1999 by CRC Press LLC

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1999 by CRC Press LLC"

Transcript

1 Poularias A. D. Probability ad Stochastic Processes The Hadboo of Formulas ad Tables for Sigal Processig. Ed. Aleader D. Poularias Boca Rato: CRC Press LLC, by CRC Press LLC

2 34 Probability ad Stochastic Processes 34. Aioms of Probability 34.. Aioms of Probability 34. Aioms of Probability 34. Coditioal Probabilities Idepedet Evets 34.3 Compoud (Combied)Eperimets 34.4 Radom Variable 34.5 Fuctios of Oe Radom Variable (r.v.) 34.6 Two Radom Variables 34.7 Fuctios of Two Radom Variables 34.8 Two Fuctios of Two Radom Variables 34.9 Epected Value, Momets, ad Characteristic Fuctio of Two Radom Variables 34. Mea Square Estimatio of R.V.'s 34. Normal Radom Variables 34. Characteristic Fuctios of Two Normal Radom Variables 34.3 Price Theorem for Two R.V.'s 34.4 Sequeces of Radom Variables 34.5 Geeral Cocepts of Stochastic Processes 34.6 Statioary Processes 34.7 Stochastic Processes ad Liear Determiistic Systems 34.8 Correlatio ad Power Spectrum of Statioary Processes 34.9 Liear Mea-Square Estimatio 34. The Filterig Problem for Statioary Processes 34. Harmoic Aalysis 34. Maroff Sequeces ad Processes Refereces I. PA ( ),II. PS ( ), III. If AB the PA ( + B) PA ( ) + PB ( )[. S a set of elemets of outcomes {ζ ι } of a eperimet (certai evet), empty set (impossible evet). {ζ ι } elemetary evet if {ζ ι } cosists of a sigle elemet. A + B uio of evets, AB itersectio of evets, evet a subset of S, P(A) probability of evet A. 999 by CRC Press LLC

3 34.. Corollaries of Probability Eample P( ), P( A) P( A),( A complemet set of A) PA ( + B) PA ( ) + PB ( ), PA ( + B) PA ( ) + PB ( ) PAB ( ) PA ( ) + PB ( ) S {hh,ht,th,tt} (tossig a coi twice), A {heads at first tossig} {hh,ht}, B {oly oe head came up} {ht,th}, G {heads came up at least oce} {hh,ht,th}, D {tails at secod tossig} {ht, tt} 34. Coditioal Probabilities Idepedet Evets 34.. Coditioal Probabilities PAM ( ) probability of evet AM PAM ( ) coditioal probaqbility of Agive M. PM ( ) probabilty of evet M PAM ( ) if AM PA PAM ( ) ( ) PM P ( A ) if ( ) AM A ( A M ) PAM PM ( ) ( ) if M A PM ( ) P( A+ BM) P( AM) + P( BM) if AB Eample P( f ) 6 /, i, L 6. M { odd} { f, f, f }, A { f }, AM { f }, P( M) 36 /, P( AM) 6 /,the i P( f eve) P( AM)/ P( M) 3 / 34.. Total Probability PB ( ) PBA ( ) PA ( ) + L + PBA ( ) PA ( ) arbitrary evet, AA i j,, L, A + L+ A S certai evet Baye's Theorem 3 5 PBA ( i) PA ( i) PA ( i B) PBA ( ) PA ( ) + + PBA ( ) PA ( ) L i j AA i j, i j,, L, A + A + LA S certai evet, Barbitrary Idepedet Evets PAB ( ) PAPB ( ) ( ) implies A ad B are idepedet evets Properties. PAB ( ) PA ( ) 999 by CRC Press LLC

4 . 3. PBA ( ) PB ( ) PAA ( LA) PA ( ) LPA ( ), Ai idepedet evets 4. PA ( + B) PA ( ) + PB ( ) PAPB ( ) ( ) 5. AB ( A+ B), P( A+ B) P( A+ B), P ( AB) P( A) P( B) If A ad B are idepedet. Overbar meas complemet set. 6. If Ai A A3 are idepedet ad A is idepedet of AA 3 the PAAA ( 3) PA ( ) PA ( ) PA ( 3) PA ( ) PAA ( 3). Also PA [ ( A + A3)] PAA ( ) + PAA ( 3) PAAA ( 3) PA ( ) [ PA ( ) + PA ( ) PA ( ) PA ( )] PA ( ) PA ( + A) PA ( + B+ C) PA ( ) + PB ( ) + PC ( ) PAB ( ) PAC ( ) PBC ( ) + PABC ( ) 34.3 Compoud (Combied, Eperimets SS S Cartesia product Eample S {,,3}, S {heads, tails}, S S S {( heads),( tails),( heads),( tails),(3 heads),(3 tails)} If A S, A S the A A ( A S )( A S ) (see Figure 34.) S A S A A A A S A S FIGURE Probability i Compoud Eperimets PA ( ) PA ( S) where ζ A ad ζ A Idepedet Compoud Eperimets PA ( A) P( A) P( A) Eample P(heads) p, P(tails) q, p+ q, E eperimet tossig the coi twice E E (E eperimet of first tossig), E eperimet of secod tossig), S {h,t} P {h}p P {t}q, E E eperimet of the secod tossig, S S S [ hh, ht, th, tt}, P{ hh} P{} h P{} h p assume idepedece, P{ ht} pq, P{ th} qp, P[ t, t} q. For heads at the first tossig, H { hh, ht} or PH ( ) Phh { } + P{ ht} p + pq p 999 by CRC Press LLC

5 Sum of more Spaces S S + S, S outcomes of eperimet E ad S outcomes of eperimet E. S space of the eperimet E E + E; A A + A where A ad A are evets of E ad E : A S, A S ; PA ( ) PA ( ) + PA ( ) Beroulli Trials PA ( ) probability of evet A, E E E... E perform eperimet times combied eperimet. p probability that evets occurs times i ay order pq ( ) PA ( ) ppa, ( ) qp, + q Eample A fair die was rolled 5 times. 5! 5 ( ) ( 5 )!! 6 6 probability that "four" will come up twice. Eample Two fair dice are tossed times. What is the probability that the dice total seve poits eactly four times? Solutio Evet probability of B occurig four times ad B si times is p 5 B P B 5 {( 6, ),( 5, ),( 34, ),( 43, ),( 5, ),( 6, )}, ( ) 6 p, P( 8) p P { } probability of success of A (evet) will lie betwee ad P { } p( ) pq. The. Approimate value: pq p pq e pq ( ) /, >> πpq DeMoivre-Laplace Theorem p pq pq e ( p)/ pq pq ( ), >> π Poisso Theorem! pq!( )! ( p) a a e e p p a!!,,, p 999 by CRC Press LLC

6 34.3. Radom Poits i Time t t T t a T ( ) λt ( λ a ) a P { i ta} e e, t t ta << T, radom poits i (,T), λ / T. If!!, T, / T λ the approimatio becomes equality. ta. P{oe i ta} e λ λta λt P. lim { oe i t } a λ ta t 3. P ( ( t, t)} e 34.4 Radom Variables Radom Variable a i t λ() t dt t To every outcome ζ of ay eperimet we assig a umber X( ζ ). The fuctio X, whose domai i the space S of all outcomes ad its rage is a set of umbers, is called a radom variable (r.v.) Distributio Fuctio F ( ) P { X } defied o ay umber < <. { X } is a evet for ay real umber Properties of Distributio Fuctio. F( ), F( + ). F ( ) F ( ) for < 3. F ( + ) F ( ) cotiuous from the right Desity Fuctio (or Frequecy Fuctio) a t t λ() tdt!, p α() t dt, α() t λ() t df( ) P { X + } f( ) ; f ( ) lim ; PX { } for cotiuous distributio fuctio; d o f( ) p δ i ( i) desity of discrete type, p F F i ( i) ( i ). i Eample Poisso distributio: PX { } λ λ e. The.!,,, L, λ > f( ) λ λ e δ! ( ) Eample If X is ormally distributed f e m ( ) / σ ( ) with m ad σ5, the the probability σ π m that X is betwee 9 ad,5 is P { X } f9ydy ) ( ) fydy ( ) ( ) + erf σ m erf erf + erf. 89 where error fuctio of erf y dy σ ep( / ) π t t 999 by CRC Press LLC

7 Tables of Distributio Fuctios (see Table 34.) TABLE 34. Distributio ad Related Quatities Defiitios. Distributio fuctio (or cumulative distributio fuctio [c.d.f.]): F ( ) probability that the variate taes values less tha or equal to P{ X } f( u) du. Probability desity fuctio (p.d.f.): f( ); P{ < X } f( ) d; f( ) l 3. Probability fuctio (discrete variates) f( ) probability that the variate taes the value P{ X } 4. Probability geeratig fuctio (discrete variates): u u l df d ( ) 5. Momet geeratig fuctio (m.f.g): Pt () Pt () t f( ), f( ) ( /!),,,,, X L > t t t µ rt Mt () t f( d ). Mt () + µ t+ + + µ L + L,! r! th r Mt () µ r r momet about the origi f( ) d r t M () t M () t M () t X+ Y X Y r r t 6. Laplace trasform of p.d.f.: 7. Characteristic fuctio : L s f () s e f( ) d, X Φ() t e jt f ( ) d, Φ () t Φ () t Φ () t X+ Y X Y 8. Cumulat fuctio: Kt () log Φ(), t KX+ Y() t KX() t + KY() t 9. r th r cumulat: the coefficiet of ( jt) / r! i the epasio of K(t). r th momet about the origi: r r Mt () µ r f( ) d r t r r Φ() t ( j) r t t t. Mea: µ first momet about the origi f ( ) d µ. r th momet about the mea: 3. Variace: σ secod momet about the mea ( µ ) f( ) d µ r µ r ( µ ) f ( ) d 4. Stadard deviatio: σ σ 5. Mea derivatio: µ f( ) d 6. Mode: A fractile (value of r.v.) for which the p.d.f is a local maimum 7. Media: m the fractile which is eceeded with probability /. 999 by CRC Press LLC

8 8. Stadardized r th momet about the mea: µ µ r ηr f( ) d r σ σ 3 9. Coefficiet of sewess: η µ / σ Coefficit of urtois: η 4 µ 4 / σ. Coefficiet of variatio: (stadard deviatio) / mea. Iformatio cotet: I f( )log ( f( )) d 3. r th factorial momet about the origi (discrete case): r σ / µ r () µ ( r) Pt f( ) ( ) L( r + ), X, µ ( r) r t 4. r th factorial momet momet about the mea (discrete case): t 5. Relatioships betwee momets: µ ( r) f( µ )( µ )( µ ) L( µ r+ ), X µ r µ µ µ r µ µ i r r i( ); r r i( ), µ µ, µ i i i i 6. log is the atural logarithm Distributios r r v w v w. Beta: p.d.f f( ) ( ) / Bvw (, ), Bvw (, ) beta fuctio u ( u) du ;r th momet about the r origi ( v+ i)( v+ w+ i) ; mea v/( v+ w) ; variace vw/( v+ w) ( v+ w+ ) ; mode ( v ) /( v+ w+ ), v >, i / / w>; coefficiet of sewess: [ ( w v)( v+ w+ ) ]/[( v+ w+ )( vw) ] ; coefficiet of urtois: ([ 3( v+ w)( v+ w+ ) ( v+ )( w v)]/{ vw( v+ w+ )( v+ w+ 3 )]) + [ v( v w)]/( v+ w) ; coefficiet of variatio: [ w/[ v( v+ w+)]] / ; p.d.f. v w f( ) [( v+ w )! ( ) ]/[( v )!( w )!], v ad w itegers; Bvw (, ) Γ() vγ( w)/ Γ( v+ w) Bwv (, ), Γ() c ( c ) Γ( c ) v w4 v4 w p.d.f. f() vw v w. Biomial:, p is the umber of successes i idepedet Bemoulli trials where the probability of success at each trial is p ad the probability of failure is q p, positive iteger < p <. c.d.f i i F ( ) pq, i i 999 by CRC Press LLC

9 iteger; p.d.f. iteger; momet geeratig fuctio: ; probability geeratig f pq ( ), [ pep( t) + q] fuctio: ( pt + q) ; characteristic fuctio : Φ( t) [ p ep( jt) + q]. momets about the origi: meap, secod p(p + q), third p[( )( ) p + 3p( ) + ] ; momet about the mea: variace pq, third pq(q - p), fourth pq[ + 3pq( )] stadard deviatio : ( pq) / ; mode: p ( + ) p ( + ) ; coefficiet of sewess: ( q p) /( pq) / ; coefficiet of urtois: 3-(6/)+(/pq); factorial momets about the mea: secod pq, third pq( + q) ; coefficiet of variatio ( q/ p) / 3. Cauchy: p.d.f f( ) /[ πb[( a) / b] + ]], α shift parameter, b,scale parameter, < < ; mode a media a ( v )/ v/ 4. Chi-Squared: p.d.f. f( ) [ ep( / )]/[ Γ( v/ )], v (shape parameter) degrees of freedom, < ; v / v / momet geeratig fuctio : ( t), t > / ; characteristic fuctio: Φ( t) ( jt) ; cumulat fuctio: ; r th r cumulat; ; r th r ( v/ )log( jt) v[( r )!] momet about the origi: [ i+ ( v/ )] ; mea v; variace: v; stadard deviatio ( v ) / ; Laplace trasform of the p.d.f: ( + s) v / r i f(). F() v 4 5. Discrete uiform: a a+ b, iteger, a lower limit of the rage, b scale parameter; c.d.f F() ( a+)/ b ; p.d.f. f( ) / b ;probability geeratig fuctio: ( t a a b t )/( t) ;characteristic fuctio: ep[j(a-)t] sih( jtb / )sih( jt / ) / b ; mea: a+ ( b )/ ; variace: ( b )/ ; coefficiet of sewess ; iformatio cotet: log b. 6. Epoetial: <, b scale parameter mea, λ /b alterative parameter; c.d.f F( ) ep( / b) ; p.d.f f( ) ( / b)ep( / b) ; momet geeratig fuctio: /( bt), t > ( / b) ; Laplace trasform of the p.d.f: /( + bs) ; characteristic fuctio: /( jbt) ; cumulat fuctio: log( jbt ) ; r th cumulat: ( r )! b r ; r th momet about the origi: rb! r ; mea: b : variace: b ; stadard deviatio: b; mea deviatio: b/e (e base ad atural log); mode: ; media: b log ; coefficiet of sewess: ; coefficiet of urtosis 9; coefficiet of variatio: ; iformatio cotet: log ( eb ). 7. F-distributio: <, v ad w positive itegers degrees of freedom: p.d.f f( ) [ Γ[ ( v w)]( v/ w) v / + ; r th ( v )/ ( v+ w)/ ]/[ Γ( v) Γ ( w)( + v/ w) ] momet about the origi: [( w/ v) r Γ ( v r) Γ ( w r) /[ Γ ( v) Γ + ( w)], w > r ; mea: w/( w ), w > ; variace: [ w ( v+ w )]/[ v( w ) ( w 4)], w > 4 ; mode [ wv ( )]/[ vw ( + )], / / v > ;coefficiet of sewess: [( v+ w )[ 8( w 4)] ]/[( w 6)( v+ w ) ], w > 6;coefficiet of variatio: [[ ( v + / w ) /[ v9w 4)]], w > by CRC Press LLC

10 a8 f() f() v4 w Gamma: <, b scal e parameter > (or λ /b ), c> shaper parameter; p.d.f f( ) ( / b) c c c [ep( / b)]/[ bγ( c)], Γ( c) ep( u) u du ; momet geeratig fuctio: ( bt), t > / b ; Laplace frasform of the c c p.d.f.: ( + bs) ; characteristic fuctio: ( jbt) ; cumulat fuctio: c log 9 jbt) ; r th cumulat: ( r )! cb r ; r th r momet about the origi: b ( c+ i) ; mea: bc; variace: bc ; stadard deviatio: b c ; mode: b ( c ), c ; coefficiet of sewess: r i c / ; coefficiet of urtosis: 3 + 6/c: coefficiet of variatio: c / f() f() c / c / c c Logoormal: <, m scale parameter media >, µ mea of log X >, m ep µ, µ log m, σ shape parameter stadard deviatio of log X, w ep( σ / ) ; p.d.f f( ) [ / σ( π) ]ep[ [log( / m)] / σ ] r th momet about the origi: m r ep( r σ / ) ; mea: m ep( σ / ) ; variace: mww ( ) : stadard deviatio: mw ( w) / ; mode m/w; media; m; coefficiet of sewess: ( w+ )( w ) / 4 3 ; coefficiet of urtosis: w + w + 3w 3 ; coefficiet of variatio: ( w ) /..8.4 f() m σ m σ.5 F() m σ.5 m σ 3 3. Negative bioomial: y umber of failures (iteger), umber of failures before success i a sequece of y + i i Beroulli trials; p probability of success at each trial, q p, y <, < p < ; c.d.f. Fy ( ) pq; i + y p.d.f. f y pq y ( ) ; momet geeratig fuctio: p ( qep t) ; probability geeratig fuctio: y p ( qt) ;; characteristic fuctio: p [ qep( jt)] ; cumulat fuctio: log( p) log( qep t); Cumulats: first 3 4 q / p, secod q / p, third q( + q)/ p, fourth q( 6q + p )/ p ;mea: q/p; Momets about the mea: variace 3 q / p, third q( + q)/ p, fourth ( q / p 4 )( q q p / ); stadard deviatio: ( q) / p; coefficiet of sewess: th i 999 by CRC Press LLC

11 / 6 p ( + q)( q) ; coefficiet of urtosis: factorial momet geeratig fuctio: r th factorial q ; ( t / ) q p momet about the origi: ( q/ p) r r / ( + r ) ; coefficiet of variato: ( q). f(y). p.5 f(y). 5 p y y. Normal: 8 < <, µ mea locatio parameter, σ stadard deviatio scale parameter, σ > ; p.d.f. / f( ) [ / σ( π ) ]ep[ ( µ ) / σ ]; momet geeratig fuctio: ep( µ t σ t ) ; characteristic fuctio: ep( jµ t σ t ); cumulat fuctio: jµ t σ t r th ; cumulat: K σ, K, r > ; mea: µ r th momet about r r/ the mea: µ r for r odd, µ ( σ r!) /[ [( r/ )!]] for r eve; variace: σ ; stadard deviatio: σ ; mea deviatio: σ( / π) / r / ; mode: µ; media: µ; coefficiet of sewess: ; coefficiet of urtosis: 3; iformatio cotet: log [ σ( πe) ] r + f() µ 3.5 F() 3 3. Pareto: <, c shape parameter; c.d.f. F ( ) c ; p.d.f. f c c ( ) ; r th momet about the origi: c/( c r), c > r; mea : c/( c ), c > ; variace: [ c/( c )] [ c/( c )], c > ; coefficiet of variatio: ( c )/[ c( c )] /, c >. f() c F() c 4 3. Pascal: umber of teals,, the Beroulli success parameter the umber of trials up to ad icludig the th success, p probability of success at each trial, < p <, q p; p.d.f. f momet geeratig pq ( ) ; fuctio: p ep( t) /( qep t) probability geeratig fuctio: ( pt) /( qt) ; characteristic fuctio: p ep( jt) /( q jt / ep( ) ; mea: /p; variace: q / p ; stadard deviatio: ( q) / p; coefficiet of variatio: ( q/ ) /. i 4. Poisso: <, λ mea (a parameter); c.d.f. F ( ) λ ep( λ ) / i!; p.d.f. momet geeratig fuctio: ep[ λ[ep( t) ]]; probability geeratig fuctio: ep[ λ( t)]; characteristic fuctio: i f( ) λ ep( λ) /!; 999 by CRC Press LLC

12 ep[ λ[ep( jt) ]] ;cumulat fuctio: λ[ep( t) ] t i / i!; r th cumulat: λ;momet about the origi: meaλ,secod i r λ + λ ; third λ[( λ + ) 3 r + λ],fourth λλ ( + 6λ + 7λ+ ); r th momet about the mea, µ i : λ µ i, r >, µ. i Momets about the mea: variace λ, thirdλ, fourth λ( + 3λ), fifth λ( + λ), sith λ( + 5λ + 5λ ); stadard deviatio λ / ;coefficiet of sewess: λ / ;coefficiet of urtosis: 3+ / λ ;factorial momets about the mea: secod λ, third -λ, fourth 3λ(λ+); coefficiet of variatio: λ /. i f().6 λ / f().3 λ f(). λ Rectagular: a a+ b, rage, a lower limit,bscale parameter; c.d.f F ( ) ( a)/ b; p.d.f. f( ) / b; momet geeratig fuctio: ep( at)[ep( bt) ]/ bt; Laplace trasform of the p.d.f: ep( as)[ ep( bs)]/ bs; characteristic fuctio: ep( jat)[ep( jbt) ]/ jbt; mea: a+ b/ ; r th momet about the mea: µ r for r odd, µ r r ( b/ ) /( r+ ) for r eve;variace: b / ;stadard deviatio: b / ;mea deviatio b /4;media a+ b/ ;stadardized r th r / momet about the mea: µ r for r odd, µ r 3 /( r + ) for r eve; coefficiet of sewess: ; coefficiet of / urtosis: 95; coefficiet of variatio: b/[ 3 ( a+ b)] ; iformatio cotet: log b. f() F() b a a+b a a+b 6. Studet s: < <, v shape parameter (degrees of freedom), v positive iteger; p.d.f. f( ) [ Γ[( v+ )/ ] ( v+ )/ / [ + ( / v)] ]/[( πv) Γ ( v/ )] ; mea: ; r th momet about the mea: µ r for r odd, µ r / r [ 35 L( r ) v ]/ [( v )( v 4) L( v r)] for r eve, r<v: variace: v/( v ), v > ; mea deviatio: v / Γ( ( v )/ π / Γ( v); mode: ; coefficiet of sewess ad urtosis: f().5 v F() Weibull: <, b > scale parameter, c shape aprameter c>; c.d.f. F ( ) ep[ ( / b); p.d.f. f( ) ( c c / b c )ep[ ( / b) c ]; r th momet about the origi: b r Γ[( c+ r) / c]; mea: bγ[( c+ ) / c]. 999 by CRC Press LLC

13 f() c 3 b F() c 3 c c 3 3 TABLE 34. Normal Distributio Tables. / γ / f( ) distributio desity ( / π ) e, F( ) cumulative distributio fuctio ( / π ) τ, e d f ( ) f( ), f ( ) ( ) f( ), F( ) F ( ), P{ < X< } F ( ) F( ) f( ) f ( ) f ( ) F( ) f( ) f ( ) f ( ) by CRC Press LLC

14 TABLE 34. Normal Distributio Tables. (cotiued) / γ / f( ) distributio desity ( / π ) e, F( ) cumulative distributio fuctio ( / π ) e dτ, f ( ) f( ), f ( ) ( ) f( ), F( ) F ( ), P{ < X< } F ( ) F( ) f( ) f ( ) f ( ) F( ) f( ) f ( ) f ( ) by CRC Press LLC

15 TABLE 34. Normal Distributio Tables. (cotiued) / γ / f( ) distributio desity ( / π ) e, F( ) cumulative distributio fuctio ( / π ) e dτ, f ( ) f( ), f ( ) ( ) f( ), F( ) F ( ), P{ < X< } F ( ) F( ) f( ) f ( ) f ( ) F( ) f( ) f ( ) f ( ) by CRC Press LLC

16 TABLE 34. Normal Distributio Tables. (cotiued) / γ / f( ) distributio desity ( / π ) e, F( ) cumulative distributio fuctio ( / π ) e dτ, f ( ) f( ), f ( ) ( ) f( ), F( ) F ( ), P{ < X< } F ( ) F( ) f( ) f ( ) f ( ) F( ) f( ) f ( ) f ( ) by CRC Press LLC

17 TABLE 34.3 Studet t-distributio Table f( ) + Γ y + / ) π Γ9 ( + )/ dy umber of degrees of freedom, umbers give of distributio, e.g., for 6 ad F.975,.447, F(-)-F() \F Coditioal Distributio F ( M ) PX M P { X X M } {, }, PM { } { X, M} evet of all outcomes ζ such that X( ζ ) ad ζ M.. F( M), F( M) F M FM P X M P { < X ( ) ( ) { }, M } < PM { } 999 by CRC Press LLC

18 TABLE 34.4 The Chi-Squared Distributio y F ( ) ( )/ / y e dy / F ( / ) umber of degrees of freedom \F.5, , by CRC Press LLC

19 TABLE 34.5 The F-Distributio f r r Γ( r + r)/ ]( r / r) F( f) p{ F f} Γ( r / ) Γ( r / )[ + ( r / r )] PF { f} 95. / ( / ) ( r+ r)/ d r \r , by CRC Press LLC

20 f r/ ( r/ ) Γ[( r + r) / ]( r / r) F( f) p{ F f} d F distributio ( r+ r)/ Γ( r / ) Γ( r / )[ + ( r / r )] PF { f}. 975 r \r by CRC Press LLC

21 TABLE 34.5 The F-Distributio f r r Γ( r + r)/ ]( r / r) F( f) p{ F f} Γ( r / ) Γ( r / )[ + ( r / r )] PF { f} 95. / ( / ) ( r+ r)/ d r \r F( f) p{ F f} PF { f} 99. f r / ( r / ) ( r+ r)/ Γ[( r + r) / ]( r / r) Γ( r / ) Γ( r / )[ + ( r / r )] d r \r by CRC Press LLC

22 f r/ ( r/ ) Γ[( r + r) / ]( r / r) F( f) p{ F f} d ( r+ r)/ Γ( r / ) Γ( r / )[ + ( r / r )] PF { f}. 995 r \r by CRC Press LLC

23 TABLE 34.5 The F-Distributio (cotiued) f r r Γ( r + r)/ ]( r / r) F( f) p{ F f} Γ( r / ) Γ( r / )[ + ( r / r )] PF { f}. 995 / ( / ) ( r+ r)/ d r \r , by CRC Press LLC

24 by CRC Press LLC

25 TABLE 34.6 The Poisso fuctio e f( )! λ λ 999 by CRC Press LLC

26 TABLE 34.7 The Poisso Distributio e F ( ) λ λ! 999 by CRC Press LLC

27 Coditioal Desity f M df ( M ) P X M ( ) lim { + } d f ( M ) d F ( M ) Eample X( fi ) i, i, L6 where f i face of a die. M { f, f4, f6 ] eve evet. For 6, { X, M} {,, } { f, f, f }, f( M) F f f f ; for 4 <6, { X, M} { f, f4}, F( M) P{ f, f4}/ PM { } PM { } ( / 6)/( 3/ 6) / 3; for < 4,{ X, M} { f}, F( M) P{ f}/ P{ M} (/6)(3/6) /3; for <, { X, M} ad FM ( ) Total Probability F ( ) FA ( ) PA ( ) + FA ( ) PA ( ) + + FA ( ) PA ( ) PA ( ), L their sum is equal to the certai evet S. A i s are mutually eclusive ad 34.5 Fuctio of Oe Radom Variable (r.v.) Radom Variable (Defiitio) To every eperimetal outcome ζ we assig a umber rage is the set I X of the real umbers X( ζ ).. X( ζ ). The domai of X is the space S, ad its Fuctio of r.v. Y g( X) g[ X( ζ )] Distributio Fuctio of Y (see 34.5.) F ( y) P{ Y y} P{ g( X) y} P{ X I } y y Note: To fid F ( y ) for a give y we must fid that set I y y ad the probability that X is i I y.refer to Figure 34.:If y the g ( ) yfor ay. Hece { Y y} certai evet ad F ( y ) P { Y y } y.if y y, the g ( ) y for ad,hece, Fy( y) P{ Y y} P{ X } F( ) ( depeds o y ), If y y, the g ( ) y has three solutios,, : g ( ) g ( ) g ( ) y ad from Figure 34. g ( ) y if or ad hece, F ( y ) P { X } P { } Y + FX( ) + FX( ) FX( ). If y < l o value of produces g ( ) y ad the evet { Y y} has zero probability: Fy( y). Eample Y / X. If y >, there are two solutios: y, / y. g( ) y if or ad thus F ( y) P{ Y y} P{ X / y} + P{ X / y} F ( / y) + F ( / y). y if y <, o will produce g ( ) y ad, hece, F ( y y ). 999 by CRC Press LLC

28 FIGURE Desity Fuctio of Yg(X) i Terms of f X () of X ) Solve yg() for i terms of y. If,, L, are all its real roots, the y g ( g ) L ( ) L, fx ( ) fx( ) the fy ( y) + L+ + L, g ( ) dg( )/ d. If yg() has o real roots the fy y. g ( ) g ( ) ( ) Eample g( ) ax + b ad ( y b)/ a for every y. g ( ) a ad hece f ( y) Y a f y b X a Eample gx ( ) ax with the r.v. y a, a>. If y < roots are imagiary ad f ( y ) Y. If y > the y / a ad y/ a.sice g ( ) a ay ad g ( ) a ay,the f Y (y) fx ay Eample 3 y f a + X y uy uy a ( ), ( ) uit step fuctio. Y asi( X + θ), a>. If y < a the y asi( + θ) has ifiitely may solutios L,,,, L. dg( ) / d acos( + θ) a y ad from f ( y) / a y f ( ), y < a. For y > there eist o solutios, ad f ( Y y ).; y si a θ, Eample 4 ax Y be u( X), a>, b>. If y < or y > b the the equatio y bep( a) u( ) has o solutio, ad hece f y If the ad Y y b, ( / a) l( y / b). g ( ) abe ay f Y y f ( ( / a) l( y/ b)) / ay, y b.. X Y ( ) X 999 by CRC Press LLC

29 Coditioal Desity of Yg() f Y ( ym) fx ( M) fx( M) + L+ + L g ( ) g ( ) Eample fx ( ) Y ax, a>, X, f ( X ) u ( ) (see Eample ), ad hece fy yx F ( ) ( ) fx ( y/ a) [ /( ay)] u ( ). F ( ) X X f( X t) f( )/{ F( t)] f( ) d, t t Epected Value E{ X} f ( ) d cotiuous r.v. EX { } PX { } p discrete r.v Epected Value of a Fuctio g(x) E{ Y g( X)} yf ( y) dy g( ) f ( ) d Y cotiuous r.v. EgX {( )} g ( ) PX { } discrete type of r.v Coditioal Epected Value EXM { } f( Md ) cotiuous r.v. EXM { } PX { M} discrete r.v Variace σ E{( X µ ) ( µ ) f( ) d cotiuous r.v. σ ( µ ) P{ X } discrete r.v. 999 by CRC Press LLC

30 σ EX { } E{ X} Eample PX { ) e Poisso distributio.!, L,, but or λ λ ad hece, EX { } λ Momets About the Origi Cetral Momets Absolute Momets Geeralized Momets λ λ λ λ λ λ EX { ) e e e.!!! d d e λ d λ λ e λ dλ! λ! λ λ λ e! r µ EX { } f( d ) µ µ r, µ µ EX { }, µ r r r r r r r µ EX µ f d E µ X µ µ r r r { } ( ) ( ) ( ) r ( ) 3 µ µ, µ µ µ, µ µ µµ + µ µ µ, µ µ 3µµ + 3µ µ µ µ 3 3µµ + µ M E{ X } f( ) d a E X a am E X a µ {( ) }, { } λ 3 3 r by CRC Press LLC

31 Eample a a a EX { } d, E { } a σ a + 3 for X uiformly distributed i (-a,a). Eample b+ a EX { } Γ( b + ) b a e b+ a Γ( b+ + ) d b+ + a Γ( b+ ) for a gamma desity b b a f( ) { a + / Γ( b+ )] e u ( ), u ( ) uit step fuctio Tchebycheff Iequality σ P{ X µ σ }, µ EX { }. Regardless of the shape of f( ), P{ µ ε < X < µ + ε} ε Geeralizatios:. If f ( y y ) the PY EY {} { α }, α > α. E{ X α } P{ X α ε } ε Characteristic Fuctio Φ( ), Φ( ω) Eample jω Φ( ω) Ee { } f( d ) for cotiuous r.v. jω Φ( ω) e P{ X } for discrete type r.v. jωy jω( ax+ b) jωb jωax Φ( ω) Ee { } Ee { } e Ee { }, Eample if Y ax + b PX { } λ λ e Poisso distributio!, L,, λ jωλ λ jω Φ( ω) e e e ( e )! Secod Characteristic Fuctio Ψ( ω) l Φ( ω) 999 by CRC Press LLC

32 Iverse of the Characteristic Fuctio jω f( ) Φ( ω) e dω π Momet Theorem ad Characteristic Fuctio d Φ( ) j µ E X, { } dω Covolutio ad Characteristic Fuctio Φ( ω) Φ ( ω) Φ ( ω), where Φ ( ω) ad Φ ( ω) are the characteristic fuctios of the desity fuctios f ad. ω ( + ) ω Ee j X X } ad ( ) f f ( ) ( ) where idicates covolutio Characteristic Fuctio of Normal r.v. Φ( ω ) ep( jµω σ ω ) 34.6 Two Radom Variables Joit Distributio Fuctio F ( y) P{ X, Y y}, F (, ) F ( ), F (, y) F ( y), y y y y F (, ), F (, y), F (, ) y y y Joit Desity Fuctio Fy (, ) f(, y), f ( ) f (, y ) dy, fy ( y ) f (, y ) d y Coditioal Distributio Fuctio PY { ym, } PX { Y, y} Fy(, y) Fy ( ym) P{ Y ym}, FyX { } PM { } PX { } F ( ) PX { ay, by, y} y b Fy ( yx a, Y b) PX { ay, b} Fy( a, y)/ Fy( a, b) y< b 999 by CRC Press LLC

33 Coditioal Desity Fuctio F y y f y d f y d y(, )/ y( ξ, ) ξ y(, ) fy( yx ), fy( y < X F ( ) f (, y) d dy ( ) F( ), ξ ξ Γ fy(, y) fy( yx ) f ( ) Baye's Theorem y f ( yx ) y f ( Y y) f ( y) f ( ) y Joit Coditioal Distributio F (, ya< X b) y Fy( b, y) Fy( a, y) F( b) F( a) PX { Y, ya, < Y b} Fy(, y) Fy( a, y) Pa { < X b} F( b) F( a) > b a< b a Coditioal Epected Value gyf ( ) y( ydy, ) EgY {( ) X } gy () fy( yx dy ), EEYX { { }} EY { } f (, y) dy Idepedet r.v Joitly Normal r.v. EX { } µ, EY { } µ, σ σ, σ y σ. If r, f(, y) f( ) fy( y) idepedet. r <, r correlatio coeffifiet. F (, y) F ( ) F ( y); f (, y) f( ) f( y); f ( y) f ( y); f ( y) f ( ) y y y y y ( µ ) r( )( y ) ( y ) µ µ µ f(, y) ep + πσ σ r ( r ) σ σσ σ y 999 by CRC Press LLC

34 Coditioal Desities rσ fy( yx ) ep y µ ( ) µ σ ( r ) ( r ) π σ σ rσ EYX { } µ + ( µ ), σ σ r y σ If r µ µ the EY { X } ( r σ σ ) + σ 34.7 Fuctios of Two Radom Variables Defiitios Z g( X, Y) g[ X( ζ), Y( ζ)], Fz( z) P{ Z z}, Dz regio of y-plae such that gy (, ) z, {Z z} {( XY, ) } D z Distributio Fuctio fz() z dz P{ z < Z z + dz} fy(, y) ddy D z Desity Fuctio fz() z dz P{ z < Z z + dz} fy(, y) ddy Eample If the r.v. are idepedet the Eample D z z y Z X Y y z F z f y ddy df z () +, +, z z( ) y fz z fy z yydy (, ), () dz (, ). f () z f () z y f (, y) f ( ) f ( y) ad hece f () z f ( z y) f () y dy f () f ( z ) d y y covolutio of desities. Z X + Y, if z > so the + y z circle with radius z, F ( z) f (, y) ddy, if z <, r / σ z/ σ Fz( z). fy(, y) ( / πσ )ep[ ( + y )/ σ the Fz () z πre dr e, πσ z / σ z > ad fz () z e, z σ z y y z z + y z 999 by CRC Press LLC

35 Eample 3 r / σ z / σ fy(, y) ( / πσ )ep[ ( + y )/ σ ], Z + X + Y, Fz ( z) πre dr e, πσ z >, fz ( z) ( z/ σ )ep( z / σ, z > Rayleigh distributed, EZ {} σ π/, EZ { } σ, σz ( ( π/ )) σ Eample 4 z If f (, y) f (, y) the F () z f (, y) ddy, f () z yf ( zy, y) dy. The for y y z yz y z ry y ( /[ πσσ r ])ep + ( r ) σ σσ σ y the fz () z of Z X/ Y is fy (, y ) y z rz fz ( z ) [ /( r )] y ep πσσ + dy. ( r ) σ σσ σ But w yep[ y / a ] dy a e dw a ad hece If µ µ the fz () z is Cauchy desity Two Fuctios of Two Radom Variables Defiitios f ( z) [( r σσ / π]/[ σ ( z rσ / σ ) + σ ( r )]. z Z gxy (, ), W hxy (, ), D zw regio of the y plae such that gy (, ) z ad hy (, ) w, { Z z, W w} {( X, Y) Dy}, Fzw( z, w) fy(, y) ddy D zw Desity Fuctio f zw (z,w) f zw fy(, y) fy(, y) (, z w) + L+ + L, z g( i, yi), w h( i, yi) where ( i, yi) J (, y) J (, y) there are o real solutios for certai values of (z,w) the f (, z w). Jacobia of trasformatio zw are solutios. if Jy (, ) gy (, ) gy (, ) y hy (, ) hy (, ) y 999 by CRC Press LLC

36 Eample If z a + by, w c + dy the az+ by, y cz+ dw, where a, b, c ad d are fuctios of a,b,c, ad d. Eample a b Jy (, ) ad bc, fzw ( z, w) /[ ad bc ] fy( az + bw, cz + dw) c d z + + y, w / y. If z > the the system has two solutios: zw/ + w, y z/ + w ad, y y for ay w. Jy (, ) / + y y/ + y / y / y ( + w )/( z) ad from zw z zw z fzw( z, w) [ z/( + w )] fy, fy,. + w + w + + w + w If z <, f ( z, w). zw Auiliary Variable If z g(, y) we ca itroduce a auiliary fuctio w or w y. f () z f (, z w) dw. Eample If z y set auiliary fuctio w. The system has solutios y w, y z/ w. J(, y) w ad, hece, z zw fzw(, z w) (/ w) fy( w, z/ w) ad fz( z) ( / w) fy( w, z/ w) dw Fuctios of Idepedet r.v.'s If X ad Y are idepedet the Z g( X) ad W h( Y) are idepedet ad sice f zw f f y y (, z w) ( ) ( ) g ( ) h ( y ) 999 by CRC Press LLC

37 34.9 Epected Value, Momets, ad Characteristic Fuctio of Two Radom Variables Epected Value g ( ) Jy (, ) g ( ) h ( ) h ( ) E{( g X, Y)} g(, y) f (, y) ddy; E{ z} zf ( z) dz if z g(, y); E{ g( X, Y)} g(, y ) p, z, PX {, Y y} p Coditioal Epected Values discrete case r.v. E{( g X, Y M)} g(, y) f (, y M) ddy; Momets EgXYX { (, } gyf (, ) ( ydy, ) / f( ) gyf (, ) ( yx dy ) r r µ E{ X Y } y f (, y) ddy, µ R E{ XY} r y µ E{( X µ ) ( Y µ ) } ( µ ) ( y µ ) f (, y) ddy r y r y r y µ σ, µ σ, µ µ Covariace µ E {( X µ )( Y µ y)} E { XY } µ E { Y } µ y E { X } + µ µ y Correlatio Coefficiet y y y r E{( X µ )( Y µ )}/ E{( X µ ) E{( Y µ ) } µ / σ σ 999 by CRC Press LLC

38 Ucorrelated r.v.'s EXY { } EXEY { } { } Orthogoal r.v.'s EXY { } µ µ µ, µ µ µ, r µ / µ µ Idepedet r.v.'s f(, y) f ( ) f ( y) Note: y. If X ad Y are idepedet, g(x) ad h(y) are idepedet or EgXhY { ( ) ( )} EgX { ( )} EhY { ( )}. If X ad Y are ucorrelated, the a. b. E{( X µ )( Y µ )}, r y + y + y σ σ σ c. E{( X + Y) } E{ X } + E{ Y } d. EgXhY { ( ) ( )} EgX { ( )} EhY { ( )} i geeral Joit Characteristic Fuctio Φ ( ω, ω ) E{ e f (, y) e ddy, Ψ ( ω, ω ) l Φ ( ω, ω ) y j ( ω + ω y ) j ( ω + ω y ) y y y j( ω+ ωy) fy(, y) e y( ) d d ( ) Ψ ωω ω ω π Eample Φ ( ω) Ee { } Φ ( ω, ), Φ ( ω) Φ (, ω) jωx y y y Φ ( ω) Ee { } Ee { } Φ ( aω, bω) if Z ax+ by. z jωz j( aωx+ bωy) y if X ad Y are idepedet. Φ ( ω, ω ) Φ ( ω ) Φ ( ω ) y y 999 by CRC Press LLC

39 34.9. Momet Theorem r Φ(, ) ( + r) j µ r ω ω r Series Epasio of Φ( ω, ω ) Φ( ω, ω ) + je{ X} ω + je{ Y} ω { X } ω 4 EY { } ω EXY { } ωω + L+ { } ωω, 4! EX Y + L Ψ( ω, ω ) l Φ( ω, ω ) jµ ω + jµ ω y 34. Mea Square Estimatio of R.V.'s 34.. Mea Square Estimatio of r.v.'s a. a miimizes E{ X a) } if a E{ X} µ b. The fuctio gx ( ) EYX { } regressio curve miimizes y y σ ω rσ σ ω ω σ ω +L E{[ Y g( X)] } [ y g( )] f (, y) ddy r c. y a σ ad b E{} Y ae{} X miimize the m.s. error σ e E{[ Y ( ax + b) ]} [ y ( a b) ] f (, y) ddy e miimum error σ ( r ), r correlatio coefficiet of X ad Y. m 3 y d. If EX { } EY { } the costat a that miimizes the m.s. error e E{( y a) } is such that E{( Y ax) X} (orthogoality priciple) ad the miimum m.s. error is: em E {( Y ax ) Y } a E{ XY}/ E{ X E XY } ad hece em E { Y } { } also EX { }, e E Y E ax m { } {( ) } e E{[ Y E{ Y X}] } m 34. Normal Radom Variables 34.. Joitly Normal If ex { } EY { } the ormal joit desity is: 999 by CRC Press LLC

40 ry y f(, y) ep +, EX { } σ, EY { } σ πσ σ r ( r ) σ σσ σ 34.. Coditioal Desity rσ f( y) ep y σ ( r ) ( r ) π σ σ, rσ r EYX { } X, E{ Y X} ( r σ σ ) + σ σ Mea Value Liear Trasformatios EXY { } rσσ, EXY { ] σσ + r σσ E{( X µ )( Y µ )} rσ σ If X ad Y are joitly ormal with zero mea the y Z ax + by, W cx + dy. z y y y σ E{ Z } E{( ax + by) } a σ + b σ + abr σ σ w y y y σ E{ W } c σ + d σ + cdr σ σ, zw z w y y y r σσ E{ ZW} acσ + bdσ + ( ad + bc) r σσ 34. Characteristic Fuctios of Two Normal Radom Variables 34.. Characteristic Fuctio Φ( ω, ω) E{ep[ j( ωx + ωy]} ep[ ( σω + rσσωω + σω )] for E{ X} E{ Y}, ad X ad Y joitly ormal Characteristic Fuctio with Meas Φ( ω, ω ) ep[ ( ω µ + ω µ )]ep{ µ ω + µ ω ω + µ ω ], µ meas. j y ij joit momets about the 999 by CRC Press LLC

41 34.3 Price Theorem for Two R.V s Price Theorem If X ad Y are joitly ormal with µ E {( X µ )( Y µ y)} E { XY } E { X } E { Y }, the, a. If µ (r.v. s idepedet) EXY { r } EX { } EY { r } b. c Sequeces of Radom Variables Defiitios Defiitios real r.v. X, X, L, X; F(,, L, ) P{ X, L, X } distributio fuctio; f(, L, ) F/, L, desity fuctio Margial Desities F (, 3) F (,, 3, ) margial distributio for a sequece of four r.v. ; f(, 3 ) f(,,, ) d d margial desity Fuctios of r.v.'s E{( g X, Y)} g(, y) f (, y) ddy r µ r r EXY { } r EX { Y } dµ + EX { } EY { } µ EXY { } 4 EXYd { } µ + EX { } EY { } 4 ( µ + EXEY { } { }) dµ + EX { } EY { } µ + 4µ EXEY { } { } + EX { } EY { } Y g ( X, L, X ), L, Y g ( X, L, X ), µ fy, Ly ( y, L, y) f(,, L, )/ J(, L, ), J(, L, ) g M g L L g g Coditioal Desities f(, L,, L, ) f(, L,, L, )/ f(, L, ). + + Eample f(, 3) f(,, 3)/ f(, 3), F(, 3) f( ξ,, 3) dξ/ f(, 3) 999 by CRC Press LLC

42 Chai Rule f(, L, ) f(, L, ) Lf( ) f( ) Removal Rule f( ) f(, ) d, 3 3 f( ) f(,, ) f(, ) d d, f( ) f(, ) f( ) d Idepedet r.v. F(, L, ) F( ) LF( ); f(, L, ) f( ) Lf( ) f(, L,,, L, ) f(, L, ) f(, L, ) + + if X, L, X are idepedet of X+, L, X Mea, Momets, Characteristic Fuctio Epected Value E{ g( X, L, X )} L g(, L, ) f (, L, ) d Ld Coditioal Epected Values E{ X, L, } f(, L, ) d f(, L, ) d / f(, L, ) a. EEX { { X, L, X}} EX { } b. EXX { X} EEXX { { X, X} EXEX { { X, X} X} c. EX {, L, } EX { } if X is idepedet from the remaiig r.v.'s Ucorrelated r.v.'s X, L, X are ucorrelated if the covariace of ay two ofthem is zero, EXX { i j} EX { i} EX { j} for i j Orthogoal r.v.'s EXX { } for ay i j i j Variace of Ucorrelated r.v.'s σ + L+ σ + L + σ, σz E{ Z E{ Z} } if Z X + jy comple r.v., EZZ { i j} EZ { i} EZ { j} ucorrelated r.v.'s i j, E{ Z Z } orthogoal, are idepedet, i j f(, y,, y ) f(, y ) f(, y ) if Z X + jy ad Z X + jy 999 by CRC Press LLC

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Sixth Term Examiatio Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES Pure Mathematics Mesuratio Surface area of sphere = 4πr Area of curved surface of coe = πr slat height Trigoometry a = b

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET b DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET For use by teachers ad studets, durig the course ad i the examiatios First examiatios 006 Iteratioal Baccalaureate Orgaizatio Bueos Aires Cardiff

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Parameter Estimation Fitting Probability Distributions Bayesian Approach

Parameter Estimation Fitting Probability Distributions Bayesian Approach Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT 18.443 Dr. Kempthore Sprig 2015 1 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap Outlie Bayesia Approach

Διαβάστε περισσότερα

LIST OF FORMULAE STATISTICAL TABLES MATHEMATICS. (List MF1) AND

LIST OF FORMULAE STATISTICAL TABLES MATHEMATICS. (List MF1) AND ADVANCED SUBSIDIARY GENERAL CERTIFICATE OF EDUCATION ADVANCED GENERAL CERTIFICATE OF EDUCATION MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES (List MF) MF CST5 Jauary 007 Pure Mathematics Mesuratio

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

MEI EXAMINATION FORMULAE AND TABLES (MF2)

MEI EXAMINATION FORMULAE AND TABLES (MF2) MEI EXAMINATION FORMULAE AND TABLES (MF) For use with: Advaced Geeral Certificate of Educatio Advaced Subsidiary Geeral Certificate of Educatio MEI STRUCTURED MATHEMATICS ad Advaced Subsidiary GCE QUANTITATIVE

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10 Θόρυβος (Noise) καθ. Βασίλης Μάγκλαρης maglaris@etmode.tua.gr www.etmode.tua.gr

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Appendix B: Mathematical Formulae and Statistical Tables

Appendix B: Mathematical Formulae and Statistical Tables Aedi B: Mathematical Formulae ad Statistical Tables Pure Mathematics Mesuratio Surface area of shere = π r Area of curved surface of coe = π r slat height Trigoometry a = b + c bccosa Arithmetic Series

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes Chapter 5, 6 Multiple Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 Vector Random Variables A vector r.v. X is a function X : S R n, where S is the

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation Fiboacci Notatios Traditioal ame Fiboacci umber Traditioal otatio F Ν Mathematica StadardForm otatio FiboacciΝ Primary defiitio 04..0.000.0 F Ν ΦΝ cosν Π Φ Ν Specific values Specialized values 04..03.000.0

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Gaussian related distributions

Gaussian related distributions Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

STAT 330(Winter ) Mathematical Statistics

STAT 330(Winter ) Mathematical Statistics Sprig 3 TABLE OF CONTENTS STAT 33Witer 3-35 Mathematical Statistics Prof. M. Molkaraie Uiversity of Waterloo L A TEXer: W. KONG http://wwkog.github.io Last Revisio: April 3, 4 Table of Cotets Review. Probability

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα