ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ"

Transcript

1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ

2 Πορεία επίλυσης. Ευρίσκεται ο ελάχιστος βαθμός κινηματικής αοριστίας λαμβάνοντας υπόψη το αμετάβλητο του μήκους των ράβδων. Έτσι σημειώνονται τα άγνωστα κινηματικά μεγέθη (στροφές και μετατοπίσεις) που απαιτούνται στον υπολογισμό.. Εισάγονται τόσοι δεσμοί όσος και ο ελάχιστος βαθμός κινηματικής αοριστίας. Έτσι μηδενίζονται τα κινηματικά μεγέθη που σημειώθηκαν και δημιουργείται ο κινηματικά ορισμένος θεμελιώδης φορέας.. Στο θεμελιώδη φορέα εφαρμόζονται οι υπάρχουσες φορτίσεις ή/και θερμοκρασιακές μεταβολές, προένταση, δεδομένες υποχωρήσεις στηρίξεων. Χαράζονται οι ελαστικές γραμμές. Βάσει των ελαστικών γραμμών σημειώνονται και υπολογίζονται οι αναπτυσσόμενες ροπές στα άκρα του κάθε μέλους.. Στο θεμελιώδη φορέα επιβάλλονται ένα ένα τα άγνωστα κινηματικά μεγέθη. Χαράζονται οι αντίστοιχες ελαστικές γραμμές και βάσει αυτών σημειώνονται και υπολογίζονται οι αναπτυσσόμενες ροπές στα άκρα κάθε μέλους. 5. Αθροίζονται οι ροπές των σταδίων και, ακολουθώντας την κλασσική θετική σύμβαση για τις ροπές. Έτσι βρίσκονται εκφράσεις των ροπών στα άκρα των μελών. 6. Καταστρώνονται οι εξισώσεις ισορροπίας. Εάν τα άγνωστα κινηματικά μεγέθη είναι μόνο στροφές κόμβων, οι ισορροπίες των ροπών που βρέθηκαν στο στάδιο 5 γύρω από κάθε κόμβο δίνουν τις εξισώσεις ισορροπίας. Εάν στα άγνωστα κινηματικά μεγέθη περιλαμβάνονται και μετατοπίσεις, τότε χρειάζεται κατά τα στάδια και να υπολογισθούν και κατά το στάδιο 5 να αθροισθούν και δυνάμεις κατά τη διεύθυνση αυτών των μετατοπίσεων (τέμνουσες). Πρόσθετες εξισώσεις ισορροπίας, πέραν των εξισώσεων των ροπών στους κόμβους, καταστρώνονται, στις οποίες εμπλέκονται οι δυνάμεις αυτές. 7. Υπολογίζονται τα άγνωστα κινηματικά μεγέθη επιλύοντας το σύστημα των εξισώσεων του σταδίου 6. Στη συνέχεια υπολογίζονται οι τιμές των ροπών στα άκρα των μελών χρησιμοποιώντας τις εκφράσεις του σταδίου 5 και χαράζεται το διάγραμμα των ροπών. 8. Από τις ροπές στα άκρα των μελών και την εξωτερική φόρτιση, χαράζεται το διάγραμμα των τεμνουσών και εάν είναι δυνατόν και των αξονικών. Εάν υπάρχει ισορροπία με την εξωτερική φόρτιση τότε το πρόβλημα έχει επιλυθεί σωστά.

3 ο Παράδειγμα Στον φορέα του σχήματος ζητούνται τα διαγράμματα Μ, Q, N. 00 knm 0 kn/m,5 I 50 kn I m 6m ΛΥΣΗ u Βαθμός Κινηματικής αοριστίας Θεμελιώδης φορέας E,5I *φ Ελαστική γραμμή λόγω φόρτισης Ελαστική γραμμή λόγω

4 u 6 6 *u Ελαστική γραμμής λόγω u (γ) Εντατικά μεγέθη M M M Q u 5 0,5 0,75 u u 5 0,75 u 5 0, u 5 0,75 0,875 u (δ) Ισορροπίες 00 M M Q M 00 () Q 0 () M Από αντικατάσταση 5 () 0,75 u ,75 5 0,75 0,875 u 0 ()

5 5 (ε) Από επίλυση συστήματος: Από αντικατάσταση: M 70, u 7, 5 0,5 70 0,75 7, 7,50 knm M M (στ) Διαγράμματα ,75 7, 7,50 knm 5 0,7570 8,50 knm 7,50 6,5 - -,75 8,50 [M] - [Q] - [N] 7, ,5 Παρατηρήσεις. Τα διαγράμματα τεμνουσών προκύπτουν πάντα από τα διαγράμματα ροπών από ισορροπίες. 7,50 7, , ,5 = 8,5, ,50 Q 6,5 δεξιόστροφη 6,5,75 Q,75 αριστερόστροφη

6 6. Ποιοτική Παρατήρηση Αν επιλυθεί το ίδιο πρόβλημα με ροπή αδρανείας στύλου ίση με διπλάσια της ροπής αδρανείας δοκού, προκύπτει το ακόλουθο διάγραμμα ροπών [M ] 60 Είναι προφανής η αύξηση των ροπών προς τη μεριά του ακαμπτότερου μέλους.

7 7 ο Παράδειγμα 5 EA m kn/m m 00 kn m 5 m (α) Στον φορέα του σχήματος ζητούνται τα Μ, Q, N. (β) Πόση είναι η στροφή του άκρου. Δεδομένα: I = cm, A = 5cm, E =, 0 8 kn/m. ΛΥΣΗ φ V Βαθμός Κινηματικής αοριστίας Θεμελιώδης φορέας

8 8 Ελαστική γραμμή λόγω φόρτισης φ = V = *φ *v 0,5 Ελαστική γραμμή λόγω Ελαστική γραμμή λόγω (γ) Εντατικά μεγέθη M, M, M M 0,5, M, Q

9 9 (δ) Ισορροπίες EA/ V M M M Q 00 M EA () Q v 00 () M M () 5 5,6 0,v () EA () 0, 0, 7v () 5 5 (ε) Από επίλυση συστήματος: 5, 6 7,805, v Από αντικατάσταση στις σχέσεις (γ) προκύπτουν οι τιμές: M M,8 knm, M 7,8 knm, M 9,6 knm, M 5,6 knm 5, knm, F 9,95 knm (στ) Διαγράμματα 5, 9,6,8 5,6 [M] 7,8

10 0,86 9,95 0, 7,05 5,86 [Q] [N] 5,86 8,9. Χρησιμοποιώντας την Α.Δ.Ε., και θεωρώντας τον () ως απλό πρόβολο η στήριξη του οποίου πάνω στον (), που είναι στερεός φορέας, αποτυπώνεται ως έδαφος με δεδομένη στροφή φ, μπορούμε να υπολογίσουμε το φ. [ ~ M ] 5,6 M 5, M dx 5 9,879 0 rad Παρατηρήσεις. Ίδιο τρόπο αντιμετώπισης έχουν και περιπτώσεις με ελαστικές στηρίξεις, αφού η ελαστική EA ράβδος ταυτίζεται με την περίπτωση ελατηρίου σταθεράς k. I

11 . Ποιοτική παρατήρηση. Εάν EA το σημείο είναι ακίνητο. Στην περίπτωση αυτή η ελαστική γραμμή είναι επαλληλία των ελαστικών γραμμών λόγω φόρτισης και στροφής στον. Άρα για οποιαδήποτε τιμή κατανεμημένου φορτίου και μηκών των μελών, αναμένεται πάντα η ακόλουθη μορφή του διαγράμματος [Μ].

12 ο Παράδειγμα 5 m θ 50 kn m ΕΙ σταθ 5 m 5 m Στον φορέα του σχήματος ζητούνται τα διαγράμματα Μ, Q. ΛΥΣΗ δ 5 5 φ u u Λόγω ύπαρξης μέλους (): u u Θεμελιώδης φορέας Λόγω ύπαρξης μέλους (5): fu 5 Άρα βαθμός κινηματικής αοριστίας : έστω & u

13 0,0 ΕΙ φ = 5,85 5 0,007 0,7 9 sinθ=0,7 u = 0,75 ΕΙ ΕΙ 0,5 ΕΙ *φ 0,875ΕΙ ,069 ΕΙ 6 *u Ελαστική γραμμή λόγω = Ελαστική γραμμή λόγω u Σημείωση: Επειδή η φόρτιση είναι επικόμβια, δεν αναπτύσσεται ελαστική γραμμή λόγω φόρτισης. (γ) (δ) Εντατικά μεγέθη M 5, ,7u M 5 0,557 0,08u 6 M u M 0,75u, 6 M M 0, 6 5 M 0,5 6 u M 0,5 0,75u 6 M u M 0,875u 6 Ισορροπίες, M 5 M θ Q 5 θ 50 M Q Q M M5 M () Fx 0 Q5 sin Q Q 50 ()

14 Από αντικατάσταση: 0,75u 0,557 0,08u 0,6 () 0,56u () Επίσης { 0,0 0,007u } 0,7 0,75 0,875u 0,069u 50 () 0,66 0, 7u 50 () (ε) Από επίλυση συστήματος: u 7, 07, 79, (στ) Διαγράμματα 5, 59, [Μ] 80,5 50,8 6, 5, [Q] 5,7

15 5 ο Παράδειγμα 0 kn/m 5 5 m 6 ΕΙ σταθ 8m 7 5 m 7 m 7 m 5 m (α) Στον φορέα του σχήματος ζητούνται τα Μ, Q. (β) Πόση είναι η βύθιση του σημείου. Δεδομένα: I = cm, E =, 0 8 kn/m. ΛΥΣΗ Ο φορέα είναι συμμετρικός ως προς κατακόρυφο άξονα συμμετρίας που διέρχεται από το. Επειδή και η φόρτιση είναι συμμετρική ως προς τον ίδιο άξονα, οι μετατοπίσεις και στροφές καθώς και τα εντατικά μεγέθη είναι συμμετρικά ως προς τον ίδιο άξονα. Για το λόγο αυτό και λόγω του αμετάβλητου του μήκους των (6) και (5), δεν υπάρχει οριζόντια μετατόπιση των ζυγωμάτων (5) και (6). Επίσης δεν υπάρχουν και κατακόρυφες μετατοπίσεις των κόμβων και 6, λόγω των μελών () και (56) αντιστοίχως. Έτσι οι κόμβοι και 5 δεν έχουν επίσης ούτε κατακόρυφη μετατόπιση λόγω των μελών () και (56). Έτσι ο βαθμός κινηματικής αοριστίας είναι δύο: οι στροφές και αφού φ = - φ 6 και φ = - φ 5 λόγω συμμετρίας. φ φ φ φ Βαθμός κινηματικής αοριστίας Θεμελιώδης φορέας

16 , 07 7,07 φ = 8 8 *φ φ = Ελαστική γραμμή λόγω φόρτισης Ελαστική γραμμή φορές και μέλους (6) λόγω συμμετρικών φ =. φ = 7, 07 7,07 *φ φ = Ελαστική γραμμή φορές και μέλους (5) λόγω συμμετρικών φ =. (Στα σχήματα σημειώνονται αριθμητικά οι ελαστικές γραμμές και ροπές που ενδιαφέρουν για το σχηματισμό των εξισώσεων ισορροπίας.)

17 7 (γ) Εντατικά μεγέθη M M 0, 5 8 M M 0,50 8 M M 0,9 6 6 M M 0,5657 0, 88 7, 07 7, 07 M M 0, 88 0,5657 7, 07 7, 07 M 960 M 960 0, (δ) Ισορροπίες M M 6 M 5 M M M M M6 () M M5 () 0,50 0,5657 0, 88 0,9, 086 0, 88, 77 () 0, 88 0, ,08 0, 88 0, () (ε) Από επίλυση του συστήματος: 85, 5 67,7,

18 8 Από αντικατάσταση στις σχέσεις (γ) προκύπτει: M M 9,5kNm, M 7,78kNm, M 9,7068kNm, M6 8,79kNm, M5 55,0756kNm 8,79kNm (στ) Διαγράμματα 0 67, 8,8 57, 8,8 7,8 7,8 9,7 9,7 55, 0 5, - - 5, - 96, 96, [Μ] 6, 6, [Q] Χρησιμοποιώντας την Α.Δ.Ε. και θεωρώντας το () ως απλό πρόβολο, η στήριξη του οποίου πάνω στον υπόλοιπο στερεό φορέα αποτυπώνεται από τη δεδομένη στροφή φ μπορεί να υπολογισθεί η μετατόπιση στον. ~ M 67,7 M v M dx 57, 8, , v v, 6cm

19 9 5 ο Παράδειγμα 50 kn 50 kn 0 o C I,,5h 5 I,,5h 6 0 o C 0 o C 0 o C I, h I, h I, h 0 o C m 0,5cm 0,5cm m 5m 5m m Για την δεικνυόμενη φόρτιση, διαφορά θερμοκρασίας και υποχωρήσεις στηρίξεων, να υπολογισθούν τα διαγράμματα Μ, Q. Δίδονται: Θερμοκρασία κατασκευής : Τ ο =5 ο C, a t = 0-5, h = 0cm, = knm. ΛΥΣΗ Ο φορέα είναι συμμετρικός με συμμετρική φόρτιση ως προς κατακόρυφο άξονα συμμετρίας που διέρχεται από το 5. Άρα δεν υπάρχει οριζόντια μετατόπιση στο (56) και λόγω της ύπαρξης του μέλους (5) δεν υπάρχει ούτε κατακόρυφη μετατόπιση στο 5. Θα αναλυθεί λοιπόν ο μισός φορέας. φ 5 u Βαθμός κινηματικής αοριστίας Θεμελιώδης φορέας Επειδή η φόρτιση είναι επικόμβια δεν αναπτύσσεται ελαστική γραμμή λόγω φόρτισης. Θερμοκρασιακή μεταβολή Η ανάλυση της θερμοκρασίας σε αξονικού τύπου και καμπτικού τύπου φαίνεται παρακάτω:

20 0 0 o C 5 o C -5 o C = 0 o C 5 o C Επειδή η θερμοκρασία κατασκευής είναι Το = 5 ο 5 o C C, είναι προφανές ότι η θερμοκρασιακή μεταβολή είναι μόνο καμπτικού τύπου ΔΤ=5-(-5)=0. Οι ελαστικές γραμμές λόγω διαφοράς θερμοκρασίας φαίνονται στο σχήμα. Δεν αναπτύσσεται ελαστική γραμμή στο αμφίπακτο υπάρχουν όμως εντατικά μεγέθη που δημιουργούνται λόγω του μηδενισμού των στροφών που αναπτύσσονται λόγω θερμοκρασιακής διαφοράς στο αντίστοιχο ισοστατικό μέλος. t E I,5h t E I,5h 6E I 5 0,005 t h 0,005 0,005 6E I 5 E I 5 0,005 0,005 Ελαστική γραμμή λόγω θερμοκρασίας,7 φ = E I 5 6E I 5 E I Ελαστική γραμμή λόγω μετατόπισης στηρίξεως 5 / *φ 6E I,7 5 6E I cos sin 5 5 *u 6E I u = Ελαστική γραμμή λόγω φ = Ελαστική γραμμή λόγω u =

21 Ανάλυση τελευταίας ελαστικής γραμμής V sin φ φ Πρέπει sin V cos V tan cos cos,7,7 sin (γ) Εντατικά μεγέθη T M cos sin u M 6, 5 0, ,677u h, 7,7 t T 8 6 M 0, 005 u M, 6 0, u, 5h t 5 5 T 6 M 0, 005 u M 6 0,8 0, u, 5h t 5 5 Q 0, 005 u Q 00,8 0, 8 0, 096u (δ) Ισορροπία 50 M 5 M 5 0 M Q 5 M M () Mo 0 () 5

22 6, 5 0,6708 0,677u,6 0, u, 708 0,07u 78, 5 () 50 Q5 M ,6 0,96 0,9u,6 0, u 0,56 0, u,6 () (ε) Από επίλυση του συστήματος των εξισώσεων () & () προκύπτει: 85, 8 7,985 u u 0, 6cm, 0, 0rad Από αντικατάσταση: M 6,kNm, M5 (στ) Διαγράμματα 68, 6,kNm, M5 68,kNm 6, 6, 8,6 8,6 [M],9 [Q],9 Από ισορροπίες των κομβων και προκύπτει το διάγραμμα των αξονικών.,9 8,6 8,6 φ V,9/ sin V,5 N,5cos N 7,86 6,

23 [Ν] 7,86 6, 7,86 Ελαστική γραμμή

24 6 ο Παράδειγμα e 0, m f 0,55m e 0,m m V 8m ) Να χαραχθούν τα διαγράμματα Μ, Q του πλαισίου του σχήματος, συναρτήσει της δύναμης προεντάσεως V της δοκού. ) Αν το πλαίσιο πρόκειται να αναλάβει στο ζύγωμα οριζόντια φόρτιση 0kN και κατακόρυφη φόρτιση 0 kn/m, να βρεθεί η δύναμη προεντάσεως V έτσι ώστε να μηδενίζεται μία από τις μέγιστες αναπτυσσόμενες ροπές και ταυτόχρονα οι υπόλοιπες να έχουν όσο το δυνατό μικρότερο μέγεθος. u φ φ ΛΥΣΗ Βαθμός κινηματικής αοριστίας Θεμελιώδης φορέας Η προένταση της δοκού του πλαισίου είναι μια φόρτιση που δημιουργεί στην αντίστοιχη ισοστατική αμφιέρειστη δοκό δύο συγκεντρωμένες δυνάμεις στα άκρα της, και ένα ομοιόμορφο ql 8Vf αντιφορτίο q α που προκαλεί στο μέσο ροπή ίση με Vf. Άρα Vf q. Το 8 l φορτίο αυτό είναι ομοιόμορφο αφού το καλώδιο είναι παραβολικό.

25 5 α V α V q α Το όλο σύστημα αυτό δυνάμεων και φορτίων ισοδυναμεί με τις ακόλουθες δυνάμεις και φορτία πάνω στον ουδέτερο άξονα, λόγω της μικρής γωνίας α: Ve Vf l q α Vf l Ve V l Έτσι λοιπόν στην αμφίπακτη δοκό του θεμελιώδους φορέα φορέα, όπως φαίνονται στην ελαστική q l γραμμή λόγω προέντασης, αναπτύσσονται οι θεμελιώδεις ροπές Ve και : V0, 0,55 0,7V φ = 8 q α 6 8 *φ Ελαστική γραμμή λόγω προέντασης Ελαστική γραμμή λόγω φ = u = u = 8 8 φ = * u 6 6 *φ Ελαστική γραμμή λόγω u = Ελαστική γραμμή λόγω φ =

26 6 (γ) Εντατικά μεγέθη M u 6 M 0,7V 8 8 M 0,7V 8 8 M M Q Q 6 u 6 6 u 6 u u 6 6 (δ) Ισορροπία M M M M Q Q M M () M M () Q Q 0 (),5 0,5 0,875u 0,7V () 0, 5,50 0,75u 0,7V () 0,875 0,75 0, u 0 () (ε) Από επίλυση του συστήματος ()-(): 0,8V 0,6V 0,9V,, u

27 7 Από αντικατάσταση στις εκφράσεις των ροπών προκύπτει: M M 0,5V, M M 0,09V M 0,0V (στ) Διαγράμματα 0,6V 0,5V 0,09V 0,5V 0,V [M πρ ] 0,0V Το διάγραμμα τεμνουσών στο ζύγωμα είναι επαλληλία των τεμνουσών που αναπτύσσεται λόγω των ακραίων ροπών και της φόρτισης λόγω προέντασης. 0,5V 0,09V 0,V 0,V 0,006V 0,006V = = 0,78V 0,006V 0,006V q 0,75V 0,75V - 0,7V [Q πρ ] 0,088V 0,088V ) Για να υπολογίσουμε το διάγραμμα ροπών για την ομοιόμορφη φόρτιση και τη συγκεντρωμένη δύναμη, όπως φαίνεται στο παρακάτω σχήμα:

28 8 0 kn 0kN/m Αρκεί να αντικατασταθεί το πρώτο από τα τέσσερα διαγράμματα της σελίδας 5 με το 0kN/m Τα δεύτερα μέλη των εξισώσεων (), () και () γίνονται 60, -60 και 0 αντίστοιχα. Μετά την επίλυση προκύπτει το κατώτερο διάγραμμα ροπών: 5, 0,5 7, [M φορ ],6 Από επαλληλία των M M προκύπτει:

29 9 M 5, 0, 5V M 5, 0, 5V M m 7, 0, 6V M 0,5 0, V M 0,5 0, 09V M,6 0,0V Αποδεικνύεται, μετά από δοκιμές, μηδενίζοντας διαδοχικά τις μέγιστες ροπές που αναπτύσσονται m είτε στο μέσο είτε στις άκρες της δοκού ότι μηδενίζοντας τη ροπή M, προκύπτει η μικρότερη στο μέγεθος κατανομής ροπών. Και άρα: M m 0 V 5kV 6,7 69,5 6, 55, [M τελ ],

30 0 Ποιοτική χάραξη διαγραμμάτων με τη χρήση της μεθόδου μετατοπίσεων

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων: ΑΣΚΗΣΗ 7 ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα M, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα)

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008

Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008 1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 008 ΘΕΜΑ 1o Για τον φορέα του σχήματος ζητούνται: Tο Γεωμετρικό Κύριο Σύστημα με τα ελάχιστα άγνωστα μεγέθη. Το μητρώο δυσκαμψίας Κ του

Διαβάστε περισσότερα

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΘΕΜΑ ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες) ΕΠΙΛΥΣΗ: Ο φορέας χωρίζεται στα τμήματα Α και Β. Το τμήμα Α είναι τριαρθρωτό τόξο. Απομονώνοντας το Α και

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων. ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΔΕΥΤΙΚΟ ΙΔΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 8 Φεβρουαρίου Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ ( η περίοδος χειμερινού

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

Μέθοδοι των Μετακινήσεων

Μέθοδοι των Μετακινήσεων Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις. Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό.

ΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό. 1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΣΤΑΤΙΚΗ ΙΙΙ - ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΘΕΜΑ 1o Για τον φορέα του σχήματος, να υπολογιστούν και σχεδιαστούν τα πλήρη διαγράμματα Μ όλων των στοιχείων του φορέα, λόγω ταυτόχρονης

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 30 Ιουνίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουνίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ (1

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

Κεφάλαιο 5 Φορείς με στοιχεία πεπερασμένης δυστένειας

Κεφάλαιο 5 Φορείς με στοιχεία πεπερασμένης δυστένειας Κεφάλαιο Φορείς με στοιχεία πεπερασμένης δυστένειας Σύνοψη Οι ασκήσεις 0, και του κεφαλαίου αυτού αφορούν σε κινητούς ατενείς φορείς, οι οποίοι συμπεριλαμβάνουν μεταξύ άλλων και στοιχεία πεπερασμένης δυστένειας

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Ανάλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) ο Θεώρημα Castigliano Δ06- Το ο ΘεώρημαCastigliano αποτελεί μια μέθοδο υπολογισμού της μετακίνησης (μετάθεσης ή στροφής) ενός σημείου του φορέα είτε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 2. Δικτυώματα/ Μηχανική Υλικών 1 Σκοποί ενότητας Να είναι σε θέση ο φοιτητής να μπορεί να ελέγχει την ισο-στατικότητα

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Αναλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

Κεφάλαιο 10 Προσδιορισμός των βαθμών ελευθερίας

Κεφάλαιο 10 Προσδιορισμός των βαθμών ελευθερίας Κεφάλαιο 0 Προσδιορισμός των βαθμών ελευθερίας Σύνοψη Η άσκηση 0, που περιέχεται στο κεφάλαιο αυτό, αναφέρεται σε μία μεγάλη σειρά απλών και σύνθετων στατικών φορέων, για τους οποίους ζητείται ο προσδιορισμός

Διαβάστε περισσότερα

1 η Επανάληψη ιαλέξεων

1 η Επανάληψη ιαλέξεων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ

Διαβάστε περισσότερα

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών

Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ I. Διαγράμματα M, Q, N Ισοστατικών Δοκών Τ.Ε.Ι. ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΣΚΗΣΕΙΣ ΣΤΤΙΚΗΣ I ιαγράμματα M, Q, N Ισοστατικών οκών Κόκκινος Τριαντ., Ph.D. εκέμβριος 2010 σκήσεις Στατικής I 1 Άσκηση 1 60 N/m 180

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,, ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 119 Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 6.1 Εισαγωγή Όταν ένα δομικό στοιχείο καταπονείται με ροπές των οποίων τα διανύσματα είναι παράλληλα προς τον άξονα του στοιχείου, δηλαδή προκαλούν συστροφή του στοιχείου

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

4. Επίλυση Δοκών και Πλαισίων με τις

4. Επίλυση Δοκών και Πλαισίων με τις ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4. Επίλυση Δοκών και Πλαισίων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ Στην Τεχνική Μηχανική Ι μελετώνται επίπεδα δικτυώματα. Τα δικτυώματα είναι φορείς που απαρτίζονται από ευθύγραμμες ράβδους

Διαβάστε περισσότερα

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών 5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Σύγχρονες μέθοδοι ανάλυσης κατασκευών

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα

( ) ( ) ( ) Ασκήσεις στην ελαστική γραµµή. Γενικές Εξισώσεις. Εφαρµογές. 1. Η γέφυρα. ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος

( ) ( ) ( ) Ασκήσεις στην ελαστική γραµµή. Γενικές Εξισώσεις. Εφαρµογές. 1. Η γέφυρα. ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος 005 Ασκήσεις στην ελαστική γραµµή Γενικές Εξισώσεις () p w ( x) = x+ M ( x) = w ( x) p w ( ) ( ) ( ) ( ) ( x) = x + x+ onst x p x onst x dm x =

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ. Ασκήσεις 1 έως 12

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ. Ασκήσεις 1 έως 12 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙΔΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2008-2009 ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ασκήσεις 1 έως 12 Για αποκλειστική

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙI

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙI ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙI ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός ΤΡΙΚΑΛΑ, ΔΕΚΕΜΒΡΙΟΣ 4 ΠΕΡΙΕΧΟΜΕΝΑ. Η ΜΕΘΟΔΟΣ ΤΩΝ ΤΡΙΩΝ ΡΟΠΩΝ.... Η ΜΕΘΟΔΟΣ

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα

Πολυβάθμια Συστήματα Πολυβάθμια Συστήματα Εισαγωγή Πολυβάθμια Συστήματα: Δ19-2 Η βασική προϋπόθεση για την προσομοίωση μίας κατασκευής ως μονοβάθμιο ταλαντωτή είναι πως η μάζα, ο μηχανισμός απόσβεσης και η ακαμψία μπορούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία. Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ 4-Φορείς και Φορτία Φ. Καραντώνη, Δρ. Πολ. Μηχανικός Επίκουρος καθηγήτρια Φ. Καραντώνη Τεχνική Μηχανική 1 φορείς Κάθε κατασκευή που μπορεί

Διαβάστε περισσότερα

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί:

8. ΔΙΚΤΥΩΜΑΤΑ. 8.1 Ορισμοί: 8. ΔΙΚΤΥΩΜΑΤΑ Σχ. 8.1 Παραδείγματα δικτυωμάτων 8.1 Ορισμοί: Δικτύωμα θα λέγεται ένας σύνθετος φορέας που όλα τα μέλη του είναι ράβδοι. Παραδείγματα δικτυωμάτων δίνονται στο σχήμα παραπάνω. Πλεονέκτημα

Διαβάστε περισσότερα

Κεφάλαιο 4 Υπολογισμός γραμμών επιρροής

Κεφάλαιο 4 Υπολογισμός γραμμών επιρροής Κεφάλαιο Υπολογισμός γραμμών επιρροής Σύνοψη Οι ασκήσεις του κεφαλαίου αυτού αφορούν τις μεθόδους υπολογισμού (α) γραμμών επιρροής μεγεθών έντασης (Ομάδα Λ) και (β) γραμμών επιρροής μεγεθών παραμόρφωσης

Διαβάστε περισσότερα

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 4 ΕΝΕΡΓΕΙΑΚΕΣ ΜΕΘΟ ΟΙ ΜΕΛΕΤΗΣ ΕΥΣΤΑΘΕΙΑΣ

ΚΕΦΑΛΑΙΟ 4 4 ΕΝΕΡΓΕΙΑΚΕΣ ΜΕΘΟ ΟΙ ΜΕΛΕΤΗΣ ΕΥΣΤΑΘΕΙΑΣ ΚΕΦΑΛΑΙΟ 4 4 ΕΝΕΡΓΕΙΑΚΕΣ ΜΕΘΟ ΟΙ ΜΕΛΕΤΗΣ ΕΥΣΤΑΘΕΙΑΣ 4.1 Εισαγωγή Η μέθοδος Euler, η οποία παρουσιάστηκε στο Kεφάλαιο 3 και εφαρμόστηκε για την παρουσίαση προβλημάτων γεωμετρικά μη γραμμικής συμπεριφοράς,

Διαβάστε περισσότερα

Ανάλυση Ισοστατικών ικτυωµάτων

Ανάλυση Ισοστατικών ικτυωµάτων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Άσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους:

Άσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους: Άσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους: (α) Επίπεδο δικτύωµα (β) Επίπεδο πλαίσιο Ζητείται να µορφωθούν συµβολικά τα µητρώα στιβαρότητας των δύο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. 1. Δ 2. Α 3. Β 4. Α 5. Α Β. 1.Λ 2.Λ 3.Λ 4.Σ 5.Λ Ν 1 Ν 2

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. 1. Δ 2. Α 3. Β 4. Α 5. Α Β. 1.Λ 2.Λ 3.Λ 4.Σ 5.Λ Ν 1 Ν 2 ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Δ Α Β 4 Α 5 Α Β Λ Λ Λ 4Σ 5Λ Ν Ν ΘΕΜΑ Β Β Σωστή η α) Αρχικά απο την ισορροπία έχουμε N+ N = w= 00N και ως προς το

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΟΧΗ ΥΛΙΚΩΝ

ΣΤΟΙΧΕΙΑ ΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΤΟΙΧΕΙΑ ΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΟΧΗ ΥΛΙΚΩΝ Σημειώσεις για το μάθημα Αντοχή Υλικών ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός

Διαβάστε περισσότερα

3. ΥΠΟΛΟΓΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ

3. ΥΠΟΛΟΓΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ 3. ΥΠΟΛΟΙΣΜΟΣ ΔΥΝΑΜΕΩΝ ΣΤΗΡΙΞΗΣ 3.1 Ορισμός: Φορέας λέγεται ένα στερεό σώμα που δέχεται δυνάμεις (και θέλουμε τελικά να ελέγξουμε την αντοχή του). Είδη γραμμικών φορέων: ράβδος, δοκός, εύκαμπτος γραμμικός

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

( ) υ υ. ΘΕΜΑ Α Α1 - α Α2 - α A3 - α Α4 - γ Α5 α - Λάθος, β - Σωστό, γ - Λάθος, δ - Λάθος, ε - Σωστό.

( ) υ υ. ΘΕΜΑ Α Α1 - α Α2 - α A3 - α Α4 - γ Α5 α - Λάθος, β - Σωστό, γ - Λάθος, δ - Λάθος, ε - Σωστό. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α - α Α - α A - α Α4 - γ Α5 α - Λάθος, β - Σωστό,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΚΡΟΥΣΕΙΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΚΡΟΥΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ-ΚΡΟΥΣΕΙΣ ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΖΗΤΗΜΑ Ο Στις ερωτήσεις -5 επιλέξτε τη σωστή απάντηση. Αρμονικό κύμα διαδίδεται κατά μήκος γραμμικού ελαστικού

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός ΤΡΙΚΑΛΑ, ΑΠΡΙΛΙΟΣ 014 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ...3 1.1 Το στατικό πρόβλημα...

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ

ΑΣΚΗΣΗ 1 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH AAΣΚΕΥΗ Η αρθρωτή κατασκευή του σχήματος έπρεπε να απαρτίζεται από τρείς όμοιες μεταλλικές ράβδους, μήκους η κάθε μία με ΕΑ σταθ. και θεωρούμενες ως αβαρείς, οι οποίες να συναντώνται

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΟΛΟΣΩΜΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΟΛΟΣΩΜΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΟΛΟΣΩΜΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ Αντικείμενο Σκοπός Τεχνικής Μηχανικής : Ο προσδιορισμός της καταπόνησης ενός φορέα. Η σχεδίαση και διαστασιολόγηση ενός φορέα θα πρέπει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ Ενότητα Β ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΙΑΚΡΙΣΗ ΦΟΡΤΙΩΝ-ΣΤΗΡΙΞΕΩΝ-ΕΠΙΠΟΝΗΣΕΩΝ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ

Διαβάστε περισσότερα

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις

Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής 3 για συνδυασμό. Λύση. Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις 3 περιπτώσεις Εφαρμογή 9 Να γίνει έλεγχος διάτμησης στη δοκό της εφαρμογής για συνδυασμό φόρτισης.5g.5q. Xάλυβας συνδετήρων S400 Λύση Τα διαγράμματα τεμνουσών δυνάμεων για κάθε μία από τις περιπτώσεις φόρτισης που αναφέρονται

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης

ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 1: δυναμικά φορτία Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΙΑΦΡΑΓΜΑΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ ΠΟΛΥΩΡΟΦΟΥ ΧΩΡΙΚΟΥ ΠΛΑΙΣΙΟΥ ΓΕΝΙΚΗ ΠΕΡΙΠΤΩΣΗ

ΠΑΡΑΡΤΗΜΑ ΙΑΦΡΑΓΜΑΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ ΠΟΛΥΩΡΟΦΟΥ ΧΩΡΙΚΟΥ ΠΛΑΙΣΙΟΥ ΓΕΝΙΚΗ ΠΕΡΙΠΤΩΣΗ Στατική και υναµική Ανάλυση ΠΑΡΑΡΤΗΜΑ ΙΑΦΡΑΓΜΑΤΙΚΗ ΛΕΙΤΟΥΡΓΙΑ ΠΟΛΥΩΡΟΦΟΥ ΧΩΡΙΚΟΥ ΠΛΑΙΣΙΟΥ ΓΕΝΙΚΗ ΠΕΡΙΠΤΩΣΗ.1 Περιγραφή του θέµατος Η αξιολόγηση της λειτουργίας των µονώροφων επίπεδων πλαισίων σε οριζόντιες

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Έργο Ιδιοκτήτες Θέση ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΓΙΑ ΤΟ ΜΕΤΑΛΛΙΚΟ ΦΟΡΕΑ Η µελέτη συντάχθηκε µε το πρόγραµµα VK.STEEL 5.2 της Εταιρείας 4M -VK Προγράµµατα Πολιτικού Μηχανικού. Το VK.STEEL είναι πρόγραµµα επίλυσης χωρικού

Διαβάστε περισσότερα

Δημήτρης Αγαλόπουλος Σελίδα 1

Δημήτρης Αγαλόπουλος Σελίδα 1 ΛΥΣΗ Δ1. Η ράβδος διαγράφει γωνία μέχρι να συγκρουστεί με το σώμα (Σ 1 ). Τη χρονική στιγμή t=0 βρίσκεται στην οριζόντια θέση (Α), την χρονική στιγμή t 1 γίνεται κατακόρυφη θέση (Γ) και συγκρούεται με

Διαβάστε περισσότερα

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το

Διαβάστε περισσότερα

Κεφάλαιο 1 Έλεγχος της κινηματικής ευστάθειας και υπολογισμός των αντιδράσεων στήριξης

Κεφάλαιο 1 Έλεγχος της κινηματικής ευστάθειας και υπολογισμός των αντιδράσεων στήριξης Κεφάλαιο Έλεγχος της κινηματικής ευστάθειας και υπολογισμός των αντιδράσεων στήριξης Σύνοψη Οι ασκήσεις του κεφαλαίου αυτού αφορούν τον έλεγχο της κινηματικής ευστάθειας, δηλαδή της στερεότητας, γραμμικών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Τάσεις λόγω απλής κάμψης-επίπεδο φόρτισης περιέχει άξονα συμμετρίας της διατομής

Τάσεις λόγω απλής κάμψης-επίπεδο φόρτισης περιέχει άξονα συμμετρίας της διατομής Τάσεις λόγω απλής κάμψης-επίπεδο φόρτισης περιέχει άξονα συμμετρίας της διατομής Διατομή με άξονα συμμετρίας στο επίπεδο φόρτισης Δεν αναπτύσσονται διατμητικες τάσεις με εφαρμογή μόνο ροπής Διάνυσμα ροπής

Διαβάστε περισσότερα

2η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ HERTZ

2η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ HERTZ . η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ RTZ.. Επαφή στερεών σωμάτων Η επαφή εφαπτόμενων στερών σωμάτων γίνεται διαμέσου της εξωτερικής τους επιφάνειας. Η μακροσκοπικά μετρούμενη Επιφάνεια Επαφής καλείται Ονομαστική

Διαβάστε περισσότερα

Περίληψη μαθήματος Ι

Περίληψη μαθήματος Ι ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΛΙΚΩΝ, ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΓΕΝΙΚΟ ΤΜΗΜΑ, ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ, ΑΠΘ Περίληψη μαθήματος Ι Τυπολόγιο μεθοδολογία στατικής Περίληψη Ι: Ισορροπία υλικού σημείου & στερεού σώματος, δικτυώματα,

Διαβάστε περισσότερα

Προτεινόμενα Θέματα Εξαμήνου - Matlab

Προτεινόμενα Θέματα Εξαμήνου - Matlab ΕΘΝΙΚΟ ΜΕΤΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑ ΟΜΟΤΑΤΙΚΗ ΕΡΓΑΤΗΡΙΟ ΤΑΤΙΚΗ ΚΑΙ ΑΝΤΙΕΙΜΙΚΩΝ ΕΡΕΥΝΩΝ Ακαδ. Έτος: 2012-2013 Μάθημα: Εφαρμογές Ηλεκτρονικού Υπολογιστή Τρίτη, 27/11/2012 ιδάσκοντες:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 - ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 - ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 - ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

, g 10 m / s, / 2, / 2, Απάντηση

, g 10 m / s, / 2, / 2, Απάντηση Φυσική κατεύθυνσης Στη διάταξη του διπλανού σχήματος η ράβδος Σ 1 είναι ομογενής, έχει μάζα 1 =0,3kg, μήκος (ΑΓ) = l = 0,8 και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα κάθετο

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα