i 1 הזוגיים. i 2 או רשתותאחרות. ששת האפשרויות לייצוג זוגיים הן: v = Zi + v v 2 -

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "i 1 הזוגיים. i 2 או רשתותאחרות. ששת האפשרויות לייצוג זוגיים הן: v = Zi + v v 2 -"

Transcript

1

2 זוגיים (Two-Ports) זוגיים הם תת-רשת או רכיב מקובץ עם שני זוגות הדקים חיצוניים: - זוגיים רשת ללא מקורות ב"ת - ייחוד הזוגיים הוא בחלוקת ההדקים לזוגות, כך שבכל זוג הזרם הנכנס בהדק אחד זהה לזרם היוצא בהדק השני. נציין כי תכונה זו יכולה לנבוע מהמבנה הפנימי של המעגל (למשל בשנאי), או מאופן החיבור של הזוגיים לשאר הרשת. תיאור כזה של רשת יכול לשמש לתיאור אלמנטים פשוטים כמו שנאי וטרנזיסטור וגם רשתות מורכבות כמו מגברים מסננים וקווי תמסורת. זוגות ההדקים מכונים בדרך כלל זוג כניסה וזוג יציאה. להדקים אלה ניתן לחבר מקורות הזנה, עומסים או רשתותאחרות. בפרק זה נעסוק רק בזוגיים המתארים רשת ליניארית ללא מקורות בלתי תלויים. נציג שיטות לתיאור וניתוח רשתות אלו. תאור רשת זוגיים כאשר אנו מטפלים ברשת זוגיים אנו דנים ברשתות ליניאריות קבועות בזמן שלא כוללות מקורות בלתי תלויים. הרשת יכולה להכיל מקורות תלויים אך התלות חייבת להיות בענפים שנמצאים בתוך הזוגיים. בנוסף לכך, מדובר ברשתות בהן תנאיי ההתחלה של כל הרכיבים אוגרי האנרגיה שווים לאפס. במקרה כזה נוכל לרשום קשר בין כל זוג משתנים לזוג האחר. כלומר, אפשר לאלץ מתח או זרם בכל אחד משני ההדקים ולקבל כתוצאה מכך את הזרם או המתח שמתפתחים בהדקים. את הקשר הזה אפשר לבטא בעזרת מטריצה. מבין ארבעת המשתנים אפשר לבחור שש (. כלומר, אפשר לתאר כל רשת זוגיים בעזרת שש 6 = C 4 זוגות שונים של משתני כניסה ( מטריצות שונות. בפרק זה נגדיר את האפשרויות השונות לתיאור הזוגיים. נתאר את המעבר מייצוג אחד לייצוג אחר. ונציין מתי נוח לעבוד בכל אחת מהאפשרויות. כדי להגדיר את הקשר של זוג משתנים בזוג אחר בעזרת מטריצה צריך להגדיר את הסדר של המשתנים. הסדר המקובל קובע שמשתנה עם אינדקס מקדים משתנה בעל אינדקס ומשתנה מסוג מתח מקדים משתנה מסוג זרם. ששת האפשרויות לייצוג זוגיים הן: r x n r = ; x = out z z = z z r r = Z (

3 r x n r = ; x = out y y = y y r r = Y ( r x n r = Tx out r x n r A B = ; xout = (3, = C D הערה: הגדרנו את התלות בזרם בקסקדה (שרשרת). את המטריצה T מסמנים גם בA וגם ב.(A,B,C,D) כתלות ב. הגדרה זו מקלה את החישובים בחיבור זוגיים x out = Bx n r x n r = ; x =, out A B = C D הערה: גם במקרה זה הגדרנו את התלות בזרם כתלות ב. הגדרה זו מקלה את החישובים (4 בחיבור זוגיים בקסקדה (שרשרת). h h ; = = h h h (5 g g ; = = g g g (6 את המטריצה g מסמנים גם בF. הערה: בדרך כלל ניתן לייצג מעגל בעזרת כל היצוגים אך במעגלים מסוימים (לרוב מעגלים פשוטים במיוחד) מקבלים בחלק מהיצוגים איברים לא חוקיים. כלומר, לא תמיד ששת המטריצות קיימות. מבין ששת המטריצות יש שלושה זוגות של מטריצות הפוכות: Y= Z ; h= g ; T = B הערה: במעגלים מסדר אפס (בלי קבלים וסלילים) האיברים כל במטריצות הם סקלרים (הסקלרים יכולים להיות עם יחידות). במעגלים מסדר גדול מאפס אפשר לעבוד במספר שיטות: בשיטה האופרטורית, בשיטה זו איברי הזוגיים יהיו מנה של פולינומים של האופרטור D. בעזרת לאפלס, מקדמי הזוגיים יהיו מנה של פולינומים של המשתנה S.

4 בשיטה הפאזורית מקדמי הזוגיים יהיו מנה של פולינומים של המשתנה.jω שיטה זו עדיפה ברשתות בזרם חילופין. פירוט התכונות של כל אחת מהמטריצות מטריצות הקשר בין מתחי הזוגיים לזרמי הזוגיים הקשר בין הזרמים למתחים של רשת זוגיים מתואר בעזרת המטריצות Z וY. ניתן לרשום את הקשר בין המתחים לזרמים בצורה הבאה: = z = z z z z z ; Z = = z z קשר זה ניתן לרשום בקיצור כדלקמן: z z המטריצה Z נקראת מטריצת אימפדנס הריקם של הזוגיים.. (OPEN CICUIT IMPEDANCE MATIX) הקשרים הבאים מסבירים את הסיבה לשם אימפדנס הריקם: = ; z = = 0 = 0 = ; z = = 0 = 0 כאשר סימטרית, המטריצה שמתקבלת הזוגיים יהיו הדדיים מתחי הצמתים בשיטת עבור הרשת הפנימית של הזוגיים, היא הזוגיים של רשת שלא כוללת מקורות z = z.(ecipocal) תלויים יהיו תמיד הדדיים. זוגיים נקראים הדדייםכאשר מתקיים Y TP = Y = ( Z) באופן דומה, נוכל לרשום את הזרמים כפונקציה של המתחים, כאשר y y ; YTP ; = = = y y Y המטריצה Y נקראת מטריצת אדמיטנס הקצר של הזוגיים,, (SHOT CICUIT ADMITTANCE MATIX) כפי שמתבטא בקשרים הבאים: 3

5 y y = ; y = = 0 = 0 = ; y = = 0 = 0 דוגמאות למציאת מטריצות האימפדנס והאדמיטנס ברשתות זוגיים פשוטות: נגד בטור: G - ( ) ( ) = G = G G G = G G 443 Y TP - מטריצות האדמיטנס מטריצות האימפדנס לא קיימת מכוון שלמטריצה Y אין מטריצה הופכית. מתקבל עקב זאת שאי-אפשר לחבר שני מקורות זרם בלתי תלויים למעגל. הסבר נוסף לכך נגד במקביל: - ( ) ( ) = = = 443 z TP - מטריצות האימפדנס מטריצות האדמיטנס לא קיימת מכוון שלמטריצה Z אין מטריצה הופכית. מתקבל עקב זאת שאי-אפשר לחבר שני מקורות מתח בלתי תלויים למעגל. הסבר נוסף לכך 4

6 רשת :T Y TP TP ( ) 3 = = 3 3 = = z = = z TP ( )( ) ( ) מטריצות האימפדנס מטריצות האדמיטנס רשת : Π G 3 G G - - ( G ) = ( ) 3 G = G G G3 G3 = G G G Y TP מטריצות האדמיטנס 5

7 6 סנדפמיאה תוצירטמ TP TP G G G G G G Z Y GG GG GG = == :T רשג תשר ( ) 3 = = = ( ) = ( )( ) ( ) ( ) ( ) ( ) ( )( ) = ליבקמבו רוטב תוכרעמ רוביח תצירטמ לעב היהי ליבקמב םירבוחמש םייגוז תותשרמ יונבה לגעמ סנטימדא םוכסל הוושה סנטימדאה תצירטמ םייגוזה תותשר לש ליבקמב םירבוחמש תורבוחמש תויוכילומב ומכ).(ליבקמב תצירטמ לעב היהי רוטב םירבוחמש םייגוז תותשרמ יונבה לגעמ סנדפמיא םוכסל הוושה רוטב םירבוחמש םייגוזה תותשר לש סנדפמיאה תצירטמ.(רוטב םירבוחמש םידגנב ומכ) 3 - -

8 הוכחה: Y Y A Y B A B A B A B A B A B = Y = A = B A = Y = B Y A Y B Y ( Y Y ) = A B Y = Y Y A B Z A A Z I A I B Z B B A B A B ( A B) = Z = A = Z = B Z Z Z Z= Z Z A B 7

9 כ. מטריצת התמסורת של זוגיים T בשימושים רבים מתעניינים בתכונות התמסורת של הזוגיים. כלומר, כיצד תלויים ערכי הכניסה x n = ; x { }, וערכי היציאה זה בזה. out = { }, נגדיר: הערה: הגדרנו את הזרם ביציאה בכיוון הפוך על מנת להקל את החישוב בחיבור זוגיים בקסקדה., x או בסימון אחר: n = T x out הקשר במקרה הליניארי הוא מהצורה T A = C B D לומר A = C B D A= ; B=. C = ; D= = 0 = 0 = 0 = 0 חיבור זוגיים בקסקדה (שרשרת): - T A T B - קל לבדוק שהתמסורת השקולה של זוגיים המחוברים בקסקדה הינה המכפלת של כלומר, התמסורות.. T = T T A B A A B B T TA TA TA TB TA TB = = = A = = = A B B T = T T A B 8

10 מטריצת התמסורת h וg השימוש במטריצה h נפוץ במעגלי טרנזיסטורים מסוג.BJT הסיבה לכך היא שיש קשר מיידי בין התכונות הפיזיקאליות של הטרנזיסטורים למקדמים. h h ; = = h h h h = ; h = = 0 = 0 h = ; h = = 0 = 0 g g ; = = = g g g g h g g = ; g = = 0 = 0 = ; g = = 0 = 0 מעגל הבנוי מזוג רשתות זוגיים בהן הכניסות או היציאות מחברים בטור והזוג השני מחובר במקביל נקראות רשתות בחיבור מעורב. מעגל הבנוי מחיבור מעורב של רשתות זוגיים שזוג הכניסה מחוברות בה בטור וזוג היציאות מחוברות בה במקביל יהיה בעל מטריצת h השווה לסכום מטריצת h של רשתות הזוגיים השייכים לחיבור המעורב. מעגל הבנוי מחיבור מעורב של רשתות זוגיים שזוג הכניסה מחוברות בה במקביל וזוג היציאות מחוברות בה בטור יהיה בעל מטריצת g השווה לסכום מטריצת g של רשתות הזוגיים השייכים לחיבור המעורב. 9

11 A h A A h I B h B B A B A B A B A B [ A B] = h = A = B = = A h B h A h h B h = h h A B g g A A A I B g B B מעגלי תמורה של זוגיים ניתן לתאר את הקשרים בין הכניסות ליציאות של מעגלי זוגיים בעזרת מעגלי תמורה. לכל מטריצה אפשר להתאים מעגל תמורה שונה. מעגלי התמורה עוזרים בניתוח מעגלים הכוללים זוגיים. מעגלי תמורה מתוך מטריצת האימפדנסים Z: z z z z - 0 -

12 כאשר יש חיבור בין ההדקים התחתונים של הכניסה והיציאה ניתן להציג את מעגלי תמורה גם באופן הבא: z ( z z ) z z z z - - הייצוג האחרון נוח במיוחד בזוגיים הדדים מכוון שמקור המתח מתבטל. מעגלי תמורה מתוך מטריצת האדמיטנסים Y: y y - y y - כאשר יש חיבור בין ההדקים התחתונים של הכניסה והיציאה ניתן להציג את מעגלי תמורה גם באופן הבא: y - y y y y ( y ) y - הייצוג האחרון נוח במיוחד בזוגיים הדדים מכוון שמקור הזרם מתבטל. מעגלי תמורה מתוך מטריצה T: מעגל התמורה של מטריצה T פחות שימושי מהמעגלים האחרים ולכן לא נציג אותו.

13 מעגלי תמורה מתוך מטריצה h: - h h _ h h - מעגלי תמורה מתוך מטריצה g: g - g g g - דוגמאות לשימושים במעגלי התמורה נתונים ארבעת פרמטרי h של רשת זוגיים מסויימת. חשב את z של הרשת. פתרון: בהתאם להגדרה של המטריצה Z מתקיים: = z z z = ( / ) =0 כעת נרשום את מעגל התמורה של מעגל h ונחשב את 0= ). / ) מעגלי התמורה של מטריצה h כאשר זרם שווה לאפס הוא: hω - h h h Ω - מהמעגל נובע ש: =- h /h =h h = h -(h h )/h =( h -(h h )/h )

14 z = ( / ) = h - ( h h )/ h נתון המעגל שבציור ונתונים ארבעת פרמטרי y של רשת הזוגיים. רשום את פונקצית התמסורת של המעגל כאשר אות הכניסה למעגל זה מתח המקור ואות היציאה הוא מתח הקבל. y =mω -, y =0Ω -, y =0.0Ω -, y =00µΩ -, C Y Y C n 00μF 9KΩ C 90KΩ - Y - 500pF =0 3 Ω, =0 4 Ω, =/Y, =/Y, Y =/, a =, b = // a =0 4 Ω, b = Ω נסמן: Y b =/ b b DC DC DC a b DC DYC ( b ) ( ) ( ) נרשום את המשוואה הדיפרנציאלית בצורה אופרטורית: b = Y = Y n = DC b DC = n = DCa a DC DYC ( ) ( ) ( ) = D CC D C C D CC D CY C Y n a b a b a a b b n n DYC ( ) ( ) ( ) = D C C D C Y C Y a a b b n 3

15 נעבור מפונקצית התמסורת האופרטורית לפונקצית התמסורת התדירותית ע"י מעבר לפאזורים והחלפה של D ב.jω V jω ( YCb ) ( CC ) jω( C C ) = V ω a b a b n נחשב את פונקצית התמסורת פעם נוספת ללא שימוש במעגל התמורה: } 0 n n 0 y y / DC / DC / DC = = = y y ( Y DC) 0 ( Y DC) 0 n y 0 0 / DC y y / DC = 0 ( Y DC) 0 n y 0 / DC / DC = y y ( Y DC ) 0 נחשב את בעזרת קרמר. 4

16 n y / DC / DC y y 0 / DC = = n = y 0 y ( y ( Y DC )) / DC / DC y y ( Y DC ) ydc ydc DC DC n = DC y Y DC DC 443 yb y ( ( )) ( ) y Y y DC DC DC DC ( ) n = Dy C Dy C = = n ( y ( DC ) DC )( yb DC ) ( D( yc C ) y )( yb DC ) n Dy C D ( y ) CC DyC D( yc C ) yb y yb n = = Dy C y y D y CC D yc yb C yb yc ( ) ( ) b n = = D CC D C y C yb ( ) ( b ( ) ) 443 a Dy C Dy C DCC a DCy ( b a C) yb n n DyC = DCC DCy C y ( ) a b a b n כצפוי התקבלה תוצאה זהה לזו שהתקבלה בעזרת מעגל תמורה. את השלב האחרון בפתרון ניתן לחשב בעזרת לכסון המטריצה במקום בשיטת קרמר. 5

17 n y 0 / DC / DC = y ( Y ) 0 b DC y y 0 yn / DC / DC = y y ( Y ) 0 b DC y / DC / DC yn y y 0 / DC / DC = yn 0 ( Yb DC) y / DC / DC = ( ) Yb DC y n / DC / DC ( b )( ( / ) ) Y DC y DC = y n ( b ) ( ( ) ) Y DC y DC DC ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) ( ) ) y = DC y y Y DC Y DC y DC DC DC DC = DC y b b n D ycc CC D yyc YC yc yy = DCy b b b n D C C C C D Y C Y C C Y = DC y b b b n n מעבר מייצוג לייצוג. בדרך כלל ניתן לייצג רשת זוגיים בעזרת כל אחת מששת האפשרויות. הבעיה היא איך לעבור מייצוג לייצוג. שיטה ראשונה היא בעזרת מעגל התמורה ובעזרת ההגדרות למציאת האיברים השונים בכל אחת מהמטריצות (ראה דוגמה בסעיף הקודם). דרך שנייה מתבססת על גישה אלגברית. בגישה זו בשלב ראשון רושמים את מערכת המשוואות שמתקבלת בעזרת הזוגיים שאותם רוצים להחליף. שלב שני, משנים את סדר האיברים במשוואות כך שבצד אחד יופיעו משתני הכניסה של הזוגיים החדשים ובצד השני משתני היציאה של הזוגיים החדשים. שלב שלישי רושמים את המשוואות בצורה מטריצית ומכפילים במטריצה ההופכית לזו שכופלת את וקטור היציאה: 6

18 דוגמה: נפתח את המעבר מייצוג בעזרת פרמטרי האימפדנס Z לייצוג בעזרת פרמטרי התמסורת T. = z = z z z z = z z = z 0 z z = 0 z z z 0 z z z 0 z = 0 z z = = z 0 z z z z z z z z = z z zz z z z מכאן: A = C = z z z ; ; B = D = z z z z z z z. z = 0 הערה: מטריצת התמסורת אינה מוגדרת אם Δ z z z T = AD BC = = z z z z z חישוב הדטרמיננטה של T: z z ומכאן נקבל כי Δ T בזוגיים הדדיים = דוגמה: חישוב מטריצת התמסורת עבור גשר T: 7

19 8 :ףוהכריק יקוח תרזעב ונלביק ילמשחה לגעמהמ ( ) 3 = = :ןמקלדכ תרוסמתה תיצקנופ תא בשחל ןתינ ןאכמו ( ) = ( ) ( ) = ( ) ( ) ( ) ( ) = = Δ = ( ) ( ) ( ) = :תפסונ האירקל

20 נוסחאון במבוא להנדסת חשמל לכיתה י"ג, אביב תשס"ח, נספח לשאלון מקדמי ABCD של רשת זוגיים הערה: זרם המבוא I נכנס לרשת, וזרם המוצא I יוצא מהרשת. המשך בעמוד 9

21 נוסחאון במבוא להנדסת חשמל לכיתה י"ג, אביב תשס"ח, נספח לשאלון מקדמי Z ו Y של רשת זוגיים הערה: זרם המבוא I וזרם המוצא I נכנסים לרשת. המשך בעמוד 0

22 נוסחאון במבוא להנדסת חשמל לכיתה י"ג, אביב תשס"ח, נספח לשאלון טבלה השוואתית של מקדמי זוגיים הערות א. עבור מקדמי ABCD זרם המוצא I יוצא מהרשת. עבור מקדמי Y ו Z זרם המוצא I נכנס לרשת. ב. Z Y, הם דטרמיננטים של המטריצות ]Z[ ו [ Y ], בהתאמה. המשך בעמוד

23 נוסחאון במבוא להנדסת חשמל לכיתה י"ג, אביב תשס"ח, נספח לשאלון רשתות זוגיים [Ω] Z O עכבה אופיינית [Ω] Z SC עכבת המבוא בקצר [Ω] Z OC עכבת המבוא בנתק ZO = ZSC ZOC עבור רשת סימטרית מתקיים: B מקדם זוגיים C מקדם זוגיים ZO = B C מהצד האחד מהצד האחר עכבת הבבואה Z O [Ω] עכבת המבוא בקצר [Ω] Z SC עכבת המבוא בנתק [Ω] Z OC עכבת הבבואה Z O [Ω] עכבת המבוא בקצר [Ω] Z SC עכבת המבוא בנתק [Ω] Z OC ZO = ZSCZ OC ZO = ZSC ZOC γ קבוע ההתפשטות [neper] α קבוע הניחות γ α jβ α e = e = e β קבוע המופע, זווית המופע β [rad] בין הזרמים I ו I N ניחות α N = e = I I N[ db] = 0 log N neper = 8.69 db המשך בעמוד

24 נוסחאון במבוא להנדסת חשמל לכיתה י"ג, אביב תשס"ח, נספח לשאלון מסננים מסוג K קבוע [Ω] o התנגדות אופיינית o = L C מסנן LPF [Hz] f c תדר פוגה fc = π LC כאשר : ω > ω c כאשר : ω < ω c ω β = sn ω c ω α = cosh ω c T עכבה אופיינית של רשת Z OT [Ω] סימטרית מעבירה נמוכים ZOT ( ω)= o ω ωc π עכבה אופיינית של רשת Z Oπ [Ω] סימטרית מעבירה נמוכים ZOπ ( ω)= o ω ωc המשך בעמוד 3

25 נוסחאון במבוא להנדסת חשמל לכיתה י"ג, אביב תשס"ח, נספח לשאלון CONFIGUA TION constant-k LOW P ASS FIL TE A TTENUA TION IMPEDANCE Z OT L C L Z OT N [db] o Z OT ''T'' (FULL SECTION) f c f f c f N [db] Z O Z O C L C Z O '' '' f c f o f c f L o = f c ; C = f c o o = LINE IMPEDANCE מסנן HPF [Hz] f c תדר פוגה fc = 4π LC כאשר : ω < ω c כאשר : ω > ω c β = sn ωc ω ωc α = cosh ω המשך בעמוד 4

26 נוסחאון במבוא להנדסת חשמל לכיתה י"ג, אביב תשס"ח, נספח לשאלון T עכבה אופיינית של רשת Z OT [Ω] סימטרית מעבירה גבוהים ZOT ( ω)= o ωc ω π עכבה אופיינית של רשת Z Oπ [Ω] סימטרית מעבירה גבוהים ZOπ ( ω)= o ωc ω π π π π π π בהצלחה!

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

דפי נוסחאות לחשמל 1 ג רכיבים מקובצים וחוקי קירכוף ' ' '

דפי נוסחאות לחשמל 1 ג רכיבים מקובצים וחוקי קירכוף ' ' ' דפי נוסחאות לחשמל ג 365 רכיבים מקובצים וחוקי קירכוף רכיבים מקובצים/מפולגים רכיב מפולג - גדול בממדיו ביחס לאורך הגל. רכיב מקובץ - קטן בממדיו ביחס לאורך הגל.(λc/f) λ ברכיב מקובץ ניתן להגדיר מתח וזרם לרכיב.

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

אלגברה לינארית מטריצות מטריצות הפיכות

אלגברה לינארית מטריצות מטריצות הפיכות מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

( t) אפנונים: רעש: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) β ωmt = = = 1+ a. [ dbm MHz] f t A m t t. kt0b. cos F TOT. P A, P A m 4 T = T F

( t) אפנונים: רעש: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) β ωmt = = = 1+ a. [ dbm MHz] f t A m t t. kt0b. cos F TOT. P A, P A m 4 T = T F v אפנונים: AM : f ( t) A + ( t) cos ωct+ ϕ ( a < ) + a cos( ω + ϕ) cos( ωc + ϕc) A{cos( ω t+ ϕ ) + c c עבור רכיב ספקטרלי בודד: f t A t t B t a + cos ωc+ ω t+ ϕc+ ϕ a + cos ( ωc ω) t+ ( ϕc ϕ) } A, A 4 C

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

גלים א. חיבור שני גלים ב. חיבור N גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים

גלים א. חיבור שני גלים ב. חיבור N גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים גלים א. חיבור שני גלים ב. חיבור גלים ג. גלים מונוכרומטיים וגלים קוהרנטיים ד. זרם העתקה ה. משוואות מקסוול ו. גלים אלקטרומגנטיים םילג ינש רוביח ו Y Y,הדוטילפמא התוא ילעב :לבא,,, ( ( Y Y ןוויכ ותואב םיענ

Διαβάστε περισσότερα

הרצאה 7 טרנזיסטור ביפולרי BJT

הרצאה 7 טרנזיסטור ביפולרי BJT הרצאה 7 טרנזיסטור ביפולרי JT תוכן עניינים: 1. טרנזיסטור ביפולרי :JT מבנה, זרם, תחומי הפעולה..2 מודל: S MOLL (אברסמול). 3. תחומי הפעולה של הטרנזיסטור..1 טרנזיסטור ביפולרי.JT מבנה: PNP NPN P N N P P N PNP

Διαβάστε περισσότερα

Vcc. Bead uF 0.1uF 0.1uF

Vcc. Bead uF 0.1uF 0.1uF ריבוי קבלים תוצאות בדיקה מאת: קרלוס גררו. מחלקת בדיקות EMC 1. ריבוי קבלים תוצאות בדיקה: לקחנו מעגל HLXC ובדקנו את סינון המתח על רכיב. HLX מעגל הסינון בנוי משלוש קבלים של, 0.1uF כל קבל מחובר לארבע פיני

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת:

{ } { } { A חוקי דה-מורגן: הגדרה הסתברות מותנית P P P. נוסחת בייס ) :(Bayes P P נוסחת ההסתברות הכוללת: A A A = = A = = = = { A B} P{ A B} P P{ B} P { } { } { A P A B = P B A } P{ B} P P P B=Ω { A} = { A B} { B} = = 434 מבוא להסתברות ח', דפי נוסחאות, עמוד מתוך 6 חוקי דה-מורגן: הגדרה הסתברות מותנית נוסחת

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

השפעת הטמפרטורה על ההתנגדות התנגדות המוליך

השפעת הטמפרטורה על ההתנגדות התנגדות המוליך בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"ג, 013 מועד הבחינה: משרד החינוך נספח לשאלון: 84501 אין להעביר את הנוסחאון לנבחן אחר א. תורת החשמל נוסחאון במערכות חשמל )10 עמודים( )הגדלים בנוסחאון

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

co ארזים 3 במרץ 2016

co ארזים 3 במרץ 2016 אלגברה לינארית 2 א co ארזים 3 במרץ 2016 ניזכר שהגדרנו ווקטורים וערכים עצמיים של מטריצות, והראינו כי זהו מקרה פרטי של ההגדרות עבור טרנספורמציות. לכן כל המשפטים והמסקנות שהוכחנו לגבי טרנספורמציות תקפים גם

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

normally open (no) normally closed (nc) depletion mode depletion and enhancement mode enhancement mode n-type p-type n-type p-type n-type p-type

normally open (no) normally closed (nc) depletion mode depletion and enhancement mode enhancement mode n-type p-type n-type p-type n-type p-type 33 3.4 מודל ליניארי ומעגל תמורה לטרנזיסטורי אפקט שדה ישנם שני סוגים של טרנזיסטורי אפקט השדה: א ב, (ormally מבוסס על שיטת המיחסו( oe JFT (ormally oe המבוסס על שיטת המיחסור MOFT ו- MOFT המבוסס על שיטת העשרה

Διαβάστε περισσότερα

אלגוריתמים ללכסון מטריצות ואופרטורים

אלגוריתמים ללכסון מטריצות ואופרטורים אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

אלגברה לינארית 1. המערכת הלא הומוגנית גם כן. יתרה מזאת כל פתרון של (A b) הוא מהצורה c + v כאשר v פתרון כלשהו של המערכת ההומוגנית

אלגברה לינארית 1. המערכת הלא הומוגנית גם כן. יתרה מזאת כל פתרון של (A b) הוא מהצורה c + v כאשר v פתרון כלשהו של המערכת ההומוגנית אלגברה לינארית 1 Uטענה U: אם c פתרון של המערכת (A b) ו v פתרון של המערכת (0 A) אזי c + v פתרון של המערכת הלא הומוגנית גם כן. יתרה מזאת כל פתרון של (A b) הוא מהצורה c + v כאשר v פתרון כלשהו של המערכת ההומוגנית

Διαβάστε περισσότερα

(ספר לימוד שאלון )

(ספר לימוד שאלון ) - 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:

Διαβάστε περισσότερα

מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע.

מצולעים מצולעהוא צורה דו ממדית,עשויה קושבורסגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. לדוגמה:בסרטוט שלפappleיכם EC אלכסוןבמצולע. גיאומטריה מצולעים מצולעים מצולעהוא צורה דו ממדית,עשויה קו"שבור"סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שappleי קדקודים שאיappleם סמוכים זה לזה. לדוגמה:בסרטוט שלפappleיכם

Διαβάστε περισσότερα

חפסנ םיגתוממ םיבציימ יראיניל בציי. מ א גתוממ בצי. ימ ב

חפסנ םיגתוממ םיבציימ יראיניל בציי. מ א גתוממ בצי. ימ ב נספח מייצבים ממותגים מסווגים את מעגלי הייצוב לשני סוגים: א. מייצב ליניארי. ב. מייצב ממותג. א. מייצב ליניארי מייצב ליניארי הינו למעשה מגבר שכניסתו היא מתח DC וכל מה שנכון לגבי מגבר נכון גם לגבי המייצב הנ"ל.

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל-

הרצאה. α α פלוני, וכדומה. הזוויות α ל- β שווה ל- מ'' ל'' Deprmen of Applied Mhemics Holon Acdemic Insiue of Technology PROBABILITY AND STATISTICS Eugene Knzieper All righs reserved 4/5 חומר לימוד בקורס "הסתברות וסטטיסטיקה" מאת יוג'ין קנציפר כל הזכויות

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

-הולכה חשמלית- הולכה חשמלית

-הולכה חשמלית- הולכה חשמלית מילות מפתח: הולכה חשמלית התנגדות, וולטמטר, אמפרמטר, נגד, דיודה, אופיין, התנגדות דינמית. הציוד הדרוש: 2 רבי מודדים דגיטלים )מולטימטרים(, פלטת רכיבים, ספק, כבלים חשמליים. מטרות הניסוי: הכרת נושא ההולכה החשמלית

Διαβάστε περισσότερα

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א(

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה יא( מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ה, 2015 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

מבוא להנדסת חשמל ואלקטרוניקה

מבוא להנדסת חשמל ואלקטרוניקה 28/0/206 דף נוחסאות - מבוא להנדסת חשמל ואלקטרוניקה 6.24 0 Coulomb electrons 9 q e.6 0 Coulomb 8 הגדרת יחידת המטען החשמלי - קולון המטעו היסודי מטען האלקטרון כיוון זרימת האלקטרונים )זרם( בפועל notation(

Διαβάστε περισσότερα

x = r m r f y = r i r f

x = r m r f y = r i r f דירוג קרנות נאמנות - מדד אלפא מול מדד שארפ. )נספחים( נספח א': חישוב מדד אלפא. מדד אלפא לדירוג קרנות נאמנות מוגדר באמצעות המשוואה הבאה: כאשר: (1) r i r f = + β * (r m - r f ) r i r f β - התשואה החודשית

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

א. גורדון, ר. שר, א. אברמסון

א. גורדון, ר. שר, א. אברמסון הטכניון מכון טכנולוגי לישראל הפקולטה להנדסת חשמל חוברת תרגילי כיתה ובית במקצוע "תורת המעגלים החשמליים" (445) החוברת מותאמת להרצאותיו של פרופ' לוי שכטר מהדורת מרץ 6 רשימת עדכונים: נערך ע"י אלכס נורמטוב

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

מעגלים ליניאריים, סיכום הקורס, עמוד 1 מתוך 19 הפתק הסגול. מעגלים ליניארים סיכום הקורס

מעגלים ליניאריים, סיכום הקורס, עמוד 1 מתוך 19 הפתק הסגול.  מעגלים ליניארים סיכום הקורס 4442 מעגלים ליניאריים, סיכום הקורס, עמוד מתוך 9 הפתק הסגול www.technon.co.l מעגלים ליניארים 4442 סיכום הקורס 27 www.technon.co.l אבי בנדל 4442 מעגלים ליניאריים, סיכום הקורס, עמוד 2 מתוך 9 תוכן עניינים

Διαβάστε περισσότερα

חשמל ואלקטרוניקה. M.Sc. יורי חצרינוב תשע'' ד ערך : Composed by Khatsrinov Y. Page 1

חשמל ואלקטרוניקה. M.Sc. יורי חצרינוב תשע'' ד ערך : Composed by Khatsrinov Y. Page 1 חשמל ואלקטרוניקה קובץ תרגילים למגמת הנדסאים מכונות, שנה אי M.Sc., ערך : יורי חצרינוב תשע'' ד Composed by Khatsrinov Y. Page 1 , מטען חשמלי, 1. פרק מתח זרם, התנגדות. C -- האטום מורכב מאלקטרונים, פרוטונים

Διαβάστε περισσότερα

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי מצולע הוא צורה דו ממדית, עשויה קו "שבור" סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שני קדקודים שאינם סמוכים זה לזה. לדוגמה: בסרטוט שלפניכם EC אלכסון במצולע. ABCDE (

Διαβάστε περισσότερα

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשסט 467 אלגברה א', סמסטר חורף תשס"ט, פתרונות לשיעורי הבית, עמוד מתוך 6 467 אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט תוכן עניינים : גליון שדות... גליון מרוכבים 7... גליון מטריצות... גליון 4 דירוג,

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 7

אלגברה ליניארית 1 א' פתרון 7 אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות

Διαβάστε περισσότερα

פולינומים אורתוגונליים

פולינומים אורתוגונליים פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

גירסה liran Home Page:

גירסה liran   Home Page: גירסה 1.00 26.10.03 סיכום באלגברה א מסמך זה הורד מהאתר.hp://uderwar.liveds.co.il אין להפיץ מסמך זה במדיה כלשהי, ללא אישור מפורש מאת המחבר. מחבר המסמך איננו אחראי לכל נזק, ישיר או עקיף, שיגרם עקב השימוש

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 8

אלגברה ליניארית 1 א' פתרון 8 אלגברה ליניארית 1 א' פתרון 8.1 נניח כי (R) A M n מקיימת = 0 t.aa הוכיחו כי = 0.A הוכחה: נביט באיברי האלכסון של.AA t.(aa t ) ii = n k=1 (A) ik(a t ) ki = n k=1 a ika ik = n k=1 a2 ik = 0 מדובר במספרים ממשיים,

Διαβάστε περισσότερα

שדות הגדרת השדה: חשבון מודולו n: הגדרה: שדה F הוא קבוצה שיש בין אבריה שתי פעולות משפט: יהא F שדה. משפט: יהא F שדה ו- (mod )

שדות הגדרת השדה: חשבון מודולו n: הגדרה: שדה F הוא קבוצה שיש בין אבריה שתי פעולות משפט: יהא F שדה. משפט: יהא F שדה ו- (mod ) שדות הגדרת השדה: הגדרה: שדה F הוא קבוצה שיש בין אבריה שתי פעולות אחת נקראת חיבור ותסומן ב + האחרת נקראת כפל ותסומן ב * כך שתתקיימנה הדרישות הבאות: a, b F a b. סגירות לחיבור: F a F a 0 0 a a a, b, c F a

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

Data Studio. AC1_Circuit_R.ds כרך : חשמל

Data Studio. AC1_Circuit_R.ds כרך : חשמל טל': 03-5605536 פקס: www.shulan-sci.co.il 03-5660340 מעגל זרם חילופין - 1 למעגל יש רק התנגדות - R Data Studio שם קובץ הניסוי: AC1_Circuit_R.ds חוברת מס' 8 כרך : חשמל מאת: משה גלבמן טל': 03-5605536 פקס:

Διαβάστε περισσότερα

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B ב"ת, אזי: A, B ב "ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n.

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B בת, אזי: A, B ב ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n. Ω קבוצת התוצאות האפשריות של הניסוי A קבוצת התוצאות המבוקשות של הניסוי A A מספר האיברים של P( A A Ω מבוא להסתברות ח' 434 ( P A B הסתברות מותנית: P( A B P( B > ( P A B P A B P A B P( B PB נוסחאת ההסתברות

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון

אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל-  כתב ופתר גיא סלומון 0 אלגברה לינארית α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π ϖ θ ϑ ρ σ ς τ υ ω ξ ψ ζ גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- wwwgoolcoil סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת

Διαβάστε περισσότερα

סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך.

סיכום לינארית 1 28 בינואר 2010 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך. סיכום לינארית 28 בינואר 2 מרצה: יבגני סטרחוב מתרגלת: גילי שול אין המרצה או המתרגלת קשורים לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom תוכן עניינים 3 מבוא והגדרות בסיסיות 6 שדות 7 המציין של

Διαβάστε περισσότερα

רשימת משפטים וטענות נכתב על ידי יהונתן רגב רשימת משפטים וטענות

רשימת משפטים וטענות נכתב על ידי יהונתן רגב רשימת משפטים וטענות λ = 0 A. F n n ערך עצמי של A אם ורק אם A לא הפיכה..det(λ I ערך עצמי של λ F.A F n n n A) = 0 אם ורק אם: A v וקטור עצמי של Tהמתאים יהי T: V V אופרטור לינארי. אם λ F ערך עצמי של,T לערך העצמי λ, אזי λ הוא

Διαβάστε περισσότερα

דף סיכום אלגברה לינארית

דף סיכום אלגברה לינארית דף סיכום אלגברה לינארית מרחבי עמודות, שורות, אפס: = = c + c + + c k k כל פתרון של המערכת : A=b נתונה מטריצה :m = מרחב השורות של המטריצה spa = spa מרחב העמודות של המטריצה { r, r, rm { c, c, c מרחב הפתרונות

Διαβάστε περισσότερα

חוליות H.P. - כללי .D.C. וצימוד A.C. ביניהן. U 2 =U 0+ =2V. . 0<t<0.5m se

חוליות H.P. - כללי .D.C. וצימוד A.C. ביניהן. U 2 =U 0+ =2V. . 0<t<0.5m se חקר תופעות מעבר רשת מעבירה (תדרים )גבוהים..H P חוליות H.P. - כללי חולית. H.P ( HIGH PASS ) היא רשת חשמלית אשר יש לה מחסום אחד לרכיב הזרם הישר,ואין לה כל מחסום לטרנזינט.חולית H.P. מכונה גם בשם "רשת מעבירה

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

מתקני חשמל חשמלאי ראשי

מתקני חשמל חשמלאי ראשי מ כ ל ל ת סינגאלובסקי מ נ ו ס י ם ב ה צ ל ח ו ת מתקני חשמל ורשת חשמלאי ראשי נכתב ונערך ע"י ארנון בן טובים 1122 דרך הטייסים 82, ת.ד. 78126, תל-אביב 71786, טל: 62-7268222, פקס: 62-7211132 28 DERECH HATAYASIM

Διαβάστε περισσότερα

כתיבה ועריכהמעודכנת: ד"רסאמר בנא פברואר 2005

כתיבה ועריכהמעודכנת: דרסאמר בנא פברואר 2005 הטכניון מכון טכנולוגי לישראל הפקולטה להנדסת חשמל תורת המעגלים החשמליים ( 445) רשימות לפי הרצאותיו של פרופ' לוי שכטר מהדורת נובמבר 5 כתיבה ועריכהמעודכנת: ד"רסאמר בנא כתיבה ועריכה ראשונית: עידו ליבנה וניר

Διαβάστε περισσότερα

dspace זווית - Y מחשב מנוע ואנקודר כרטיס ו- driver

dspace זווית - Y מחשב מנוע ואנקודר כרטיס ו- driver ת : 1 ניסוי - מנוע מצביע מטרת הניסוי מטרת הניסוי היא לתרגל את הנושאים הבאים: זיהוי פונקציות תמסורת של מנועים חשמליים, בנית חוגי בקרה עבור מערכת המופעלת ע"י מנוע חשמלי עם דרישות כגון רוחב סרט, עודפי הגבר

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

תורת הגרפים - סימונים

תורת הגרפים - סימונים תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה:

אוטומט סופי דטרמיניסטי מוגדר עי החמישייה: 2 תרגול אוטומט סופי דטרמיניסטי אוטומטים ושפות פורמליות בר אילן תשעז 2017 עקיבא קליינרמן הגדרה אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה: (,, 0,, ) כאשר: א= "ב שפת הקלט = קבוצה סופית לא ריקה של מצבים מצב

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי

הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב פרופ' יעקב ורשבסקי הרצאה תרגילים סמינר תורת המספרים, סמסטר אביב 2011 2010 פרופ' יעקב ורשבסקי אסף כץ 15//11 1 סמל לזנדר יהי מספר שלם קבוע, ו K שדה גלובלי המכיל את חבורת שורשי היחידה מסדר µ. תהי S קבוצת הראשוניים הארכימדיים

Διαβάστε περισσότερα

הרצאה 3 קומבינטוריקה נוסחת ניוטון משפט מולטינומי. + t עבור ( ) + t

הרצאה 3 קומבינטוריקה נוסחת ניוטון משפט מולטינומי. + t עבור ( ) + t ROBABILITY AND STATISTIS הסתברות וסטטיסטיקה יוג'ין מאת קנציפר Eugee Kazieper All rights reserved 5/6 כל הזכויות שמורות 5/6 הרצאה קומבינטוריקה עצרת של מספר ופונקצית גאמא עקרון הכפל סידורים ובחירות תמורות

Διαβάστε περισσότερα

: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( )

: מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן ( ) : מציאת המטען על הקבל והזרם במעגל כפונקציה של הזמן מעגלי קבל בנוי כך שמטען איננו יכול לעבור מצידו האחד לצידו האחר (אחרת לא היה יכול להחזיק מטען בצד אחד ומטען בצד השני) ולכן זרם קבוע לא יכול לזרום דרך הקבל.עניינינו

Διαβάστε περισσότερα

אלגברה לינארית 2 משפטים וטענות

אלגברה לינארית 2 משפטים וטענות אלגברה לינארית 2 משפטים וטענות סוכם ע"פ הרצאות פרופ' מ.קריבלביץ' 1.2 אידאלים של פולינומים הגדרה 1.13 יהי F שדה. קבוצת פולינומים [x] I F נקראת אידיאל ב [ x ] F אם מתקיים:.0 I.1.2 לכל f 1, f 2 I מתקיים.f

Διαβάστε περισσότερα