόριθµοι Πολλές

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθµων. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 2. Βασικά στοιχεία ανάλυσης αλγορίθµων. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 2 Βασικά στοιχεία ανάλυσης αλγορίθµων Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 2.1 Υπολογιστική Επιλυσιµότητα "For me, great algorithms are the poetry of computation.

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K.

Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K. Δοµές Δεδοµένων 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης Βασίζεται στις διαφάνειες των R. Sedgewick K. Wayne Περίληψη Συνδετικότητα δικτύου Αφαιρέσεις Συνδεδεµένα συστατικά Αφηρηµένη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1,

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, Κεφάλαιο 4 Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Διαίρει και Βασίλευε (Divide-and-Conquer) Διαίρει-και-βασίλευε

Διαβάστε περισσότερα

Κεφάλαιο 4. Αλγόριθμος του Dijkstra. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 4. Αλγόριθμος του Dijkstra. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο Αλγόριθμος του Dijkra Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. . Συντομότερες Διαδρομές σε ένα Γράφημα hore pah from Princeon CS deparmen o Einein' houe το πρόβλημα της

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΑ ΑΠΟ ΟΣΗΣ & ΕΞΙΣΟΡΡΟΠΗΣΗ ΦΟΡΤΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙ ΟΣΕΩΝ ΒΑΘΜΟΣ ΠΑΡΑΛΛΗΛΙΣΜΟΥ Η υλοποίηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι. 5.1 Αλγόριθµος: Ορισµός. Αλγόριθµοι : επίπεδα αφαίρεσης

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι. 5.1 Αλγόριθµος: Ορισµός. Αλγόριθµοι : επίπεδα αφαίρεσης ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Αλγόριθµος: Ορισµός 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 οµές επανάληψης Ένας αλγόριθµος είναι ένα διατεταγµένο σύνολο, σαφώς ορισµένων,

Διαβάστε περισσότερα

Λύσεις 4ης Σειράς Ασκήσεων

Λύσεις 4ης Σειράς Ασκήσεων Λύσεις 4ης Σειράς Ασκήσεων Άσκηση 1 Αναγάγουμε τν Κ 0 που γνωρίζουμε ότι είναι μη-αναδρομική (μη-επιλύσιμη) στην γλώσσα: L = {p() η μηχανή Turing Μ τερματίζει με είσοδο κενή ταινία;} Δοσμένης της περιγραφής

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ Greedy Algorithms 1 Greedy algorithms H βασική ιδέα: Άρχισε από ένα υπο-πρόβλημα μικρού μεγέθους Επαναληπτικά,

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν Wait-free προσοµοιώσεις αυθαίρετων αντικειµένων Έχουµε δει ότι το πρόβληµα της οµοφωνίας δεν µπορεί να επιλυθεί µε χρήση µόνο read/write καταχωρητών. Πολλοί µοντέρνοι επεξεργαστές παρέχουν επιπρόσθετα

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Εισαγωγή στις έννοιες Αλγόριθµοι και Πολυπλοκότητα, Οργάνωση Δεδοµένων και Δοµές Δεδοµένων Χρήσιµοι µαθηµατικοί

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Άπληστοι Αλγόριθµοι 1

Άπληστοι Αλγόριθµοι. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Άπληστοι Αλγόριθµοι 1 Άπληστοι Αλγόριθµοι Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Άπληστοι Αλγόριθµοι 1 Άπληστοι Αλγόριθµοι... για προβλήµατα βελτιστοποίησης: Λειτουργούν σε βήµατα. Κάθε βήµα κάνει µια αµετάκλητη επιλογή

Διαβάστε περισσότερα

Τεχνολογίες Υλοποίησης Αλγορίθµων

Τεχνολογίες Υλοποίησης Αλγορίθµων Τεχνολογίες Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 3 1 / 25 Ενότητα 3 οκιµή Προγραµµάτων (Program Testing)

Διαβάστε περισσότερα

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ 22: Αλγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία Σκελετοί Λύσεων. (α) Έστω δροµολόγηση e, e 2,, e των εργασιών, 2,,. Τότε οι χρόνοι συµπλήρωσης των εργασιών είναι e d e e 2 d e + d e 2 e d e + d

Διαβάστε περισσότερα

Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ακέραιος Γραµµικός Προγραµµατισµός

Ακέραιος Γραµµικός Προγραµµατισµός Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο

Διαβάστε περισσότερα

Chapter 9: NP-Complete Problems

Chapter 9: NP-Complete Problems Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 1 Αλγόριθμοι και Πολυπλοκότητα Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Εισαγωγή Ας ξεκινήσουμε

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αλγόριθμοι. Μάρθα Σιδέρη. epl333 lect

Αλγόριθμοι. Μάρθα Σιδέρη. epl333 lect Αλγόριθμοι Μάρθα Σιδέρη epl333 lect1 2011 1 1 Τι είναι αλγόριθμος?? ιαδικασία για να λύνουμε υπολογιστικά προβλήματα. Βήμα βήμα σαφής διαδικασία επίλυσης προβλήματος (μετασχηματισμού της εισόδου στην επιθυμητή

Διαβάστε περισσότερα