Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 L.K.Gupta (Mathematic Classes) MOBILE: , {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks: 00. If f(x) = - x, the f f x is : (a) x [Each right aswer carries 4 marks ad wrog ] (b) x f f f f( x) x ( / x) x x x. x x Time: hr. PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH (c) x x (d) x. The relatio R defied i A= {,, } by a R b, if a b 5. Which of the followig is false? (a) R = {(, ), (, ), (, ), (, ), (, ), (, ), (, )} (b) R - = R (c) Domai of R = {,, } (d) Rage of R = {5} R = {(, ), (, ), (, ), (, ), (, ), (, ), (, )} R - = {(y, x ): (x, y)r} = {(, ), (, ), (, ), (, ), (, ), (, ), (, )} = R. Domai of R = {x : (x, y)r} = {,, }. Rage of R = {y : (x, y)r} = {,, }.. If umber of elemets i sets A ad B are m ad respectively, the the umber of

2 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 relatios from A to B is: (a) m+ (b) m (c) m + (d) m o (A B) = o (a) o (b) = m o [P (AB)] = m umber of relatios form A to B is m. 4. Give f (x) = log x x ad g (x) = x x x PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH, the (fog) (x) equals : (a) f (x) (b) f (x) (c) [f(x)] (d) oe of these x x (fog) (x) = f(g(x)) = f x = log x x x x x x ( x) log ( x) f (x) 5. Which oe of the followig is ot a fuctio? (a) {(x, y}: x, y, R, x = y} (b) {(x, y}: x, y, R, y = x} (c) {(x, y}: x, y, R, x = y} (d) {(x, y}: x, y, R, y = x} Let R = {(x, y}: x, y, R, y = x}, R is ot a fuctio; as y = x 6. If f (x) = cos (log x), the x f (x ) f(y ) - f f (x y ) has the value : y (a) - (b) - (c)/ (d) oe of these

3 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 f (x ) f(y ) - x y f f (x y ) = cos (log x ) cos (log y ) x y cos log cos log(x y ) = cos (log x ) cos (log y ) - [cos (log x log y )] + cos (log x + log y ) = cos (log x ) cos (log y ) - [ cos (log x ) cos (log y )] = 0 = 7. Let A = {,,, 4} ad R be a relatio i A give by R = {(, ), (, ), (, ), (4, 4), (, ), (, ), (, ), (, )}. The R is : (a) reflexive (c) trasitive PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH (b) symmetric (d) a equivalece relatio R = {(, ), (, ), (, ), (4, 4), (, ), (, ), (, ), (, )} As (, ), (, ), (, ), (4, 4) R, R is Reflexive. (, ) ad (, ) R, also (, ) & (, ) R, R is symmetric. Also (, ) & (, ) R (, ) R Similarly for other elemets hece R is trasitive. R is equivalet relatio. 8. Let X be the uiversal set for sets A ad B. If (a) = 00, (b) = 00 ad (A B) = 00, the (A B ) is equal to 00 provided (X) is equal to : (a) 600 (b) 700 (c) 800 (d) 900

4 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 We have (A B) = (a) + (b) (A B). (A B) = = 400 Also (A B ) = ((A B) = (X) (A B) 00 = (X) or (X) = Suppose A, A,.., A0 are thirty sets each with five elemets ad B, B,., B are sets each with three elemets. Let 0 Ai Bj S. Assume that each elemets of S belogs i j to exactly 0 of the Ai s ad exactly 9 of Bj s. The value of must be: (a) 0 (b) 40 (c) 45 (d) 50 Sice S = = 5. Also S = we have, (S) = 0 Ai ad each elemet of S is i 0 Ai s, we have, (s) = i Bj ad each elemet of S is i 9 Bj s, j (B j) 9 j 5 = ( ) = (A i ) i (0 5) 0 0 PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 4

5 L.K.Gupta (Mathematic Classes) MOBILE: , The void relatio i a set A is: (a) reflexive (c) reflexive ad trasitive Let R deotes the void relatio. Let x A. (x, x) R because R = ϕ. R is ot reflexive. (b) reflexive ad symmetric The relatio R is trivially symmetric ad trasitive (d) trivially symmetric ad trasitive. If ta θ = ta ϕ +, the cos θ+ si ϕ is equal to (a) (b) (c) - (d) oe of these We have, cos θ = ta θ ta θ (ta ) ta ta ta ta sec = - si ϕ Hece (d) is correct aswer.. The value of si x + cos x is cos θ si 0. ta θ ta (a) (b) (c) (d) PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 5

6 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 Sice AM of two positive quatities their GM. six cos x si x cosx. π cos x sixcosx 4 si x + cos x =. Hece (b) is the correct aswer. If a cos θ+ b si θ = c has α ad β as its solutios, the ta α + ta β ad ta α ta β is equal to (a) b c a, c a c a (b) c a, c a b c a We have a cos θ + b si θ = c a (cos θ - si θ) + b si θ cos θ = c PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 6 (c) a ( ta θ) + b ta θ = c sec θ = c ( + ta θ) ta θ (c+a) b taθ + c a = 0. This equatio has ta α ad ta β as its roots. ta α + ta β = b, ta α ta β = (c a) c a c a b c a, c a c a Hece (a) is the correct aswer. π 4π 4. If x = y cos z cos, the xy + yz + zx is equal to : (a) (b) 0 (c) (d) (d) b c a, c a c a

7 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 x = y cos π = z cos 4 π x y z y = z = -x xy + yz + zx = -x + 4x x = 0 5. The miimum value of 7 cos x + 8 si x is equal to : (a) (b) 7 cos x + 8 si x = cos x + 4 si x. =. / ( cosx + 4 si x). /(-5) =. -5/ =. -. -/ = 9 cos x 4si x. Thus miimum value of give expressio is 9 PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 7 (c) 9 (d) oe of these

8 L.K.Gupta (Mathematic Classes) MOBILE: , cos x. si x = (a) = 5, a = ar. si (rx), x R, the: x0 (b) = 5, a = 4 cos x. six = cos x. cos x. si x = cosx si x cos x = 4 ( cosx) (six + six) six si x (six.cosx) (cosx.si x) 4 six si x (si5x si x) (six si x) 4 si x six si5x 4 (c) = 5, a = 8 a =,a, If x + y = π + z, the si x + si y - si z is equal to : (a) si x. si y. si z.siy. cos z si x + si y - si z = si x + si (y + z). si (y - z) (d) = 5, a = 4 (b) cos x. cos y. cos z (c) si x. cos y. cos z (d) si x = si x + si (y + z). si (π - x) PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 8

9 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 = si x {si x + si (y+z)} = si x {si (π +z-y) + si (y+z)} = si x{si (y+z) si (z-y)} = si x {si (y + z)-si(z-y)} = si x.cos z.si y 8. A quadratic equatio whose roots are cosec θ ad sec θ, ca be : (a) x x + = 0 (b) x x + = 0 (c) x 5x + 5 = 0 (d) oe of these 4 sec θ + cosec θ = 4 cos θ si θ si θ 4 Also, sec θ. cosec θ = 4 si.θ Thus, required quadratic equatio will be x tx + t = 0, where t 4. Hece x 5x + 5 = 0 ca be the solutio si x cos x sixsi x 9. The equatio = 8 is satisfied for the values of x give by (a) cos x = 0, ta x = - (b) ta x = 0 (c) ta x = (d) oe of these The give equatio is or si x cos x sixsi x si x cos x (sixcos x) 7 y + y = 8, where y = 8 = 8 sixcos x y 8y + 7 = 0 PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 9

10 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 y = 7 or If y = 7, the sixcos x si x + cos x = = si x + cosx = si x = cos x = which is ot possible for ay value of x ad so y 7. also we have y =. sixcos x = = o si x + cos x = 0 cos x (si x + cos x) = 0 Either cos x = 0 or ta x = Hece (a) is the correct aswer. 0. A triagle ABC is such that si (A + B) =. If A, B, C are i A.P., the the values of A, B, C are (a) π, π, 5π 4 si (A + B) = = si (b) π 6 π π π,, 6 π A + B = π + (-) 6 Also A+B+C = π ad B = A + C B = π B = π () (c) π, π, π 4 4 5π π 5π From (), for =, A + B = A C. 6 4 Hece (a) is the correct aswer. (d) oe of these PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 0

11 L.K.Gupta (Mathematic Classes) MOBILE: , The umber of values of x for which si x + cos 4x = is : (a) 0 (b) (c) (d) ifiite x + cos 4x = si x =, cos 4x = si x = or = (absurd). Thus o solutio.. The umber of solutio of cos x = si x, 0 x 4 π is : (a) 8 (b) 4 (c) (d) oe of these Clearly form graph four solutio.. If x, y [0, π], the total umber of ordered pairs (x, y) satisfyig si x. cos y = is equal to : (a) (b) (c) 5 (d) 7 si x. cos y = si x =, cos y = or si x = -, cos y = - If si x =, cos y = x = π, y = 0, π PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH

12 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 If si x = -, cos y = - Thus possible ordered pairs are π π π,0,, π,, π. x = π, y = π 4. If cos x = cos y, where x, y (0, π), the ta x. cot y is equal to cos y (a) (b) (c) cos x = cos y cosy ta x ( ta y /) ta y / x ta y / ta ta y / y x 6ta ta x y ta.cot Hece (b) is correct aswer. PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH (d)

13 L.K.Gupta (Mathematic Classes) MOBILE: , If si x + si x =. The the value of cos x + cos 0 x + cos 8 x + cos 6 x is equal to (a) (b) - (c) (d) - I = cos x + cos 0 x + cos 8 x + cos 6 x = cos x +. cos 8 x (cos x + ) + cos 6 x = (cos 4 x) + cos 6 x(cos 4 x + cos x) + (cos x) = (cos 4 x + cos x) = (cos x (cos x + )) We have si x = si x = cos x 5 si x cos x 5 5 I Hece (a) is correct aswer. 6. If x - 0 ad x x 0, the x lies i the iterval set: (a) (-, ) (b) (-, ) (c) (, ) (d) {-} x - 0 ad x x 0 PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH

14 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 x ad (x - ) (x + ) 0 x ad x (, ] [, ) {- }. 7. Solutio of x + < is : (a) [-, -/] (b) {-/, -} (c) (-, -/) (d) oe of these x + < - < x + < - < x < - - < x < - 8. Solutio of x - < x + is : (a) ( -, /) (b) (/, 5) (c) (5, ) (d) (-,/) (5, ) x - < x + squarig both sides, (x - ) (x + ) < 0 (x - 5) (x - ) < 0 x, Solutio of (x - ) (x + 4) < 0 is : (a) (, ) (b) (-, 4) (c) (, 4) (d) (, 4) Usig umber lie Rule x (, 4) 0. Solutio of x is : (a) (, 4) (b) (-4, -) (c) ( 4, ) (, 4) (d) [-4, -] [, 4] PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 4

15 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 x x x 6 x 4. either x 4 or 4 x x [ 4, ] [, 4].. If x+ = 6 log, the x is : (a) (b) (c) log (d) log x+ = log log = log x log.. Solutio of x < 4 is : x (a) (-, + )(--, -+ ) (b) R ( -, + ) (c) R (, -+ ) (d) oe of these x (clearly x 0) x x x ( x + > 0) x x x + > x x x + > 0 ( x - ) > 0 PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 5

16 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 x x -, x R {, 0, }.. If ( ) x + ( ) x = ( ) x/, the the umber of values of x is : (a) (b) 4 (c) (d) oe of these x/ + x/ = x/ x/ x/. x which of the form cos x/ α + si x/ α =.. 4. The product of three positive real s is ad their sum is greater tha sum of their reciprocals. Exactly oe of them is greater tha (a) 0 (b) (c) - (d) - Let three positive reals be a, b ad b. We are give a + b + a ab. () ab a b Now (a - ) (b - ) ab PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 6

17 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 = + = a b ab ab a b a b ab 0, usig () ab a b either all three a, b ad are positive or exactly oe of them is positive. ab But a >, b > ad ab Thus, exactly oe of a, b, exceed. ab Hece (b) is correct aswer. 5. If log x + log y = + log ad log (x + y) = the (a) x =, y = 8 (b) x = 8, y = (c) x =, y = 6 (d) x = 9 y = (c) The first equatio ca be writte as log xy = log + log = log 8 so xy = 8 ad secod equatio is x + y = = 9. Solvig we get x =, y = 6 or x = 6, y =. 6. If a = log 8, b = log4 54 the the value of ab + 5(a - b) is (a) 0 (b) 4 (c) (d) oe of these (c) We have log 8 log a = log 8 = ad log log log54 log b = log4 54 = log 4 log Puttig x = log, we have 7. The value of x satisfyig log (x - ) = log/ x is (a) / (b) (c) / (d) PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 7

18 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 (d) log x log (x - ) = log/ x = log = log x- x = x - x x = x = or x = - /. But log (x - ) ad log/ x are meaigful if x > /. Hece =. 8. If log x log x = log log 6 the x equals (a) 9 (b) (c) 4 (d) 5 (a) Clearly x > 0. The give equatio ca be writte as log x log log x = log log log log x = log x = The umber of solutios of log4 (x - ) = log (x - ) is (a) (b) (c) (d) 0 (b) The give equality is meaigful if x > 0, x > 0, x, ad x x > ad x 4. The give equality ca be writte as log(x ) log (x ) log 4 log log (x - ) = log (x - ) (x - ) = (x ) x 7x + 0 = 0 (x - 5) (x - ) = 0 x = 5 or. But x > so x = 5. PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 8

19 L.K.Gupta (Mathematic Classes) MOBILE: , If log0.5 (x - ) < log0.5 (x - ), the x lies i the iterval. (a) (, ) (b) (, ) (c) (-, 0) (d) (0, ) (a) log0.5 (x - ) < log0.5 (x ) log (x ) log (x ) 0.5 (0.5) log (x) log (x ) log0.5 (x - ) log (0.5) log0.5 (x - ) < 0 x > x (, ) 4. If α + β = π/ ad β+ γ = α, the ta α equals (a) (ta β + ta γ ) (b) ta β + ta γ (c) ta β + ta γ (d) ta β + ta γ (c) α + β = π/ α = π/ - β ta α ta β = Next, β + γ = α ta α = cot β PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 9

20 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 taα taβ α β γ ta γ taα taβ taα taβ ta γ taα taβ ta γ 4. If A ad B are acute agles such that si A = si B, cos A = cos B; the (a) A = π/6 (b) A = π/ (c) B = π/4 (d) B = π/ (a) ad (c) From the give coditios ( si A) = ( si B) = ( - sia) si A si A + = 0 (sia ) (si A ) = 0 si A = or si A = ½ A = π/ or π/6 But sice a is acute, we have A = π/6 si B = si (π/6) = ½ si B = / B = π/4 4. If a a cos x + = 674 abd ta (x/) = 7 the the itegral value of a is (a) 5 (b) 49 (c) 67 (d) 74 (a) 674 = a - a = a a ta (x /) ta (x /) = a +a 50 5a + 48a 67 5 = 0 PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 0

21 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 (a - 5) (5a -67) = 0 a = 5 (Takig the itegral value of a). 44. si x cos x = si x if (a) x = π + π/6 (b) x = π - π/6 (c) x = π (d) x = π + π/ (I) (a), (b) ad (c) The give equatio ca be writte as si x (cos x - ) = 0. That is, either si x = 0 or cos x =/ = cos (π/). Hece x = π or x =π ±(π/), i.e. x = π ± π/6 45. Let X= {,,, 4, 5} ad Y = {,, 5, 7, 9}, which of the followig is ot relatio from X to Y? (a) R = {(x, y) : y = x +, x X, y Y} (b) R = {(, ), (, ), (, ), (4, ), (5, 5)} (c) R = {(, ), (, ), (, 5), (, 7), (5, 7)}(d) = R4 = {(, ), (, 5), (, 4), (7, 9)} R is a relatio from X to Y because R X Y. R is a relatio from X to Y because R X Y. R is a relatio from X to Y because R X Y. R4 is ot a relatio from X to Y because (, 4), (7, 9) X Y. 46. If (a) = 4 ad (b) = 7, the the miimum ad maximum value of (A B) are respectively : (a) 4, (b) 4, 7 (c) 7, (d) oe of these (A B) is miimum whe A B. I this case A B = B ad we have (A B) = (a) 4. (A B) is maximum whe A B = ϕ. I this case (A B) = =. = (a) + (B) PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH

22 L.K.Gupta (Mathematic Classes) MOBILE: , x If ta α ad ta β x x is : (a) 0 (b) π/4 (c) π/ (d) π/ x taα taβ we have, ta α β x x taα taβ x. x x = x(x ) (x ) x x (x )(x ) x x x = = ta π 4, π α β 4 π 4π 5π 48. The value of cos cos cos is : (a) / (b) /4 (c) /8 (d) /8 We have π 4 π 5π π π 4π cos cos cos cos cos cos π π π as, cos cos π cos π π π 4π si cos cos cos π si π 4π 8π si cos si π 7 7 π si 8si π π si π si. π 7 π 8si 8si PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH

23 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 π 49. The value of cos8θ, where 0 < θ, is equal to 8 (a) cos θ (b) cos θ (c) si θ (d) - cos θ We have, cos 8θ (4cos 4θ) cos4θ ( cos4θ) (cos θ) cosθ ( cosθ) = (cos θ) cosθ. 8θ cos8θcos cos4θ cos θ 50. The value of cos A cos A cos A cos A. cos - A is equal to PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH

24 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 (a) cos A cos A We have, si A (b) si A cosa cosa cos A cos A.. cos - A = si A (c) cos A si A [( si A cos A) cos A cos A cos A. cos - A] [( si A cos A) cos A cos A.. cos - A] si A [( si Acos A) cos A cos A cos - A] si A [si(a). cos A cos A cos - A] si A [( si A cos A) cos A cos - A] si A [si (. A)cos A cos - A] si A [(si A cos A cos 4 A cos - A)] si A =. [si - A cos - A] si A [ si - A cos - A] si A si (. - A) si A PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 4 (d) cos A si A

25 L.K.Gupta (Mathematic Classes) MOBILE: , 4677 Aswers GOOD LUCK PIONEER EDUCATION (THE BEST WAY TO SUCCESS): S.C.O. 0, SECTOR 40 D, CHANDIGARH 5

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### 1. For each of the following power series, find the interval of convergence and the radius of convergence:

Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

### CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Homework for 1/27 Due 2/5

Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

### A Note on Intuitionistic Fuzzy. Equivalence Relation

International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### The Heisenberg Uncertainty Principle

Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

### k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

### Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### Homework 4.1 Solutions Math 5110/6830

Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

### SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos

Διαβάστε περισσότερα

### Degenerate Perturbation Theory

R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

### Solution Series 9. i=1 x i and i=1 x i.

Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

### Second Order RLC Filters

ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα, Αλγόριθμοι και Πολυπλοκότητα

Διαβάστε περισσότερα

### Ψηφιακή Επεξεργασία Εικόνας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Section 9.2 Polar Equations and Graphs

180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

### b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Lecture 2. Soundness and completeness of propositional logic

Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### Solutions to Exercise Sheet 5

Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

### CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μια διμελής σχέση πάνω σε ένα σύνολο X καλείται μερική διάταξη αν η είναι ανακλαστική, αντισυμμετρική και μεταβατική, δηλαδή: a X, a

Διαβάστε περισσότερα

### p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

### A study on generalized absolute summability factors for a triangular matrix

Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

### COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

### Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

### physicsandmathstutor.com

physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

### w o = R 1 p. (1) R = p =. = 1

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

### AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

### Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

### CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

### Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

### Fourier Series. Fourier Series

ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

### Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### 6.3 Forecasting ARMA processes

122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

### Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

### CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

### ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

### UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6301456813* GREEK 0543/03 Paper 3 Speaking Role Play Card One 1 March 30

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### Strain gauge and rosettes

Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

### ECON 381 SC ASSIGNMENT 2

ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

### Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

### Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

### = λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

### «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

### Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

### Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools

Διαβάστε περισσότερα

### Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

### Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

### ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα

### UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

### Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

### HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### Spherical Coordinates

Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

### PhysicsAndMathsTutor.com

PhysicsAMthsTuto.com . Leve lk A O c C B Figue The poits A, B C hve positio vectos, c espectively, eltive to fie oigi O, s show i Figue. It is give tht i j, i j k c i j k. Clculte () c, ().( c), (c) the

Διαβάστε περισσότερα

### Probability and Random Processes (Part II)

Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

### 9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα