ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ"

Transcript

1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ.. Οι βασικές έννοιες Η ταλαντωτική κίνηση είναι κίνηση που επαναλαμβάνεται στον χρόνο. Οι ταλαντώσεις ενός η περισσοτέρων μερών μιας μηχανής η ενός μηχανισμού αποτελεί το αντικείμενο μελέτης της Δυναμικής των Μηχανών. Ταλαντούμενο σύστημα είναι ένα σύστημα που ένας αριθμός μερών του ή όλα του τα μέρη βρίσκονται σε ταλαντωτική κίνηση. Το σύστημα αποθηκεύει δυναμική και κινητική ενέργεια σε ποσότητες χρονικά μεταβαλλόμενες και ταυτοχρόνως χάνει ενέργεια προς το περιβάλλον. Η πρώτη διαδικασία συμβαίνει λόγω της ελαστικότητας και της ύπαρξης αδρανειακών μαζών και η δεύτερη οφείλεται στην ύπαρξη μηχανισμών απόσβεσης. Παραδείγματα ταλαντούμενων συστημάτων δίνονται στο σχήμα.. y θ Σχήμα..Παραδείγματα ταλαντούμενων συστημάτων Βαθμοί Ελευθερίας (Β.Ε.) ενός συστήματος είναι ο ελάχιστος αριθμός ανεξάρτητων μεταβλητών που απαιτούνται για τον πλήρη καθορισμό των θέσεων όλων των ταλαντούμενων μερών (μαζών, αδρανειών) του συστήματος σε κάθε χρονική στιγμή. Στο σχήμα.2.α το σύστημα είναι ενός Β.Ε. Οι (m) και y (m)

2 2 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ είναι εξαρτημένες μεταβλητές και το σύστημα περιγράφεται είτε μόνο με το (m) είτε μόνο με το y (m) είτε μόνο με το θ (rad) σύμφωνα με τις σχέσεις: y = l (m), lsin θ, y l cosθ (m) (.) Το σύστημα στο σχήμα.2.β είναι δύο Β.Ε και περιγράφεται με τις δυο ανεξάρτητες μεταβλητές θ (rad)και θ 2 (rad). θ θ 2 θ y θ T (t) T (t) 2 α. Σύστημα ενός Β.Ε. β. Σύστημα περισσοτέρων του ενός Β.Ε. Σχήμα.2. Ταλαντούμενα συστήματα και βαθμοί ελευθερίας. F(t) θ θ 2 θ 3 T (t) T (t) 2 T (t) 3 L α. Διακριτό σύστημα τριών (3) βαθμών ελευθερίας. β. Συνεχές σύστημα. Σχήμα.3. Συνεχή και διακριτά συστήματα Διακριτά και Συνεχή Συστήματα. Τα διακριτά συστήματα περιγράφονται κατά την ταλάντωση τους με πεπερασμένο αριθμό ανεξάρτητων μεταβλητών (πεπερασμένος αριθμός Β.Ε.), σε αντίθεση με τα συνεχή όπου ο αριθμός των Β.Ε. είναι άπειρος. Έτσι στο σχήμα.3.α απεικονίζεται ένα σύστημα τριών (3) βαθμών ελευθερίας που εκτελεί στρεπτική ταλάντωση ενώ το σχήμα.3.β αντιστοιχεί σε

3 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 3 μία πακτωμένη δοκό που εκτελεί καμπτική ταλάντωση. Στην περίπτωση αυτή απαιτείται η γνώση της τιμής της συνάρτησης u(, t ) (m) για κάθε [0, ] L (m) για τον καθορισμό της ταλάντωσης. Τις περισσότερες φορές τα συνεχή συστήματα προσεγγίζονται με διακριτά. Αν και η αντιμετώπιση του συστήματος σαν συνεχούς δίδει ακριβείς λύσεις, οι διαθέσιμες αναλυτικές μέθοδοι επίλυσης περιορίζονται σε ένα σχετικά στενό φάσμα προβλημάτων. Σε κάθε περίπτωση όσο αυξάνονται οι βαθμοί ελευθερίας κατά την μοντελοποίηση ενός συστήματος, τόσο η λύση του ταλαντωτικού προβλήματος κερδίζει σε ακρίβεια. Ελεύθερη ταλάντωση συμβαίνει όταν, μετά τη σύντομη δράση κάποιας αρχικής εξωτερικής διέγερσης, το σύστημα αφεθεί να ταλαντωθεί ελεύθερα. Αντίθετα, η ταλάντωση είναι εξαναγκασμένη όταν η εξωτερική διέγερση συνεχίζει να δρα και να καθορίζει τόσο την διάρκεια όσο και την ένταση του ταλαντωτικού φαινομένου. Έτσι στο σχήμα.2.α, το εκκρεμές θα εκτελέσει ελεύθερη ταλάντωση όταν αφεθεί ελεύθερο μετά την απομάκρυνσή του από την θέση ηρεμίας ενώ οι δίσκοι στο σχήμα.2.β θα εκτελούν στρεπτική ταλάντωση όσο θα συνεχίζουν να δρουν οι εξωτερικές ροπές. Όταν η εξωτερική διέγερση είναι περιοδική τότε προκαλούνται περιοδικές ταλαντώσεις. Στην περίπτωση μη περιοδικών εξωτερικών διεγέρσεων οι προκύπτουσες ταλαντώσεις ονομάζονται μεταβατικές. Επιπλέον εάν η εξωτερική διέγερση είναι γνωστή σε κάθε χρονική στιγμή, τότε η προκύπτουσα ταλάντωση θεωρείται ντετερμινιστική ενώ όταν η διέγερση αναπαρίσταται μόνο μέσω μέσων όρων και αποκλίσεων 2 τότε τόσο αυτή όσο και η ταλάντωση ονομάζονται τυχαίες. Ένα ταλαντούμενο σύστημα θεωρείται γραμμικό όταν η κίνησή του μπορεί να περιγραφεί με γραμμικές διαφορικές εξισώσεις και μη γραμμικό όταν απαιτούνται μη γραμμικές διαφορικές εξισώσεις για την περιγραφή αυτή..2. Ανάλυση των Ταλαντώσεων Μηχανών και Μηχανισμών Σχεδόν όλες τα μηχανολογικά συστήματα, οι μηχανές και οι κατασκευές παρουσιάζουν προβλήματα ταλαντώσεων κατά τη λειτουργία τους. Στις επόμενες παραγράφους θίγονται ορισμένες σχετικές περιπτώσεις και αναφέρονται τα προβλήματα που δημιουργούνται είτε στις ίδιες τις μηχανές είτε στο περιβάλλον τους. Η αζυγοσταθμία, δηλαδή η μη συμμετρική διάταξη της μάζας περιστρεφόμενων μερών, αποτελεί πηγή ταλαντώσεων και μπορεί να οφείλεται είτε σε κακό σχεδιασμό είτε σε κακή κατασκευή, λειτουργία ή συντήρηση. Η αζυγοσταθμία Είτε η μία είτε και οι δύο. 2 Δηλαδή με στατιστικό τρόπο...

4 4 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ προκαλεί μετατοπίσεις στα περιστρεφόμενα μέρη και δημιουργεί προβλήματα στα έδρανα των μηχανών, στα γρανάζια των μειωτήρων, στους άξονες και στις φέρουσες κατασκευές. Όταν οι ταλαντώσεις σε κάποια μηχανή συνεχίζουν να καταπονούν τα μέρη της για μεγάλο χρονικό διάστημα, τότε είναι πολύ πιθανό - σε συνδυασμό με προϋπάρχουσες ατέλειες στο υλικό - να εμφανιστεί το φαινόμενο της κόπωσης, δηλαδή της προοδευτικής θραύσης του μέρους της μηχανής λόγω των αναπτυσσόμενων χρονικά μεταβαλλόμενων τάσεων. Όταν μία από τις φυσικές συχνότητες ταλάντωσης ενός μέλους μιας κατασκευής ή ενός τμήματος ή ακόμη και ολόκληρης της κατασκευής ή της μηχανής ταυτιστεί με τη συχνότητα (ή τις συχνότητες) της εξωτερικής διέγερσης τότε αναπτύσσεται το επικίνδυνο φαινόμενο του συντονισμού που αν συνεχιστεί μπορεί να οδηγήσει σε υπερβολικές παραμορφώσεις και τελικά σε αστοχία της μηχανής ή της κατασκευής. Η βιβλιογραφία έχει καταγράψει χιλιάδες περιπτώσεων τέτοιων αστοχιών λόγω αυτού του φαινομένου. Ο ίδιος ο άνθρωπος είναι δυνατόν να υπόκειται σε ταλαντώσεις που εμφανίζονται στο περιβάλλον στο οποίο εργάζεται. Εκτός από την επίδραση που έχουν αυτές στην αποδοτικότητα της εργασίας του, μπορούν να προκαλέσουν και παροδικές ή μόνιμες βλάβες στον οργανισμό του που γίνονται οξύτερες εάν η ύπαρξη των ταλαντώσεων συνοδεύεται και από θόρυβο. Οι ταλαντώσεις δεν είναι πάντοτε ανεπιθύμητες. Αρκετές μηχανές και διατάξεις βασίζουν τη λειτουργία τους στις ταλαντώσεις. Ως παραδείγματα θα μπορούσε κανείς να αναφέρει τους ταλαντωτικούς μεταφορείς, τους τροφοδότες, τους συμπιεστές και λειαντές επιφανείας (ρεκτιφιέ) καθώς και τα ταλαντωτικά ηλεκτρονικά φίλτρα που χρησιμοποιούνται στα ηλεκτρονικά κυκλώματα για την αποκοπή ορισμένων συχνοτήτων. Έχει επίσης αποδειχτεί ότι οι ταλαντώσεις - κάτω από ορισμένες προϋποθέσεις μπορούν να δράσουν ευεργετικά σε διαδικασίες όπως η χύτευση μετάλλων, η συγκόλληση κλπ. Από όλα τα παραπάνω καθίσταται προφανές ότι ο μηχανολόγος μηχανικός οφείλει να επιλύει τα προβλήματα ταλαντώσεων των μηχανών κατά τις φάσεις του σχεδιασμού και της λειτουργία τους. Για να γίνει αυτό κατορθωτό, θα πρέπει να γνωρίζει τη βασική διαδικασία ανάλυσης των ταλαντωτικών φαινομένων. Οι βασικές φάσεις αυτής της διαδικασίας περιγράφονται εν συντομία στις αμέσως παρακάτω παραγράφους. Αναγνώριση του προβλήματος Το φυσικό μοντέλο Εδώ ο στόχος είναι η αναγνώριση - σε επίπεδο λεπτομέρειας που καθορίζεται από το ίδιο το πρόβλημα - των στοιχείων (μάζες, αδράνειες, ελαστικά στοιχεία, στοιχεία

5 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 5 απόσβεσης) που απαρτίζουν το σύστημα. Εκτός από την καταγραφή των στοιχείων αυτών καθαυτών, θα πρέπει να καταγραφούν και οι μεταξύ τους σχέσεις 3. Κατόπιν θα πρέπει να καθορισθούν ακριβώς τα όρια του συστήματος σε σχέση με το περιβάλλον του και κατόπιν να καταγραφούν όλες οι επιδράσεις 4 του τελευταίου επί του συστήματος. Με την ολοκλήρωση των παραπάνω εργασιών θα έχει επιτευχθεί η διαμόρφωση του φυσικού μοντέλου. Παραδοχές Οι παραδοχές είναι πάντοτε απαραίτητες γιατί οδηγούν σε απλοποιημένα μοντέλα των ταλαντούμενων συστημάτων. Εάν δεν γινόταν παραδοχές, τότε η μοντελοποίηση ενός συστήματος θα ήταν αδύνατη και η μαθηματική λύση θα ήταν αδύνατη. Οι πιο κοινές παραδοχές που γίνονται κατά τη διάρκεια της μοντελοποίησης των ταλαντούμενων συστημάτων είναι οι εξής:. Οι φυσικές ιδιότητες είναι συνεχείς συναρτήσεις χωρικών μεταβλητών (παραδοχή της συνέχειας) 2. Η βαρύτητα είναι το μόνο εξωτερικό πεδίο δυνάμεων 3. Όλα τα υλικά είναι γραμμικά, ισότροπα και ομογενή 4. Το υπ όψη ταλαντούμενο σύστημα δεν υπόκειται σε κανενός είδους, χημικές, πυρηνικές, θερμικές και άλλες επιδράσεις Σχηματισμός του μαθηματικού μοντέλου και επίλυση του προβλήματος Δεδομένου του φυσικού μοντέλου θα πρέπει κατόπιν να σχηματισθεί το αντίστοιχο μαθηματικό. Η εργασία αυτή περιλαμβάνει την κατάστρωση των διαφορικών εξισώσεων κίνησης με βάση τις αρχές της Δυναμικής. Υπάρχουν πολλές προσεγγίσεις που μπορεί κανείς να ακολουθήσει αλλά οι πλέον κοινές είναι: α. Η χρήση του 2ου Νόμου του Newton, β. η εφαρμογή της αρχής του D'Alembert, γ. Η επιλογή μίας ενεργειακής μεθόδου (π.χ. της εξίσωσης Lagrange). Η διαμόρφωση του μαθηματικού μοντέλου απαιτεί την επιλογή ενός σετ μεταβλητών που θα περιγράφουν την συμπεριφορά του συστήματος. Οι μεταβλητές αυτές διακρίνονται σε δύο κατηγορίες: α. στις ανεξάρτητες μεταβλητές που στα προβλήματα των ταλαντώσεων είναι κυρίως ο χρόνος και οι μεταβλητές του χώρου και β. στις εξαρτώμενες μεταβλητές που είναι συναρτήσεις των ανεξάρτητων. Κατά την μελέτη των ταλαντώσεων εξαρτημένες μεταβλητές θεωρούνται οι μετατοπίσεις, οι ταχύτητες και οι επιταχύνσεις. 3 Εδώ μας ενδιαφέρουν ΑΠΟΚΛΕΙΣΤΙΚΑ και μόνο οι σχέσεις που αφορούν την ταλαντωτική συμπεριφορά των στοιχείων. 4 Συνήθως οι επιδράσεις αυτές είναι δυνάμεις, ροπές, χωρικοί ή και χρονικοί περιορισμοί, κλπ.

6 6 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Στην ενότητα. έγινε αναφορά στην έννοια του βαθμού ελευθερίας. Με βάση τους ορισμούς των ανεξάρτητων και εξαρτώμενων μεταβλητών, ο αριθμός των βαθμών ελευθερίας είναι ίσος προς τον αριθμό των κινηματικά ανεξάρτητων μεταβλητών που απαιτούνται για την πλήρη περιγραφή της ταλαντωτικής κίνησης. Κάθε σύνολο n κινηματικά ανεξάρτητων συντεταγμένων 5 για ένα σύστημα n βαθμών ελευθερίας ονομάζεται σύνολο γενικευμένων συντεταγμένων. Οι γενικευμένες συντεταγμένες είναι εξαρτώμενες μεταβλητές, συναρτήσεις της ανεξάρτητης μεταβλητής που είναι ο χρόνος. Μετά την κατάστρωση των εξισώσεων, αυτές θα πρέπει να επιλυθούν. Για τον σκοπό αυτό και ανάλογα με τη φύση του εξεταζομένου προβλήματος, μπορούν να χρησιμοποιηθούν οι παρακάτω τεχνικές: α. κλασσικές μέθοδοι επίλυσης Διαφορικών Εξισώσεων, β. μετασχηματισμοί Laplace, γ. μέθοδοι πινάκων και δ. αριθμητικές μέθοδοι. Τα αποτελέσματα που θα προκύψουν από την επίλυση των εξισώσεων μπορούν πλέον να ερμηνευθούν και να χρησιμοποιηθούν είτε για την επέμβαση και την επίλυση του προβλήματος που ετέθη αρχικά 6 είτε για το σχεδιασμό της μηχανής έτσι ώστε αυτή να λειτουργεί με τις ελάχιστες δυνατές ταλαντώσεις..3. Στοιχεία αδράνειας, ελαστικότητας και απόσβεσης Η μελέτη των ταλαντώσεων των μηχανών και των μηχανολογικών συστημάτων προϋποθέτει την μελέτη των ταλαντωτικών κινήσεων των στοιχείων που τα απαρτίζουν. Τα στοιχεία αυτά διακρίνονται σε τρεις κατηγορίες ανάλογα με το είδος της ενέργειας που συντηρούν ή διαχέουν. Οι κατηγορίες αυτές είναι: α. Αδρανειακά στοιχεία, β. Ελαστικά στοιχεία και γ. Αποσβεστικά στοιχεία 7. Σε ένα σύστημα υπό ταλάντωση τα ανωτέρω στοιχεία βρίσκονται σε στενή κινηματική και ενεργειακή αλληλεξάρτηση. Επομένως η ανάλυση της ταλαντωτικής συμπεριφοράς του συστήματος προϋποθέτει την αναλυτική μελέτη αυτής της αλληλεξάρτησης και ιδιαίτερα της εξέλιξής της στον χρόνο. Ως αδρανειακά στοιχεία νοούνται οι μάζες που είτε εκτελούν μεταφορική είτε περιστροφική ταλαντωτική κίνηση είτε συνδυασμό των δύο. Οι μάζες διαθέτουν κινητική ενέργεια που μεταβάλλεται συνεχώς καθώς εξελίσσεται το ταλαντωτικό φαινόμενο και η μελέτη της κίνησής τους απαιτεί την εφαρμογή των αρχών της κινηματικής και της δυναμικής. Στα διακριτά συστήματα η μελέτη της 5 Προσοχή!!! Η έννοια της ανεξαρτησίας αναφέρεται μόνο στην κίνηση. Επιπλέον το σύνολο αυτό δεν είναι μοναδικό. 6 Στις περιπτώσεις μηχανών που ήδη λειτουργούν... 7 Η κατηγοριοποίηση αυτή δεν ισχύει στις περιπτώσεις συστημάτων που θεωρούνται ως συνεχή μέσα (βλ. ενότητα.). Στην περίπτωση αυτή τα παραπάνω αναφερόμενα στοιχεία είναι πλήρως κατανεμημένα και μη διαχωρίσιμα.

7 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 7 ταλαντωτικής τους συμπεριφοράς ισοδυναμεί με την μελέτη των κινήσεων χαρακτηριστικών σημείων 8 των μαζών τους. Ως ελαστικό στοιχείο νοείται κάθε ελαστικός σύνδεσμος μεταξύ δύο μαζών σε ένα σύστημα. Το ίδιο το ελαστικό στοιχείο έχει μάζα (αδράνεια) αλλά συνήθως δεν λαμβάνεται υπόψη γιατί είναι μικρή συγκρινόμενη με αυτή των κυρίων μαζών του συστήματος 9. Η συντριπτική πλειοψηφία των ελαστικών στοιχείων είναι από την φύση τους μη γραμμικά. Κατά συνέπεια η επιβολή μίας δύναμης F (N) προκαλεί μετατόπιση (m) και η σχέση μεταξύ των δύο αυτών μεγεθών είναι: 2 3 F (N) (.2) Εάν υποτεθεί ότι η επιβολή της δύναμης γίνεται όταν το ελαστικό στοιχείο είναι σε θέση ηρεμίας και εάν επιπλέον θεωρηθεί ότι η μετατόπιση είναι πολύ μικρή, τότε προκύπτει η γραμμική σχέση: όπου το (N/m) ονομάζεται σταθερά ελατηρίου. F (N) (.3) Επειδή το ελαστικό στοιχείο μπορεί να αποθηκεύει δυναμική ενέργεια, η ενέργεια αυτή δίνεται από την σχέση: 2 2 V ( t) [ ( t )] (Nm) (.4) Η σχέση (.3) γράφεται διαφορετικά όταν το ελαστικό στοιχείο λειτουργεί στρεπτικά (περιστροφικά). Τότε εάν M (Nm) είναι η ροπή και θ (rad) η γωνία θα είναι: M θ t (Nm) (.5) όπου το t (Nm/rad) ονομάζεται στρεπτική σταθερά ελατηρίου. Η δυναμική ενέργεια θα είναι: 2 V ( t) [ θt ( )] 2 t (Nm) (.6) Στην πράξη τα ελαστικά στοιχεία μπορούν αν έχουν διάφορες μορφές. Ενδεικτικά αναφέρονται τα ελικοειδή ελατήρια (μεμονωμένα ή σε συνδυασμό) και οι ελαστικοί 8 Συνήθως των κέντρων βάρους. 9 Εάν παρ όλα αυτά θα πρέπει να ληφθεί υπόψη τότε για ελαστικό στοιχείο μάζας m s (Kg) που το ένα του άκρο είναι σταθερό και το άλλο είναι συνδεδεμένο με ταλαντούμενο σώμα μάζας m (Kg), προστίθεται ισοδύναμη μάζα ίση προς m s /3 (Kg) στην μάζα του σώματος και γίνεται μελέτη της ταλάντωσης για συνολική μάζα (m+ m s /3) (Kg).

8 8 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ δοκοί ή ράβδοι. Η σταθερά ελατηρίου ενός ελικοειδούς ελατηρίου δίνεται από την σχέση: 4 GD 64Nr 3 (N/m) (.7) όπου G (N/m 2 ) είναι το μέτρο διάτμησης του υλικού του ελατηρίου, D (m) είναι η διάμετρος του σύρματός του, N είναι το πλήθος των σπειρών και r (m) είναι η ακτίνα της σπείρας Όσο αφορά τις δοκούς ή τις ράβδους η σταθερά ελατηρίου προσδιορίζεται κατά περίπτωση. Έτσι π.χ. για μία πρόβολη δοκό ορθογωνικής διατομής A (m 2 ) και μήκους L (m) από υλικό μέτρου ελαστικότητας E (N/m 2 ), η ισοδύναμη σταθερά ελατηρίου για διαμήκεις ταλαντώσεις θα είναι: EA L (N/m) (.8) και για καμπτικές ταλαντώσεις μιας πρόβολης δοκού με φορτίο στο ελεύθερο άκρο: 3EI 3 L (N/m) (.9) όπου I (m 4 ) είναι η ροπή αδράνειας της διατομής της ράβδου. Για μία ράβδο κυκλικής διατομής A (m 2 ) και μήκους L (m) από υλικό μέτρου διάτμησης G (N/m 2 ), η ισοδύναμη σταθερά ελατηρίου για στρεπτικές ταλαντώσεις θα είναι: t GJ L (Nm/rad) (.0) όπου J (m 4 ) είναι η πολική ροπή αδράνειας της ράβδου. Πολλές φορές τα ελαστικά στοιχεία παρουσιάζονται σε συνδυασμό είτε εν σειρά,,,..., n είτε εν παραλλήλω. Έστω 2 3 n ελαστικά στοιχεία. Τότε εάν θεωρηθεί ότι λειτουργούν εν παραλλήλω (βλ. σχήμα.4.α), η ισοδύναμη σταθερά ελατηρίου θα είναι: eq n (N/m) (.) i i ενώ εάν λειτουργούν εν σειρά (βλ. σχήμα.4.β) θα είναι:

9 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ 9 eq n i i (N/m) (.2) 2 m n α. Ελαστικά στοιχεία εν παραλλήλω. 2 n m β. Ελαστικά στοιχεία εν σειρά. Σχήμα.4. Συνδυασμοί ελαστικών στοιχείων. Τα αποσβεστικά στοιχεία διαχέουν την ενέργεια προς το περιβάλλον και κατά συνέπεια θεωρούνται μη συντηρητικά στοιχεία. Εάν δεν προσδίδεται συνεχώς επαρκής ενέργεια από το περιβάλλον, η ταλάντωση ενός συστήματος που περιέχει τέτοια στοιχεία φθίνει και τελικώς σταματά. Η λειτουργία των στοιχείων αυτών μπορεί να βασίζεται σε διαφορετικές αρχές και μηχανισμούς. Ανάλογα με το είδος του μηχανισμού απόσβεσης διακρίνονται στοιχεία ιξώδους απόσβεσης, στοιχεία απόσβεσης τύπου Coulomb, στοιχεία με υστερητική απόσβεση και στοιχεία με άλλους τύπους απόσβεσης. Εδώ θα γίνει εξέταση μόνο των στοιχείων που βασίζονται στον μηχανισμό ιξώδους απόσβεσης και σε επόμενη ενότητα θα εξετασθούν οι υπόλοιποι μηχανισμοί. Ο ιξώδης αποσβεστήρας είναι ένα αποσβεστικό στοιχείο που βασίζει την λειτουργία του στην ιξώδη τριβή που αναπτύσσεται κατά την επαφή ενός στερεού σώματος και ενός ρευστού. Η αναπτυσσόμενη δύναμη ονομάζεται δύναμη απόσβεσης και είναι ανάλογη της ταχύτητας του σώματος: F ( ) ( ) c t c t (N) (.3)

10 0 ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Στην παραπάνω σχέση η σταθερά c ονομάζεται σταθερά απόσβεσης του αποσβεστήρα, μετριέται σε (Nsec/m) και η τιμή της εξαρτάται από το δυναμικό ιξώδες του ρευστού και την γεωμετρία του αποσβεστήρα. Κατά την μοντελοποίηση των ταλαντούμενων συστημάτων ο ιξώδης αποσβεστήρας που αποσβένει ενέργεια κατά την σχετική μεταφορική μετατόπιση των μερών του συμβολίζεται με τον απλοποιημένο τρόπο που φαίνεται στο σχήμα.5.α. Στο σχήμα.5.β δίνεται ο συμβολισμός για τον ιξώδη αποσβεστήρα που αποσβένει ενέργεια κατά την σχετική περιστροφική μετατόπιση των μερών του και ο οποίος ονομάζεται στρεπτικός ιξώδης αποσβεστήρας. Στην περίπτωση αυτή η αναπτυσσόμενη ροπή ονομάζεται ροπή απόσβεσης και είναι ανάλογη της γωνιακής ταχύτητας του σώματος: M ( t) c θt ( ) (Nm) (.3) c Στην παραπάνω σχέση η σταθερά c t ονομάζεται στρεπτική σταθερά απόσβεσης του αποσβεστήρα, μετριέται σε (Nmsec/rad) και η τιμή της εξαρτάται από το δυναμικό ιξώδες του ρευστού και την γεωμετρία του αποσβεστήρα. t m J c c t α. Ιξώδης αποσβεστήρας. β. Στρεπτικός ιξώδης αποσβεστήρας. Σχήμα.5. Ιξώδεις αποσβεστήρες ως αποσβεστικά στοιχεία.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Πανεπιστήμιο Πατρών Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών Κατασκευαστικός Τομέας ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αργύρης Δέντσορας, Αναπληρωτής Καθηγητής ΔΟΜΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Εισαγωγή Σύστημα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ ΚΑΙ ΜΗΧΑΝΙΣΜΩΝ

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ ΚΑΙ ΜΗΧΑΝΙΣΜΩΝ Πανεπιστήμιο Πατρών Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών Κατασκευαστικός Τομέας ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ ΚΑΙ ΜΗΧΑΝΙΣΜΩΝ Αργύρης Δέντσορας, Καθηγητής ΔΟΜΗ ΤΗΣ ΕΝΟΤΗΤΑΣ (1/2) ΚΕΦΑΛΑΙΟ 1 Οι βασικές έννοιες

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι

ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 ΔΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 1.1- Δυναμική Μηχανών Ι Ακαδημαϊκό έτος: 015-016 Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 015.

Διαβάστε περισσότερα

ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93

ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93 ΚΕΦΑΛΑΙΟ 5 ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 5.. Εισαγωγή Η παρουσία εξωτερικών διεγέρσεων σε ένα σύστηµα πολλών Β.Ε. δηµιουργεί σ'

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ έκδοση DΥΝI-INTDYN_2016b Copyright

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου

Δυναμική Μηχανών I. Δυναμικά Μοντέλα Συνεχούς Μέσου Δυναμική Μηχανών I 8 1 Δυναμικά Μοντέλα Συνεχούς Μέσου 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Μοντελοποίηση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 4 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Μοντελοποίηση Μηχανικών Συστημάτων Ν Βαθμών Ελευθερίας Μηχανικά δυναμικά συστήματα πολλών Β.Ε. Μοντελοποίηση

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 19. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 9. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - Cpyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

Ενεργειακή Θεώρηση των Ταλαντώσεων

Ενεργειακή Θεώρηση των Ταλαντώσεων Κεφάλαιο : Ενεργειακή Θεώρηση των Ταλαντώσεων Κεφάλαιο : Ενεργειακή Θεώρηση των Ταλαντώσεων Ο μηχανισμός της ταλάντωσης ενός μηχανικού συστήματος είναι η συνεχής ιακίνηση ενέργειας μεταξύ των ελαστικών

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 5 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα: Μοντελοποίηση Μηχανικών- Ηλεκτρικών-Υδραυλικών-Θερμικών Συστημάτων Επανάληψη: Εξισώσεις Lagrange σε συστήματα

Διαβάστε περισσότερα

Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.

Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.

Διαβάστε περισσότερα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε

Διαβάστε περισσότερα

Το ελαστικο κωνικο εκκρεμε ς

Το ελαστικο κωνικο εκκρεμε ς Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες. Οι καλές ταλαντώσεις!

Εισαγωγικές Έννοιες. Οι καλές ταλαντώσεις! Εισαγωγικές Έννοιες Οι καλές ταλαντώσεις! Αντικείμενο της Δυναμικής Εισαγωγικές Έννοιες: Αντικείμενο της Δυναμικής των Κατασκευών: Ανάλυση της απόκρισης των κατασκευών που υπόκεινται σε δυναμική καταπόνηση

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 15.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 15. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 010-011 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 15.1 - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 010-011 Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 010.

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 19. έκδοση DΥΝI-EXC a

ΑΣΚΗΣΗ 19. έκδοση DΥΝI-EXC a ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 19 έκδοση DΥΝI-EXC19-2017a Copyright Ε.Μ.Π. - 2017 Σχολή

Διαβάστε περισσότερα

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 3o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων Σχήμα 1 Δυο ελάσματα πάχους h, συγκολλημένα σε μήκος L, με υλικό συγκόλλησης ορίου ροής S y, που εφελκύονται με δύναμη P. Αν το πάχος της συγκόλλησης είναι h, τότε η αναπτυσσόμενη στο υλικό της συγκόλλησης

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 25/7/2015

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 25/7/2015 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Τοαπλόεκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα

Πολυβάθμια Συστήματα Πολυβάθμια Συστήματα Εισαγωγή Πολυβάθμια Συστήματα: Δ19-2 Η βασική προϋπόθεση για την προσομοίωση μίας κατασκευής ως μονοβάθμιο ταλαντωτή είναι πως η μάζα, ο μηχανισμός απόσβεσης και η ακαμψία μπορούν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 23/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ - ΝΕΟ ΣΥΣΤΗΜΑ - Γ ΗΜΕΡΗΣΙΩΝ ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Στις ερωτήσεις Α - Α4

Διαβάστε περισσότερα

Και τα στερεά συγκρούονται

Και τα στερεά συγκρούονται Και τα στερεά συγκρούονται Εξετάζοντας την ελαστική κρούση υλικών σημείων, ουσιαστικά εξετάζουμε την κρούση μεταξύ δύο στερεών σωμάτων, δύο μικρών σφαιρών, τα οποία εκτελούν μόνο μεταφορική κίνηση. Τι

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας. '' Περί Γνώσεως'' Φροντιστήριο Μ.Ε. Φυσική Προσανατολισμού Γ' Λ. ΜΑΘΗΜΑ /Ομάδα Προσανατολισμού Θ.Σπουδών / ΤΑΞΗ : ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΦΥΣΙΚΗ / Προσανατολισμού / Γ ΛΥΚΕΙΟΥ 2 o ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Στη διαδικασία σχεδιασμού των Συστημάτων Αυτομάτου Ελέγχου, η απαραίτητη και η πρώτη εργασία που έχουμε να κάνουμε, είναι να

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του.

A3. Στο στιγμιότυπο αρμονικού μηχανικού κύματος του Σχήματος 1, παριστάνονται οι ταχύτητες ταλάντωσης δύο σημείων του. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση

Δυναμική Μηχανών I. Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση Δυναμική Μηχανών I 3 2 Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Ένα σώμα εκτελεί φθίνουσα αρμονική ταλάντωση με δύναμη απόσβεσης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική

Δυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική Δυναμική Μηχανών I 2 2 Επανάληψη: Κινηματική και Δυναμική 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΡΙΤΗ 8 ΑΠΡΙΛΙΟΥ 07 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ A Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

r r r r r r r r r r r

r r r r r r r r r r r ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m; ΘΕΜΑ Γ 1. Ένα σώμα εκτελεί αρμονική ταλάντωση με εξίσωση 0,6 ημ 8 S.I.. α. Να βρείτε την περίοδο και τον αριθμό των ταλαντώσεων που εκτελεί το σώμα σε ένα λεπτό της ώρας. β. Να γράψετε τις εξισώσεις της

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση. Εξαναγκασμένη Ταλάντωση Πακτωμένης Δοκού

Εργαστηριακή Άσκηση. Εξαναγκασμένη Ταλάντωση Πακτωμένης Δοκού Εργαστηριακή Άσκηση Εξαναγκασμένη Ταλάντωση Πακτωμένης Δοκού 1.Σκοπός Σκοπός της άσκησης είναι η μελέτη των εξαναγκασμένων μηχανικών ταλαντώσεων ενός κλασικού συστήματος πακτωμένης δοκού στο ένα άκρο.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ Θέμα Α ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ - NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 3 ΙΟΥΝΙΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ

ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Τομέας Β Δομοστατικού Σχεδιασμού ΣΤΡΕΠΤΙΚΗ ΑΝΑΛΥΣΗ ΡΑΒΔΩΝ ΣΤΑΘΕΡΗΣ Η ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΣΦΗΝΑΡΟΛΑΚΗ ΕΛΕΥΘΕΡΙΑ

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ

ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-16 ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ 18/9/2014 ΕΙΣΑΓΩΓΗ_ΚΕΦ. 1 1 ΠΛΗΡΟΦΟΡΙΕΣ Διδάσκων Γεράσιμος Κουρούκλης Καθηγητής (Τμήμα Χημικών Μηχανικών). (gak@auth.gr,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σε

Διαβάστε περισσότερα

Bmax. Αν c η ταχύτητα του φωτός στο κενό - αέρα, το ηλεκτρικό πεδίο του ίδιου ηλεκτρομαγνητικού κύματος περιγράφεται από τη σχέση

Bmax. Αν c η ταχύτητα του φωτός στο κενό - αέρα, το ηλεκτρικό πεδίο του ίδιου ηλεκτρομαγνητικού κύματος περιγράφεται από τη σχέση ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Προσομοίωση Μηχανολογικών συστημάτων Σχήμα 2.71 Σχήμα 2.72

Προσομοίωση Μηχανολογικών συστημάτων Σχήμα 2.71 Σχήμα 2.72 Προσομοίωση Μηχανολογικών συστημάτων Ας δούμε πρώτα τις βιβλιοθήκες που σχετίζονται με τα μηχανολογικά συστήματα μεταφοράς. Στο σχήμα 2.71 βλέπουμε τις βιβλιοθήκες αυτές Translational elements Rotational

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Προσέγγιση Galerkin

Δυναμική Μηχανών I. Προσέγγιση Galerkin Δυναμική Μηχανών I 8 2 Προσέγγιση Galerkin Χειμερινό Εξάμηνο 214 Τμήμα Μηχανολόγων Μηχανικών, ΕΜΠ Δημήτριος Τζεράνης, Ph.D. 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1. Ένα βλήμα μάζας 0,1 kg που κινείται οριζόντια με ταχύτητα 100 m/s σφηνώνεται σε ακίνητο ξύλο μάζας 1,9 kg. Να βρεθεί η απώλεια ενέργειας που οφείλεται στην κρούση, όταν το ξύλο είναι: α. πακτωμένο στο

Διαβάστε περισσότερα

http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 28 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Για τις ημιτελείς

Διαβάστε περισσότερα

Προτεινόμενα θέματα για τις εξετάσεις 2011

Προτεινόμενα θέματα για τις εξετάσεις 2011 Προτεινόμενα θέματα για τις εξετάσεις 011 Τάξη: Γ Γενικού Λυκείου Μάθημα: Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΘΕΜΑ Α Α1-A4 Να επιλέξετε τη σωστή από τις απαντήσεις Α1. Ένα σώμα μάζας είναι στερεωμένο

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ)

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ) 1. (α) Περιγράψτε συνοπτικά το πείραμα των Michelson και Morley (όχι απόδειξη σχέσεων). Ποιό ήταν το βασικό αποτέλεσμα του πειράματος; (β)

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 8 ΣΕΠΤΕΜΒΡΙΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ

Διαβάστε περισσότερα

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5 ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 29 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) Για τις ημιτελείς

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 9 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ 1ο Στις προτάσεις 1.1 έως 1.4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 5 ΜΑÏΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : 2010-2011 Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 13.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : 2010-2011 Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 13. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 3. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 opyrigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 00. Με επιφύλαξη

Διαβάστε περισσότερα

Μηχανική Στερεού Σώματος

Μηχανική Στερεού Σώματος Μηχανική Στερεού Σώματος 1. Ο ομογενής οριζόντιος δίσκος ακτίνας R και μάζας Μ, περιστρέφεται γύρω από κατακόρυφο άξονα που περνά από το κέντρο του με γωνιακή ταχύτητα ω 1. Μυρμήγκι μάζας m= 2 M που αρχικά

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΤΗΛ. 6945-9435 ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΜΕΓΕΘΟΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΠΙΤΑΧΥΝΣΗ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΣΤΗΝ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΧΩΡΙΣ ΑΡΧΙΚΗ ΜΕΤΑΤΟΠΙΣΗ ΣΤΗΝ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΧΩΡΙΣ ΑΡΧΙΚΗ ΣΤΗΝ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke:

Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke: Άσκηση Μ Σπειροειδές ελατήριο Νόμος του Hooe και εξίσωση δυνάμεων Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooe: Οι ελαστικές τάσεις και οι παραμορφώσεις

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: ) Είναι πολύ

Διαβάστε περισσότερα

Φάσμα. Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα. Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ 50.51.557 50.56.296 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.27.990 50.20.990 25ης Μαρτίου 74 Πλ.ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΜΑΘΗΜΑ /ΤΑΞΗ: Φυσική Κατεύθυνσης Γ Λυκείου ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 16/03/014 ΣΕΙΡΑ: 3 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής ΘΕΜΑ Α Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ Μ Α Θ Η Μ Α : Υ ΤΙΚΗ ΚΑΣΕΤΘΤΝΗ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ Α :........ Σ Μ Η Μ Α :..... Η Μ Ε Ρ Ο Μ Η Ν Ι Α : 1 3 / 1 0 / 2 0 1 3 Ε Π Ι Μ Ε Λ Ε Ι Α Θ Ε Μ Α Σ Ω Ν : ΥΑΡΜΑΚΗ ΠΑΝΣΕΛΗ

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 853 -- ΤΗΛ. 0-75, 3687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ. Γ ΛΥΚΕΙΟΥ Α. Σε μια απλή αρμονική ταλάντωση, κατά τη διάρκεια μιας περιόδου η κινητική ενέργεια Κ

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 20 Το απλό εκκρεμές Ταλαντώσεις ΦΥΣ102 1 Το απλό εκκρεμές Το απλό εκκρεμές αποτελείται

Διαβάστε περισσότερα