Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους"

Transcript

1 Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

2 Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for B Α is sufficiet for B A B A B «Α είναι ικανή και αναγκαία συνθήκη για την Β» A if-f B or A is ecessary ad sufficiet for B A B

3 Μαθηματικά Θεωρήματα και αποδείξεις Τα θεωρήματα έχουν συνήθως τη μορφή A B Α = προϋπόθεση Για να αποδείξουμε το θεώρημα θα πρέπει να δείξουμε την ορθότητα του Β = συμπέρασμα συμπεράσματος, Β, χρησιμοποιώντας την αλήθεια της προϋπόθεσης, Α, με όρους βασικής λογικής costructive proof: A B cotrapositive proof: ~ A ~ B proof by cotradictio: Υποθέσεις: Α αληθές και Β όχι αληθές τότε να καταλήξουμε σε ΑΤΟΠΟ

4 Μαθηματικά Θεωρία Συνόλων Ένα σύνολο S είναι υποσύνολο (subset) ενός άλλου συνόλου Τ : S T x S x T υο σύνολα είναι ισα, εάν περιέχουν ακριβώς τα ίδια στοιχεία: Κενό σύνολο S = T x S x T ad x T x S S T ad T S Συμπλήρωμα (complemet) συνόλου S T x\ x S or x T Ένωση (uio) συνόλων { } S T x\ x S ad x T Τομή (itersectio) συνόλων { }

5 Μαθηματικά Θεωρία Συνόλων S T (,)\ s t s S, t T Γινόμενο (product of two sets) συνόλων: { } Στη Μικροοικονομική Θεωρία περιοριζόμαστε στα υποσύνολα: ++ + Θα γράφω x 0 ή x και θα εννοώ x 0, i= 1,2.. + x>> 0 ή x και θα εννοώ x > 0, i= 1, i i

6 Μαθηματικά Covex Set Κυρτά σύνολα (covex sets) στον S είναι κυρτό σύνολο εάν για κάθε 1 x S και 2 x S 1 2 tx t x S t [ ] + (1 ), 0,1

7 Μαθηματικά Fuctios f : A B A = domai B = rage f ( a) = b a A = όρισμα της f, b B = τιμή, εικόνα της f στο α

8 Μαθηματικά Fuctios Μια συνάρτηση f : A B λέγεται 1-1 ή αμφιμονοσήμαντη, όταν αντιστοιχίζει κάθε όρισμα σε αποκλειστικά δική του τιμή ή αλλιώς, όταν διαφορετικά ορίσματα απεικονίζονται σε διαφορετικές τιμές: αν a a τότε f ( a) f( a ) Μια συνάρτηση f : A B λέγεται επί (oto), όταν δεν υπάρχει στοιχείο στο Β που να μην είναι η εικόνα κάποιου στοιχείου του Α: b B, a A: b= f( a) Μια συνάρτηση είναι αντιστρέψιμη ( f 1 ) αν είναι 1-1 και επί: 1 1 f B A f b = a b= f a : ( ) ( )

9 Μαθηματικά Topology Μετρική είναι απλά ένα μέγεθος μέτρησης της απόστασης Μετρικός χώρος είναι ένα σύνολο στο οποίο έχει οριστεί μια έννοια απόστασης (μια μετρική). Μετρικοί χώροι Μετρική {( x, x )\ x, x } 2 = {( x, x,.. x )\ x, i 1,2... } 1 2 i = = dx (, x) = x x dx (, x) = ( x x) + ( x x) dx (, x) = ( x x) ( x x)

10 Μαθηματικά Topology Defiitio: Ope ad Closed ε-balls 1. The ope ε-ball with ceter 0 x ad radius ε > 0 (a real umber) is the subset of poits i : { ε} B x x d x x < 0 0 ε ( ) \ (, ) 2. The closed ε-ball with ceter 0 x ad radius ε > 0 (a real umber) is the subset of poits i : { ε} 0 0 Bε x x d x x ( ) \ (, )

11 Μαθηματικά Topology Defiitio: Ope sets i S is a ope set if, for all x S, there exists some ε > 0 such that B ( x) S ε Theorem: O Ope Sets i 1. is a ope set 2. is a ope set 3. The uio of ope sets is a ope set 4. The itersectio of ay fiite collectio of ope sets is a ope set

12 Μαθηματικά Topology Defiitio: Closed sets i S is a closed set if, its complemet c S, is a ope set Theorem: O Closed Sets i 1. is a closed set 2. is a closed set 3. The uio of ay fiite collectio of closed sets is a closed set 4. The itersectio of closed sets is a closed set

13 Μαθηματικά Topology Defiitio: Bouded sets i A set S is called bouded if it is etirely cotaied withi some ε-ball (either ope or closed). That is S is bouded if there exists some ε > 0 such that S B ( x) x. for some ε

14 Μαθηματικά Topology Defiitio (Heie Borel): Compact sets i A set S is called compact if it is closed ad bouded

15 Μαθηματικά Real Valued Fuctio Defiitio: Caushy cotiuity Let m D ad let f : every ε > 0, there is a δ > 0 such that: D. The fuctio f is cotiuous at the poit 0 0 ( δ( ) ) ε ( ( )) f B x D B f x 0 x D if for If f is cotiuous at every poit x D, the it is called a cotiuous fuctio.

16 Μαθηματικά Real Valued Fuctio Theorem: Cotiuity ad iverse images Let m D. The followig coditios are equivalet: 1. f : D is cotiuous 2. For every ope ball B i, f 1 ( B) is ope i D 3. For every ope S 1, f ( S) is ope i D Theorem: The Cotiuous Image of a Compact Set is a Compact Set Let m D ad let f : D be a cotiuous fuctio. If S D (closed ad bouded) the its image f ( S) is a compact set. is compact

17 Μαθηματικά Real Valued Fuctio Theorem (Weierstrass): Existece of Extreme Values Let f : S be a cotiuous real-valued fuctio, where S is a oempty compact subset of. The there exists a vector x S ad a vector x S such that: f ( x ) f( x) f( x), x S

18 Μαθηματικά Real Valued Fuctio Defiitio: Real Valued Fuctios f : D R is a real-valued fuctio if D is ay set ad R Defiitio: Icreasig Real Valued Fuctios Let f : D, where D. The ( ) ( ) 0 1 f is icreasig if f x f x wheever x x 0 1 ( ) ( ) 0 1 f is strictly icreasig if f x > f x wheever x >> x 0 1 f is strogly icreasig if 0 1 ( ) f ( x ) f x > wheever x x ad 0 1 x x 0 1

19 Μαθηματικά Real Valued Fuctio Defiitio: Decreasig Real Valued Fuctios Let f : D, where D. The ( ) ( ) 0 1 f is decreasig if f x f x wheever x x 0 1 ( ) ( ) 0 1 f is strictly decreasig if f x < f x wheever x >> x 0 1 f is strogly decreasig if 0 1 ( ) f ( x ) f x < wheever x x ad 0 1 x x 0 1

20 Μαθηματικά Level Sets Defiitio: Level Sets 0 L( y ) is a level set of the real-valued fuctio f : D R if-f { } 0 0 L( y ) = x\ x D, f ( x) = y, where 0 y R Defiitio: Superior ad Iferior Sets 1. S ( y 0 ) { x \ x D, f ( x ) y 0 } is called the superior set for level 2. I ( y 0 ) { x \ x D, f ( x ) y 0 } is called the iferior set for level > is called the strictly superior set for level 3. S ( y 0 ) { x \ x D, f ( x ) y 0 } < is called the strictly iferior set for level 4. I ( y 0 ) { x \ x D, f ( x ) y 0 } 0 y 0 y 0 y 0 y

21 Μαθηματικά Level Sets Defiitio: Superior ad Iferior Sets 1. S ( y 0 ) { x \ x D, f ( x ) y 0 } is called the superior set for level 2. I ( y 0 ) { x \ x D, f ( x ) y 0 } is called the iferior set for level > is called the strictly superior set for level 3. S ( y 0 ) { x \ x D, f ( x ) y 0 } < is called the strictly iferior set for level 4. I ( y 0 ) { x \ x D, f ( x ) y 0 } 0 y 0 y 0 y 0 y

22 Μαθηματικά Cocave Fuctio Defiitio: Cocave Fuctio f : D R is a cocave fuctio if for all 1 2 x, x D f x tf x + t f x t 1 2 ( ) ( ) (1 ) ( ) [0,1] where 1 2 = + (1 ) deotes the covex combiatio of x tx t x x, x 1 2

23 Μαθηματικά Cocave Fuctio Theorem: Poits o ad below the Graph of a Cocave fuctio always form a Covex Set Let A {( x, y)\ x D, f ( x) y} be the set of poits o ad below the graph of f : D R, where D is a covex set ad R. The f is cocave fuctio A is a covex set

24 Μαθηματικά Cocave Fuctio Defiitio: Strictly Cocave Fuctios f : D R is a strictly cocave fuctio if-f for all x x i D: f ( tx + (1 t) x ) > tf( x ) + (1 t) f ( x ) t (0,1) 1 2

25 Μαθηματικά Quasi - Cocave Fuctio Defiitio: Quasi-Cocave Fuctio f : D R is quasi-cocave if-f for all ( ) Quasi-Cocave Fuctios 1 2 x, x D: + (1 ) mi ( ), ( ) [0,1] f tx t x f x f x t

26 Μαθηματικά Quasi - Cocave Fuctio Theorem: Quasi-Cocavity ad the Superior Sets f : D is a quasi-cocave fuctio if-f S( y ) is a covex set for all y

27 Μαθηματικά Quasi - Cocave Fuctio Quasi-Cocave Fuctios Defiitio: Strictly Quasi-Cocave Fuctio f : D R is strictly quasi-cocave if-f for all 1 2 x x D: ( ) + (1 ) > mi ( ), ( ) (0,1) f tx t x f x f x t Theorem: Strictly Quasi-Cocavity ad the Superior Sets f : D is a strictly quasi-cocave fuctio if-f S( y ) is a strictly covex set for all y

28 Μαθηματικά Quasi - Cocave Fuctio

29 Μαθηματικά Quasi - Cocave Fuctio Theorem: Cocavity implies Quasi-cocavity A (strictly) cocave fuctio is always (strictly) quasi-cocave Theorem: Cobb-Douglas Fuctio a b Every Cobb-Douglas fuctio f ( x1, x2) = Ax1x2 with A, ab>0, is quasi-cocave.

30 Μαθηματικά Covex ad Quasi - Covex Fuctio Defiitio: Covex ad Strictly Covex Fuctios 1. f : D R is a covex fuctio if for all 1 2 x, x D ( ) f tx t x tf x t f x t + (1 ) ( ) + (1 ) ( ) [0,1] 2. f : D R is a strictly covex fuctio if for all 1 2 x x D ( ) f tx t x tf x t f x t + (1 ) < ( ) + (1 ) ( ) (0,1)

31 Μαθηματικά Covex ad Quasi - Covex Fuctio Theorem: Poits o ad Above the Graph of a Cocave fuctio always form a Covex Set Let A {( x, y)\ x D, f ( x) y} be the set of poits o ad above the graph of f : D R, where D is a covex set ad R. The f is covex fuctio A is a covex set

32 Μαθηματικά Covex ad Quasi - Covex Fuctio Defiitio: Quasi-Covex ad Strictly q-covex Fuctio 1. f : D R is quasi-covex if-f for all 1 2 x, x D : ( ) + (1 ) max ( ), ( ) [0,1] f tx t x f x f x t 2. f : D R is strictly quasi-covex if-f for all 1 2 x x D: ( ) + (1 ) < max ( ), ( ) (0,1) f tx t x f x f x t

33 Μαθηματικά Covex ad Quasi - Covex Fuctio Theorem: (Strictly) Quasi-Covex ad the Iferior Sets f : D is a (strictly) quasi-covex fuctio if-f I ( y ) is a (strictly) covex set for all y Theorem: (Strictly) Quasi-Covex ad (Strictly) Quasi-Cocave fuctios f ( x ) is a (strictly) quasi-cocave fuctio if-f f ( x) fuctio is a (strictly) quasi-covex

34 Μαθηματικά Covex ad Quasi - Covex Fuctio

35 Μαθηματικά Calculus Calculus ad Optimizatio Fuctios of a sigle variable

36 Μαθηματικά Calculus

37 Μαθηματικά Calculus Theorem: Calculus ad Optimizatio Fuctios of a sigle variable Suppose f : D R, D, R is twice cotiuously differetiable 1. f is cocave f ( x) 0, x D 2. f is covex f ( x) 0, x D Moreover, 1. if f ( x) < 0, x D the f is strictly cocave 2. if f ( x) > 0, x D the f is strictly covex

38 Μαθηματικά Calculus Calculus ad Optimizatio Fuctios of several variables

39 Μαθηματικά Calculus Calculus ad Optimizatio Fuctios of several variables Theorem: Youg s Theorem For ay twice cotiuously differetiable fuctio f ( x), x : 2 2 f ( x) f ( x) =, i, j x x x x i j j i

40 Μαθηματικά Liear Algebra (Leadig) Pricipal Miors of a Matrix Defiitio: Let A be a matrix. A k k submatrix of A formed by deletig k colums ad the same k rows from A is called a k th order pricipal submatrix of A. The determiat of that pricipal submatrix is called a k th order pricipal mior of A. Defiitio: Let A be a A obtaied by deletig the last matrix. The k th order pricipal submatrix of k rows ad the last k colums from A is called the k th order leadig pricipal submatrix of A. Its determiat is called the k th order leadig pricipal mior of A

41 Μαθηματικά Liear Algebra Defiiteess of a Matrix Theorem: Defiiteess of a matrix Let A be a symmetric matrix (a) A is positive defiite if-f all its leadig pricipal miors are strictly positive (b) A is egative defiite if-f its leadig pricipal miors alterate i sig as follows: A < 0, A > 0, A <

42 Μαθηματικά Liear Algebra Semi-Defiiteess of a Matrix Theorem: Semi-Defiiteess of a matrix Let A be a symmetric matrix (a) A is positive semi-defiite if-f every pricipal mior is 0 (b) A is egative semi-defiite if-f every pricipal mior of odd order 0 ad every pricipal mior of eve order 0

43 Μαθηματικά Liear Algebra Border Matrices H 0 f1 f2... f f1 f11 f12... f 1 = f2 f21 f22... f 2... f f 1 f2... f

44 Μαθηματικά Liear Algebra Border Matrices Theorem: Defiiteess of a bordered matrix Let H be a symmetric bordered matrix (a) H is positive defiite if-f all its bordered pricipal miors are strictly egative i.e 0 f f 0 f H = < 0 H = f f f < 0... H < f1 f11 f2 f21 f22 (b) H is egative defiite if-f its bordered pricipal miors alterate i sig as follows: 0 f f 0 f H = < 0 H = f f f > 0 H < f1 f11 f2 f21 f22

45 Μαθηματικά Liear Algebra Border Matrices Theorem: Semi-Defiiteess of a bordered matrix Let H be a symmetric bordered matrix (a) H is positive semi-defiite if-f every bordered pricipal mior is 0 (b) H is egative semi-defiite if-f every bordered pricipal mior of odd order 0 ad every bordered pricipal mior of eve order 0

46 Μαθηματικά Liear Algebra (Border) Matrices ad (Quasi) Cocavity/Covexity Theorem: Cocavity Covexity i May Variables Let D be a covex subset of o which f is twice cotiuously differetiable f is cocave (covex) H ( x ) is egative (positive) semi-defiite, x D Moreover If H ( x ) is egative (positive) defiite x D the f is strictly cocave (covex)

47 Μαθηματικά Liear Algebra Theorem: Cocavity Covexity ad Secod-Order Ow Partial Derivatives Let f : D R be a twice cotiuously differetiable fuctio 1. If f cocave fii ( x) 0 i = 1, 2,... x 2. If f covex fii ( x) 0 i = 1, 2,... x

48 Μαθηματικά Liear Algebra (Border) Matrices ad (Quasi) Cocavity/Covexity Theorem: Quasi-Cocavity (Covexity) i may variables Let D be a covex subset of o which f is twice cotiuously differetiable f is quasi cocave (covex) H ( x ) is egative (positive) semi-defiite, x D Moreover If ( ) H x is egative (positive) defiite x D the f is strictly quasi -cocave (quasi-covex)

49 Μαθηματικά Homogeeous Fuctio Homogeeous Fuctios Defiitio: Homogeeous Fuctios A real-valued fuctio f ( x ) is called homogeeous of degree k, if f ( tx) = t k f ( x) t > 0

50 Μαθηματικά Homogeeous Fuctio Homogeeous Fuctios Theorem: Partial Derivatives of Homogeeous Fuctios If f ( x ) is h.o.d. k, its partial derivatives are h.o.d. k-1 Theorem: Euler s Theorem Let f ( x ) be a cotiuously differetiable homogeeous fuctio of degree k o The for all x + f ( x) f ( x) f ( x) x + x x = kf ( x) x x x

51 Μαθηματικά Optimizatio Optimizatio Maxima ad miima for sigle-variable fuctios Cosider the fuctio of a sigle-variable f ( x) = y ad assume it is differetiable whe we say the fuctio achieves a local maximum at x, we mea that f x f x x B x ( ) ( ), ε ( ) whe we say the fuctio achieves a global maximum at x, we mea that f ( x ) f ( x), x D uique local maximum at x if f ( x ) > f ( x), x x B ( x ) ε uique global maximum at x if f ( x ) > f ( x), x x D

52 Μαθηματικά Optimizatio Optimizatio Maxima ad miima for sigle-variable fuctios Theorem: (a) If f ( x0) = 0 ad f ( x0) < 0 the x 0 is local max of f (b) If f ( x0) = 0 ad f ( x0) > 0 the x 0 is local mi of f (c) If f ( x0) = 0 ad f ( x0) = 0 the x 0 ca be max, mi, or either

53 Μαθηματικά Optimizatio Optimizatio Maxima ad miima for sigle-variable fuctios If f ( x ) is a twice cotiuously differetiable fuctio whose domai is a iterval I, the (a) If f ( x0 ) = 0 ad f ( x) < 0, x I the x 0 is a global max of f (b) If f ( x0 ) = 0 ad f ( x) > 0, x I the x 0 is a global mi of f

54 Μαθηματικά Optimizatio Optimizatio Real-valued fuctios of -variables Defiitio: Let f : D, D (1) A poit x D is a global max if f ( x ) f ( x), x D (1) A poit x D is a uique global max if f ( x ) > f ( x), x D ad x x (2) A poit x D is a local max if f ( x ) f ( x), x Bε ( x ) D (2) A poit x D is a uique local max if f ( x ) > f ( x), x Bε ( x ) D ad x x

55 Μαθηματικά Optimizatio Theorem: Optimizatio Real-valued fuctios of -variables Let f : D, D be a twice cotiuously differetiable fuctio If x D is a local max or mi of f ad if x is a iterior poit of D, the x solves the system f x x... ( ) 1 ( ) f x x 2 ( ) f x x = = = 0 0 0

56 Μαθηματικά Optimizatio Optimizatio Real-valued fuctios of -variables SECOND ORDER CONDITIONS Theorem: Sufficiet Coditios Let f : D, D be a twice cotiuously differetiable fuctio Suppose that x satisfies f ( x ) = 0, i = 1, 2,... x ad that the leadig pricipal i miors of H ( x ) alterate i sig at x. The H < 0, H > 0, H < x is a uique local max of f

57 Μαθηματικά Optimizatio Optimizatio Real-valued fuctios of -variables SECOND ORDER CONDITIONS Theorem: Necessary Coditios Let f : D, D be a twice cotiuously differetiable fuctio (1) If f ( x ) reaches a local iterior maximum at x the f x x ( ) i = 0, i = 1, 2,... ad H ( x ) is egative semi-defiite (2) If f ( x ) reaches a local iterior miimum at x the ad H ( x ) is positive semi-defiite f ( x ) x i = 0, i = 1, 2,...

58 Μαθηματικά Optimizatio Optimizatio Real-valued fuctios of -variables Theorem: Global Theorem Let f : D, D be a twice cotiuously differetiable fuctio which is [strictly] CONCAVE (covex) o D. The followig statemets are equivalet, where x is a iterior poit of D : (1) f x x ( ) i = 0, for i = 1, 2,... (2) f achieves a [uique] GLOBAL MAXIMUM (global miimum) at x

59 Μαθηματικά Optimizatio Costraied Optimizatio Equality Costraits max f ( x, x ) s.t. g( x, x ) = 0 x, x

60 Μαθηματικά Optimizatio Costraied Optimizatio Equality Costraits max f ( x, x ) s.t. g( x, x ) = 0 x, x Solve: 1. By substitutio

61 Μαθηματικά Optimizatio Costraied Optimizatio Equality Costraits max f ( x, x ) s.t. g( x, x ) = 0 x, x Solve: 1. By substitutio 2. Lagrage s Method

62 Μαθηματικά Optimizatio Costraied Optimizatio Equality Costraits Theorem: Sufficiet Coditios for Local Optima with Equality Costraits Let the objective fuctio be f ( x ) ad the m costraits be j g ( x) = 0, j = 1, 2,... m Let ( x, Λ ) solve the F.O.C. The 1. x is a local maximum of f ( x ) subject to the costraits, if the bordered pricipal miors, evaluated at ( x, Λ ), alterate i sig begiig with egative 2. x is a local miimum of f ( x ) subject to the costraits, if the bordered pricipal miors, evaluated at ( x, Λ ), are all egative

63 Μαθηματικά Optimizatio Costraied Optimizatio Iequality Costraits Theorem: Necessary Coditios for Optima of Real-valued fuctios s.t. Noegative Costraits Let the objective fuctio f ( x ) be cotiuously differetiable 1. If x maximizes f ( x ) s.t. x 0, the x satisfies: (i) f ( x) x i 0, i = 1, 2... (ii) (iii) f( x ) xi = 0, i = 1, 2... xi x 0 i = 1, 2,... i

64 Μαθηματικά Optimizatio Costraied Optimizatio Iequality Costraits KUHN-TUCKER CONDITIONS

65 Μαθηματικά Optimizatio Value Fuctios M ( a) f ( xa ( ), a) Theorem: Theorem of the Maximum If the objective fuctio ad the costrait are cotiuous i the parameters, ad if the domai is a compact set, the M ( a ) ad x( a ) are cotiuous i a

66 Μαθηματικά Optimizatio THE ENVELOPE THEOREM Cosider the problem max f ( x ; a ) s.t. g( x; a) = 0 ad x 0 x ad suppose the objective fuctio ad costrait are cotiuously differetiable i a. For each a, let xa ( ) >> 0 uiquely solve the problem ad assume that it is also cotiuously differetiable i the parameters a. Let Lxaλ (,, ) be the problem s associated Lagragia fuctio ad let ( x( a), λ ( a)) solve the Kuh-Tucker coditios. Fially, let M ( a ) be the problem s associated maximum-value fuctio. The the Evelope Theorem states that M( a) L = j = 1, 2,... m a a j j x( a) λ ( a)

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof

Διαβάστε περισσότερα

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο α οριζουμε

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο α οριζουμε page 1 of 12 ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Ορισμος Για καθε συναρτηση f : S R και καθε αριθμο α οριζουμε Την καμπυλη αδιαφοριας(idifferece curve, level set) της f I = { x Sfx, ( ) = α} α Το υπερτερο

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f Page 1 of 13 covexity Ορισμος Για καθε συναρτηση ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f : S R και καθε αριθμο οριζουμε Την καμπυλη αδιαφοριας(idifferece curve,level set) της f I { xs, f( x ) } Το υπερτερο

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣTHN ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣTHN ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣTHN ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Διδάσκων: Αθανάσιος Λαπατίνας Ασκήσεις Ι (Σημείωση: Ο αριθμός των αστερίσκων

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μια διμελής σχέση πάνω σε ένα σύνολο X καλείται μερική διάταξη αν η είναι ανακλαστική, αντισυμμετρική και μεταβατική, δηλαδή: a X, a

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα