ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΚΤΙΜΗΣΗ ΔΙΑΦΟΡΕΤΙΚΩΝ ΜΕΤΡΩΝ ΑΝΑΛΗΨΗΣ ΚΙΝΔΥΝΟΥ ΣΕ ΜΕΤΟΧΕΣ ΤΟΥ ΧΑΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΚΤΙΜΗΣΗ ΔΙΑΦΟΡΕΤΙΚΩΝ ΜΕΤΡΩΝ ΑΝΑΛΗΨΗΣ ΚΙΝΔΥΝΟΥ ΣΕ ΜΕΤΟΧΕΣ ΤΟΥ ΧΑΑ"

Transcript

1 ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΚΤΙΜΗΣΗ ΔΙΑΦΟΡΕΤΙΚΩΝ ΜΕΤΡΩΝ ΑΝΑΛΗΨΗΣ ΚΙΝΔΥΝΟΥ ΣΕ ΜΕΤΟΧΕΣ ΤΟΥ ΧΑΑ Πέτρος Μεσσής, Γεώργιος Μπλάνας ΤΕΙ Λάρισας Περίληψη Στην παρούσα μελέτη εξετάζονται τρία διαφορετικά μέτρα ρίσκου, η τυπική απόκλιση, ο συντελεστής συσχέτισης και ο συντελεστής βήτα. Τα μέτρα αυτά ελέγχονται μεταξύ τους για τον τρόπο με τον οποίο αποτιμούν τον κίνδυνο σύμφωνα με τον συντελεστή κατάταξης κατά Spearman. Τα αποτελέσματα δείχνουν ότι το ρίσκο αποτιμάται διαφορετικά σε κάθε περίπτωση. Ο έλεγχος μεταξύ ιδίων μέτρων ρίσκου, στην περίπτωση του συντελεστή βήτα για τον οποίο αναλύθηκε έδειξε ότι μπορούμε να δημιουργήσουμε χαρτοφυλάκια με σχετικά σταθερό συντελεστή στην διάρκεια του χρόνου, καθώς και ότι είναι δυνατόν να βρεθούν περιπτώσεις όπου χαρτοφυλάκια τα οποία έχουν τον ίδιο συντελεστή κινδύνου βήτα να δίνουν υψηλότερες αποδόσεις. Keywords: μέτρα ρίσκου, κατάταξη κατά Spearman, διαφοροποίηση χαρτοφυλακίου, Εισαγωγή Η έννοια του ρίσκου έχει τόσο πολύ διεισδύσει στην χρηματοοικονομική κοινότητα, που κανένας δεν χρειάζεται να πειστεί για την αναγκαιότητα να το συμπεριλάβει στην ανάλυση επενδύσεων (Blume, 1971). Ένα από τα βασικά προβλήματα της διαχείρισης κινδύνου είναι η σωστή ποσοτικοποίηση του ρίσκου. Τα κεφάλαια τα οποία χρειάζεται η επιχείρηση για να χρηματοδοτήσει τα επενδυτικά της σχέδια και τις δραστηριότητές της είναι ευαίσθητα στις διακυμάνσεις των τιμών και στις συνθήκες της αγοράς (Sropoulos, 1999). Το ρίσκο μπορεί να οριστεί σαν την αβεβαιότητα που επηρεάζει ένα σύστημα με κάποιον άγνωστο τρόπο, όπου οι διακλαδώσεις του είναι επίσης άγνωστες αλλά λειτουργεί με αυτό με μεγάλες διακυμάνσεις στην αξία και στο αποτέλεσμα (Mun, 2004). Υπάρχουν διαφορετικοί τρόποι μέτρησης του επενδυτικού κινδύνου. Για τον σκοπό αυτό διαφορετικά μέτρα ρίσκου έχουν αναπτυχθεί για την ανάλυση του επενδυτικού κινδύνου, τα οποία πολλές φορές δίνουν διαφορετικούς αριθμούς και διαφορετική αξιολόγηση του κινδύνου που εμπεριέχεται στο υπό εξέταση περιουσιακό στοιχείο. Η τυπική απόκλιση και η διακύμανση, η αξία σε κίνδυνο (Value at Rsk), ο συντελεστής βήτα και η μεταβλητότητα είναι μερικοί από τους τρόπους μέτρησης του επενδυτικού κινδύνου. Η ανάπτυξη του μοντέλου αποτίμησης κεφαλαιακών περιουσιακών στοιχείων από τον Sharpe (1964) και τον Lntner (1965), έχει κάνει τον συντελεστή κινδύνου βήτα μια σημαντική μεταβλητή σε πολλές περιπτώσεις αποτίμησης περιουσιακών στοιχείων. Ο συντελεστής βήτα της αγοράς για ένα χαρτοφυλάκιο ή μετοχή κατέχει κεντρικό ρόλο όχι μόνο στους εμπειρικούς ελέγχους για τα μοντέλα ισορροπίας (CAPM, APT, FFM), αλλά επίσης στην αξιολόγηση αμοιβαίων κεφαλαίων, στην αριστοποίηση χαρτοφυλακίου και στην εκτίμηση του κόστους κεφαλαίων από επενδυτικά σχέδια. Το βασικό μειονέκτημα του συντελεστή βήτα που προκύπτει από το CAPM είναι ότι δεν παραμένει σταθερό στην διάρκεια του χρόνου, ενώ μπορεί-όπως έχει αποδειχτεί- να υπάρχουν και άλλοι

2 παράγοντες εκτός του κινδύνου της αγοράς που επηρεάζουν τις αποδόσεις των μετοχών (Marnger, 2004). Η παρούσα εργασία χρησιμοποιεί τρία διαφορετικά μέτρα ρίσκου, την τυπική απόκλιση, τον συντελεστή συσχέτισης ο οποίος πρέπει να είναι γνωστός στην διαφοροποίηση ενός χαρτοφυλακίου και τον συντελεστή βήτα. Η εργασία προχωράει ως εξής: στην επόμενη ενότητα παρουσιάζονται τα διαφορετικά μέτρα ρίσκου, η ενότητα 3 αναφέρεται στην περιγραφή των δεδομένων, η ενότητα 4 στην ανάλυση των ευρημάτων και κλείνει με τα συμπεράσματα. Μέτρα Ανάληψης Κινδύνου H ενότητα αυτή παρουσιάζει τους διαφορετικούς τύπους μέτρησης επενδυτικού κινδύνου. Όπως είναι γνωστό από την θεωρία του χαρτοφυλακίου (Markowtz, 1952), η τυπική απόκλιση (σ) μπορεί να χρησιμοποιηθεί ως μέτρο για την ανάλυση κινδύνου ενός περιουσιακού στοιχείου. Για παράδειγμα, μια μετοχή ή ένα χαρτοφυλάκιο με μεγάλη τυπική απόκλιση μπορεί να θεωρηθεί ότι εμπεριέχει μεγαλύτερο κίνδυνο από μια άλλη μετοχή με μικρότερη τυπική απόκλιση, καθώς η απόδοσή της μπορεί να αλλάξει γρήγορα και σε οποιαδήποτε κατεύθυνση. Η τυπική απόκλιση δίνεται από τον ακόλουθο τύπο: 1 n 2 σ = ( x x ) (1) n = 1 Στην διεθνή βιβλιογραφία το συγκεκριμένο μέτρο επικρίνεται καθώς εκτιμά την υπερβολική μείωση και αύξηση των αποδόσεων συμμετρικά. Οι επενδυτές όμως πολλές φορές συνδέουν το ρίσκο με την αποτυχία να φθάσουν σε ένα συγκεκριμένο στόχο και επομένως από αυτήν την άποψη η τυπική απόκλιση ως μέτρο ρίσκου μπορεί να αμφισβητηθεί (Hahn et al., 2002). O συντελεστής συσχέτισης ρ (correlaton coeffcent) είναι ένα μέτρο που δείχνει τον τρόπο που κινούνται μεταξύ τους δύο χρονολογικές σειρές. Δυνατή θετική συσχέτιση σημαίνει ότι όταν μια χρονολογική σειρά αυξάνεται τότε και η άλλη τείνει να αυξάνεται και το αντίθετο (Alexander, 2002). Για δύο τυχαίες μεταβλητές Χ και Υ η συσχέτιση δίνεται ως εξής: ή corr ( X, Y ) = cov( X, Y ) / [ V ( X ) V ( Y ) (2) ρ xy = σ / σ σ (3) xy Χ y Ο συντελεστής κυμαίνεται μεταξύ του 1 και +1. Υψηλές απόλυτες τιμές συσχέτισης δείχνει ότι οι δύο χρονολογικές σειρές συνδέονται στενά. Ενώ η τυπική απόκλιση καθορίζει την μεταβλητότητα μιας μετοχής ή ενός χαρτοφυλακίου σύμφωνα με την διασπορά των αποδόσεων για ένα χρονικό διάστημα, ο συντελεστής βήτα, ακόμη ένα χρήσιμο στατιστικό μέτρο, καθορίζει το ρίσκο μιας μετοχής ή ενός χαρτοφυλακίου σύμφωνα με κάποιον δείκτη αναφοράς. Μια μετοχή με συντελεστή βήτα ίσο με την μονάδα δείχνει ότι η επίδοση της μετοχής συμπίπτει με αυτή του δείκτη. Μετοχές με συντελεστή βήτα μεγαλύτερο ή μικρότερο της μονάδας θεωρούνται επιθετικές ή αμυντικές αντίστοιχα. Σε περιόδους λοιπόν όπου η αγορά κινείται ανοδικά μια σωστή στρατηγική είναι η

3 επιλογή μετοχών με συντελεστή βήτα μεγαλύτερο της μονάδας, ενώ αντίθετα σε περιόδους πτώσης των τιμών του δείκτη, ενδείκνυται η επιλογή μετοχών με συντελεστή βήτα μικρότερο του ένα. Για να εκτιμήσουμε τον συντελεστή βήτα θα χρησιμοποιήσουμε το μοντέλο της αγοράς, το οποίο είναι μάλλον ένα στατιστικό μοντέλο παρά προκύπτει από την χρηματοοικονομική θεωρία (Gbbons, 1982). Ο τύπος δίνεται ως εξής: R + = a0 + b1 Rm e (4) Όπου: R είναι η απόδοση της μετοχής I στον χρόνο t t R είναι η απόδοση του γενικού δείκτη στον χρόνο t mt e είναι μια τυχαία μεταβλητή με t 2 E( e ) = 0, E( e ) = 0, Ε ( e e ) = 0, k k Μεθοδολογία και Δεδομένα Προκειμένου να αξιολογηθούν τα διαφορετικά μέτρα ρίσκου σε σχέση με τον τρόπο που αυτά εκτιμούν τον κίνδυνο που εμπεριέχεται σε μετοχές ή χαρτοφυλάκια, θα χρησιμοποιθεί ο συντελεστή συσχέτισης Spearman (Hahn et al., 2002). Σε αντίθεση με τον γνωστό τρόπο εύρεσης του συντελεστή συσχέτισης, ο συγκεκριμένος συντελεστής είναι ένας μη παραμετρικός έλεγχος συσχέτισης, χωρίς να κάνει καμιά υπόθεση για την γραμμικότητα των δύο μεταβλητών, ούτε απαιτεί να μετρούνται οι μεταβλητές σε εσωτερικά διαστήματα. Ο τύπος δίνεται ως εξής: 2 6 d ρ = 1 (5) 2 n( n 1) Όπου το d συμβολίζει τις διαφορές ανάμεσα στους αριθμούς κατάταξης των αντίστοιχων τιμών των μεταβλητών (Χ,Υ), ενώ το n είναι ο αριθμός των ζευγών (Χ,Υ). Ο έλεγχος της συσχέτισης κατά Spearman θα γίνει όχι μόνο μεταξύ των διαφορετικών μέτρων ρίσκου, αλλά και μεταξύ των ιδίων μέτρων ρίσκου των μετοχών. Τα δεδομένα αφορούν 10 μετοχές της μεγάλης κεφαλαιοποίησης που διαπραγματεύονται στο ΧΑΑ. Η περίοδος που επιλέχτηκε για την ανάλυση είναι από τον Φεβρουάριο του 2000 μέχρι τον Ιούλιο του 2007 και αφορά μηνιαίες παρατηρήσεις. Ο συνολικός αριθμός των παρατηρήσεων είναι 90 έτσι ώστε να μπορεί να εκτιμηθεί με συνέπεια ο συντελεστής βήτα των μετοχών (Dmson και Marsh, 1983). Μετοχές που δεν είχαν τον συγκεκριμένο αριθμό παρατηρήσεων αποκλείστηκαν από το δείγμα, ενώ η μηνιαία απόδοση των μετοχών υπολογίστηκε ως εξής: r ( ) / = Pt Pt 1 Pt 1. Ο πίνακας που ακολουθεί δείχνει τα περιγραφικά στατιστικά των διαφόρων μέτρων ρίσκου για κάθε μια από τις μετοχές. Εκτιμώντας κάθε μέτρο ρίσκου για μια περίοδο πέντε ετών και κάνοντας κυλιόμενη αφαίρεση και πρόσθεση της πιο παλιάς και της πιο νέας παρατήρησης αντίστοιχα, πήραμε συνολικά τριάντα παρατηρήσεις μέτρων ρίσκου για κάθε μετοχή. Από τον πίνακα γίνεται φανερό ότι η συσχέτιση των μετοχών με τον Γενικό Δείκτη του ΧΑΑ, ο οποίος χρησιμοποιήθηκε ως δείκτης αναφοράς, κυμαίνεται από μέχρι 0.871, η τυπική απόκλιση από 5.7% μέχρι 14.1% και ο συντελεστής βήτα από μέχρι

4 Στον συγκεκριμένο πίνακα υπάρχει και ο έλεγχος κανονικότητας Jarque-Bera ο οποίος ακολουθεί την x 2 κατανομή, ενώ απορρίπτεται η μηδενική υπόθεση για υψηλές τιμές J-B (5.99 κ.τ.,5% δ.ε.)(groenewold και Fraser, 1997). Πίνακας 1.Περιγραφικά στατιστικά μέτρων ρίσκου Stocks Rsk Measures mean st.dev. mn max skew kurt J-B ALPHA COCA-COLA ELPE EMPORIKI ETHNIKI EUROBANK OTE PEIREOS TITAN VIOHALKO correlaton st.dev beta correlaton st.dev beta correlaton st.dev beta correlaton st.dev beta correlaton st.dev beta correlaton st.dev beta correlaton st.dev beta correlaton st.dev beta correlaton st.dev beta correlaton st.dev beta Εμπειρικά Αποτελέσματα Αφού εκτιμήθηκαν οι τιμές και των τριών μέτρων ανάληψης επενδυτικού κινδύνου, στον πίνακα 2 παρουσιάζονται κάποιες περιπτώσεις όπου τα αντίστοιχα μέτρα έδωσαν διαφορετικά αποτελέσματα. Από τον παρακάτω πίνακα φαίνεται ότι τον Μάρτιο του 2005 ο συντελεστής συσχέτισης έδωσε αυξημένη τιμή σε σχέση με τον Φεβρουάριο του 2005, ενώ αντίθετα για τους συγκεκριμένους μήνες η τυπική απόκλιση και ο συντελεστής βήτα μειώθηκε. Ανάλογες διαφορές αποτυπώνονται στον πίνακα και δείχνουν ότι τα μέτρα ρίσκου εκτιμάνε τον κίνδυνο διαφορετικά.

5 Πίνακας 2. Επιλεγμένες τιμές μέτρων ανάληψης κινδύνου Μετοχή Ημερομηνία Correlaton St. Devaton Beta Coeffcent TITAN 25/2/ /3/ VIOHALKO 29/9/ /10/ EUROBANK 29/6/ /7/ Για να αξιολογηθεί λοιπόν η ομοιότητα της κατάταξης μεταξύ των μέτρων ρίσκου, εφαρμόστηκε ο συντελεστής συσχέτισης κατά Spearman. Εάν ο συντελεστής είναι κοντά στο +1 δείχνει ότι υπάρχει μια δυνατή θετική συσχέτιση μεταξύ δύο μέτρων ρίσκου. Εάν είναι κοντά στο 1 δείχνει αρνητική συσχέτιση, ενώ εάν είναι κοντά στο μηδέν δεν αποκαλύπτει καμιά πληροφορία για την συσχέτιση των δύο μεταβλητών. Χρησιμοποιώντας την κατανομή t του Student με δύο βαθμούς ελευθερίας, η κρίσιμη τιμή για τον συντελεστή συσχέτισης είναι Ο πίνακας 3 αναπαριστά τον συντελεστή συσχέτισης της σειράς κατάταξης για τα τρία μέτρα ρίσκου. Πίνακας 3. Συντελεστές κατάταξης κατά Spearman ALPHA ALPHA σ b cor EUROBANK EUROBANK σ b cor COCA COLA ELPE EMPORIKI ETHNIKI σ COCA COLA σ b cor σ ELPE σ b cor σ EMPORIKI σ b cor σ ETHNIKI σ b cor OTE PEIREOS TITAN VIOHALKO σ OTE σ b cor σ PEIREOS σ b cor σ TITAN σ b cor σ VIOHALKO σ b cor σ σ O πίνακας 3 δείχνει, ότι υπάρχουν 12 περιπτώσεις από τις 30 με στατιστικά σημαντικό συντελεστή. Ο συντελεστής κατάταξης για την τυπική απόκλιση με τα υπόλοιπα μέτρα κινδύνου κυμαίνεται μεταξύ του και και της συσχέτισης μεταξύ του και Στην συνέχεια εξετάζεται ο τρόπος με τον οποίο συμπεριφέρονται τα διάφορα μέτρα ρίσκου μεταξύ των μετοχών. Ο πίνακας που ακολουθεί δείχνει πως συμπεριφέρεται ο συντελεστής συσχέτισης μεταξύ των μετοχών. Πίνακας 4: Κατάταξη κατά Spearman για τον συντελεστή συσχέτισης ALPHA ALPHA COCA COLA ELPE EMPORIKI ETHNIKI EUROBANK OTE PEIREOS TITAN

6 COCA COLA ELPE EMPORIKI ETHNIKI EUROBANK OTE PEIREOS TITAN VIOHALKO Από τον πίνακα παρατηρούμε ότι υπάρχουν 29 από τις 45 περιπτώσεις όπου ο συντελεστής συσχέτισης είναι στατιστικά σημαντικός. Οι 23 περιπτώσεις έχουν θετικό συντελεστή και οι 6 αρνητικό συντελεστή, ενώ ο συντελεστής συσχέτισης κατά Spearman κυμαίνεται μεταξύ του και Είναι φανερό λοιπόν ότι σχεδόν στο 50% των περιπτώσεων ο συντελεστής συσχέτισης μεταξύ των μετοχών μεταβάλλεται με τον ίδιο τρόπο και πρός την ίδια κατεύθυνση. Όσον αφορά την τυπική απόκλιση, υπάρχουν 28 από τις 45 περιπτώσεις με στατιστικά σημαντικό συντελεστή, ενώ ο συντελεστής κατάταξης κυμαίνεται μεταξύ του και Χαρακτηριστικό σημείο στην περίπτωση αυτή είναι ότι δεν υπάρχει αρνητικός συντελεστής συσχέτισης κατά Spearman που είναι στατιστικά σημαντικός, που σημαίνει ότι οι αποδόσεις των μετοχών επηρεάζονται σχεδόν με τον ίδιο τρόπο. Πίνακας 5: Κατάταξη κατά Spearman για την τυπική απόκλιση ALPHA COCA COLA ALPHA COCA COLA ELPE EMPORIKI ETHNIKI EUROBANK OTE PEIREOS TITAN ELPE EMPORIKI ETHNIKI EUROBANK OTE PEIREOS TITAN VIOHALKO Ο πίνακας 6 δείχνει την κατάταξη κατά Spearman για τον συντελεστή βήτα. Εδώ ο αριθμός με στατιστικά σημαντικούς συντελεστές μειώνεται αρκετά, υπάρχουν δηλαδή 24 από τις 45 περιπτώσεις, ενώ 6 συσχετίσεις έδωσαν αρνητικό συντελεστή. Ο συντελεστής βήτα είναι χρονικά μεταβαλλόμενος, αλλάζει δηλαδή από περίοδο σε περίοδο και δεν παραμένει σταθερός στην διάρκεια του χρόνου (Groenewold και Fraser, 1999). Χρησιμοποιώντας τον συντελεστή κατάταξης κατά Spearman δημιουργήσαμε χαρτοφυλάκια που αποτελούνται από δύο μετοχές, έτσι ώστε να ελεγχθεί η του συντελεστή στην διάρκεια του χρόνου. Τα χαρτοφυλάκια δημιουργήθηκαν μόνο για τις περιπτώσεις που υπήρχε στατιστικά σημαντικός συντελεστής συσχέτισης. Ο πίνακας 6 δείχνει ότι καθώς αυξάνεται ο συντελεστής κατάταξης, αυξάνεται και η τυπική απόκλιση του συντελεστή βήτα, γεγονός το οποίο απεικονίζεται στο γράφημα 1. Πίνακας 6: Κατάταξη κατά Spearman για τον συντελεστή βήτα ALPHA COCA COLA ELPE EMPORIKI ETHNIKI EUROBANK OTE PEIREOS TITAN

7 ALPHA COCA COLA ELPE EMPORIKI ETHNIKI EUROBANK OTE PEIREOS TITAN VIOHALKO Στο γράφημα αποτυπώνεται και η λογαριθμική γραμμή τάσης η οποία δείχνει μια αυξητική πορεία. Βρίσκοντας λοιπόν σε πρώτο στάδιο τους συντελεστές συσχέτισης κατά Spearman μεταξύ μετοχών, είναι δυνατόν να δημιουργθούν χαρτοφυλάκια στα οποία η μεταβλητότητα του συντελεστή βήτα παραμένει σχεδόν σταθερή στην διάρκεια του χρόνου, με αποτέλεσμα να γνωρίζει ο επενδυτής καλύτερα τον κίνδυνο που αναλαμβάνει, ανάλογα με τον συντελεστή κινδύνου βήτα που επιλέγει, καθώς και ότι αυτός δεν μεταβάλλεται σημαντικά στην διάρκεια του χρόνου. Πίνακας 7: Χαρτοφυλάκια σύμφωνα με τον συντελεστή συσχέτισης Spearman Όνομα Χαρτοφυλακίου Spearman Correlaton Average beta st.dev.of beta Average Sharpe Rato St.Dev. S.R. OTE-PEIREOS % 0.71% 0.68% ΟΤΕ-ΤΙΤΑΝ % 0.92% 0.60% ELPE-OTE % 0.56% 0.65% ETHNIKI-COCA COLA % 0.76% 0.45% COCA COLA-PEIREOS % 1.19% 0.66% EUROBANK-TITAN % 1.16% 0.58% EMPORIKI-TITAN % 0.58% 0.40% EMPORIKI-ETHNIKI % 0.26% 0.39% EUROBANK-OTE % 0.55% 0.54% OTE-VIOHALKO % 0.18% 0.54% ETHNIKI-OTE % 0.37% 0.50% EMPORIKI-VIOHALKO % 0.12% 0.42% ALPHA-OTE % 0.20% 0.54% EMPORIKI-PEIREOS % 0.51% 0.52% ELPE-TITAN % 1.30% 0.72% PEIREOS-TITAN % 1.32% 0.77% ELPE-EMPORIKI % 0.37% 0.45% ETHNIKI-EUROBANK % 0.57% 0.49% ALPHA-ETHNIKI % 0.30% 0.50% EUROBANK-VIOHALKO % 0.41% 0.54% ALPHA-VIOHALKO % 0.14% 0.54% ELPE-PEIREOS % 0.98% 0.79% ALPHA-EUROBANK % 0.43% 0.53% ETHNIKI-VIOHALKO % 0.28% 0.50%

8 Γράφημα 1: Τυπική Απόκλιση Συντελεστή Βήτα Στην συνέχεια και Συντελεστής σύμφωνα Spearman με τον πίνακα και Τυπική 6, το Απόκλιση Γράφημα του 2 αναπαριστά τον δείκτη Sharpe. Ο συγκεκριμένος beta δείκτης δείχνει την απόδοση ενός χαρτοφυλακίου ή μετοχής ανά μονάδα ρίσκου. Στο συγκεκριμένο γράφημα 14.00% φαίνεται ότι η λογαριθμική γραμμή τάσης μειώνεται καθώς αυξάνεται ο συντελεστής 12.00% κατάταξης κατά Spearman, γεγονός που υποδηλώνει ότι χαρτοφυλάκια που έχουν αρνητικό συντελεστή κατάταξης έχουν και 10.00% μεγαλύτερη απόδοση ανά μονάδα ρίσκου. Για παράδειγμα από τον πίνακα 8, γίνεται 8.00% φανερό ότι αν κάποιος επενδυτής χωρίς να γνωρίζει τον συντελεστή συσχέτισης κατά Spearman και ήθελε να επιλέξει ένα χαρτοφυλάκιο 6.00% με συντελεστή βήτα 1.12 ή 0.96 θα είχε πολύ διαφορετικές αποδόσεις ανάλογα με το ρίσκο που θα αναλάμβανε. Ο 4.00% συγκεκριμένος συντελεστής κατάταξης λοιπόν μπορεί να δώσει χρήσιμες St. Dev. of Beta πληροφορίες 2.00% για το πώς συμπεριφέρονται οι συντελεστές βήτα των μετοχών με αποτέλεσμα να είναι δυνατή η δημιουργία Log. (St. Dev. χαρτοφυλακίων of Beta) τα 0.00% οποία όχι μόνο δίνουν σχετικά σταθερούς συντελεστές βήτα στην διάρκεια του χρόνου, αλλά και μεγαλύτερες αποδόσεις σε σχέση με τον κίνδυνο που αυτά εμπεριέχουν. St. Dev. of Beta coeffcent Spearman correlaton Πίνακας 8: Χαρτοφυλάκια με ίδιο συντελεστή κινδύνου βήτα Όνομα Χαρτοφυλακίου Spearman Correlaton Average beta st.dev.of beta Average Sharpe Rato St.Dev. S.R. COCA COLA-PEIREOS % 1.19% 0.66% EUROBANK-OTE % 0.55% 0.54% OTE-VIOHALKO % 0.18% 0.54% ETHNIKI-COCA COLA % 0.76% 0.45% Γράφημα 2: Sharpe rato επιλεγμένων χαρτοφυλακίων

9 Συντελεστής Spearman και Sharpe rato 1.40% 1.20% Sharpe rato 1.00% 0.80% 0.60% 0.40% 0.20% 0.00% Sharpe rato Log. (Sharpe rato) Spearman correlaton Συμπεράσματα Η παρούσα μελέτη συγκρίνει τρία διαφορετικά μέτρα ρίσκου αναφορικά με τον τρόπο που αυτά ανταποκρίνονται στην εκτίμηση του κινδύνου που εμπεριέχουν οι μετοχές και τα χαρτοφυλάκια. Εκτιμώντας τις τιμές για κάθε μέτρο ρίσκου σε μηνιαία βάση, έγινε η ταξινόμηση των μηνών σύμφωνα με το ρίσκο που εμπεριείχε και για μια περίοδο 30 μηνών χρησιμοποιώντας κυλιόμενη προσθαφαίρεση παρατηρήσεων. Για την σύγκριση των μέτρων ρίσκων μεταξύ τους χρησιμοποιήθηκε ο συντελεστής κατάταξης κατά Spearman. Tα αποτελέσματα έδειξαν ότι ο συντελεστής συσχέτισης, η τυπική απόκλιση και ο συντελεστής βήτα, μετράνε το ρίσκο διαφορετικά, γεγονός το οποίο μπορεί να οφείλεται στην κατανομή των αποδόσεων των μετοχών (Ang et al., 2002). Για παράδειγμα τα τρία μέτρα ρίσκου αποδίδουν διαφορετικά την ασσυμετρία στις αποδόσεις, όπως για παράδειγμα ο συντελεστής συσχέτισης που συλλαμβάνει καλύτερα την ασσυμετρία στις καθοδοκές τιμές των μετοχών, από τον υπό συνθήκη συντελεστή βήτα που εμφανίζει την ίδια ασσυμετρία σε περιόδους ανόδου και καθόδου των τιμών. Το ίδιο ισχύει και για την τυπική απόκλιση, αφού αποτιμά συμμετρικά τις ανόδους και καθόδους των τιμών, ενώ στην πράξη αυτές μπορεί να εμφανίζουν ασσυμετρία. Στην συνέχεια εξετάστηκε πως διαφοροποιούνται τα ίδια μέτρα ρίσκου μεταξύ των μετοχών. Τα αποτελέσματα έδειξαν ότι η τυπική απόκλιση και η συσχέτιση μεταβάλλονται με τον ίδιο σχεδόν τρόπο αφού υπήρξαν 29 και 28 περιπτώσεις αντίστοιχα που έδωσαν στατιστικά σημαντικούς συντελεστές κατάταξης. Στην περίπτωση του συντελεστή βήτα υπήρξαν 23 τέτοιες περιπτώσεις. Γνωρίζοντας ότι οι συντελεστές βήτα δεν παραμένουν σταθεροί αλλά μεταβάλλονται στην διάρκεια του χρόνου δημιουργήθηκαν 24 διαφορετικά χαρτοφυλάκια μετοχών, αποτελούμενα από δύο μετοχές και ελέγχοντας πάλι την μεταβλητότητα των συντελεστών βήτα. Το αποτέλεσμα ήταν ότι χαρτοφυλάκια των οποίων οι συντελεστές βήτα είχαν στατιστικά σημαντικό και αρνητικό συντελεστή κατάταξης έδωσαν στις περισσότερες περιπτώσεις χαμηλότερη τυπική απόκλιση των συντελεστών βήτα, με την γραμμή τάσης να εμφανίζεται ανοδική όσο ο συντελεστής κατάταξης αυξανόταν. Χαρακτηριστικό επίσης είναι το

10 γεγονός ότι τα χαρτοφυλάκια με αρνητικό συντελεστή κατάταξης είχαν και μεγαλύτερη απόδοση ανά μονάδα ρίσκου, με την γραμμή τάσης του δείκτη Sharpe να εμφανίζεται μειούμενος καθώς ο συντελεστής κατά Spearman αυξανόταν. Ο συγκεκριμένος συντελεστής κατάταξης μπορεί να δώσει επιπλέον πληροφόρηση για την διαφοροποίηση του χαρτοφυλακίου, καθώς είναι δυνατόν να δημιουργηθούν χαρτοφυλάκια με αρκετά σταθερούς συντελεστές, ενώ με το ίδιο ρίσκο οι αποδόσεις τους μπορεί να είναι υψηλότερες. Αναφορές Alexander, C., ()2002, Market Models, John Wley & Sons. Ang, A., Chen, J., & Xng, Y., (2002), Downsde correlaton and expected stock returns, EFA Berln Meetngs Presented Paper, Workng Paper No Blume, M.,(1971), On the assessment of rsk, Journal of Fnance, 26: Dmson, E., & Marsh, P.,(1983), The stablty of UK rsk measures and the problem of thn tradng, Journal of Fnance, 38: Gbbons, M., (1982), Multvarate tests of fnancal models: A new approach, Journal of Fnancal Economcs 10: Groenewold, N. & Fraser, P.,(1999), Tme-varyng estmates of CAPM betas, Mathematcs and Computers n Smulaton, 48: Hahn, C., Pfngsten, A., & Wagner, P., (2002), An emprcal nvestgaton of the rank correlaton between dfferent rsk measures, EFA 2002 Berln Meetngs Presented Paper; Westfaelsche Wlhelms Unverstaet Muenster, Dscusson Paper No Lntner, J.,(1965), The valuaton of rsk assets and the selecton of rsky nvestments n stock portfolos and captal budget, Revew of Economcs and Statstcs, 46: Marngr, D., (2004), Fndng the relevant rsk factors for asset prcng, Computatonal Statstcs and Data Analyss, 47: Markowtz, H.,(1952), Portfolo selecton, Journal of Fnance, 7: Mun, J., (2004) Appled Rsk Analyss, John Wley & Sons. Sharpe, W. F., 1964, Captal Asset Prces: a theory of market equlbrum under condtons of rsk, Journal of Fnance, 19: Sropoulos, C., (1999), Topcs n fnancal Economcs and Rsk Analyss, Northern Hellenc Press. Η Παρούσα εργασία χρηματοδοτήθηκε από το Ευρωπαϊκό Κοινωνικό Ταμείο ΕΠΕΑΕΚ ΙΙ ΑΡΧΙΜΗΔΗΣ

Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ by Dr. Stergios Athianos 1- ΟΡΙΣΜΟΣ ΤΗΣ ΕΠΕΝΔΥΣΗΣ Τοποθέτηση συγκεκριμένου ποσού με στόχο να αποκομίσει ο επενδυτής μελλοντικές αποδόσεις οι οποίες θα τον αποζημιώσουν

Διαβάστε περισσότερα

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Επιλογή επενδύσεων κάτω από αβεβαιότητα Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν

Διαβάστε περισσότερα

Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΑΝΑΜΕΝΟΜΕΝΗΣ ΑΠΟΔΟΣΗΣ ΚΑΙ ΒΗΤΑ

Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΑΝΑΜΕΝΟΜΕΝΗΣ ΑΠΟΔΟΣΗΣ ΚΑΙ ΒΗΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΦΕΒΡΟΥΑΡΙΟΣ 014 Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΑΝΑΜΕΝΟΜΕΝΗΣ ΑΠΟΔΟΣΗΣ ΚΑΙ ΒΗΤΑ ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ ΚΑΘΗΓΗΤΗΣ Γ. ΔΙΑΚΟΓΙΑΝΝΗΣ ΕΠΙΒΛΕΠΩΝ ΑΝΑΠΛ. ΚΑΘΗΓΗΤΗΣ

Διαβάστε περισσότερα

ΠΡΟΒΛΕΠΟΝΤΑΣ ΤΗΝ ΜΕΤΑΒΛΗΤΟΤΗΤΑ: ΕΝΔΕΙΞΕΙΣ ΣΕ ΜΕΤΟΧΕΣ ΤΟΥ ΧΑΑ

ΠΡΟΒΛΕΠΟΝΤΑΣ ΤΗΝ ΜΕΤΑΒΛΗΤΟΤΗΤΑ: ΕΝΔΕΙΞΕΙΣ ΣΕ ΜΕΤΟΧΕΣ ΤΟΥ ΧΑΑ ΠΡΟΒΛΕΠΟΝΤΑΣ ΤΗΝ ΜΕΤΑΒΛΗΤΟΤΗΤΑ: ΕΝΔΕΙΞΕΙΣ ΣΕ ΜΕΤΟΧΕΣ ΤΟΥ ΧΑΑ Πέτρος Μεσσής, Γεώργιος Μπλάνας ΤΕΙ Λάρισας Περίληψη Το παρόν άρθρο εξετάζει και αναλύει την ακρίβεια πρόβλεψης της μηνιαίας μεταβλητότητας

Διαβάστε περισσότερα

Διμεταβλητές κατανομές πιθανοτήτων

Διμεταβλητές κατανομές πιθανοτήτων Διμεταβλητές κατανομές πιθανοτήτων Για να περιγράψουμε την σχέση ανάμεσα σε δύο τυχαίες μεταβλητές χρειαζόμαστε την κοινή κατανομή πιθανοτήτων τους. Η κοινή συνάρτηση πιθανότητ ικανοποιε ί τις συνθ ήκες

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου, 263 34 ΠΑΤΡΑ Τηλ.: 260 36905, Φαξ: 260 39684, email: mitro@teipat.gr Καθηγητής Ι. Μητρόπουλος

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31 Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το

Διαβάστε περισσότερα

www.oleclassroom.gr ΘΕΜΑ 4 Στον πίνακα που ακολουθεί παρατίθενται οι κατανομές των αποδόσεων δύο μετοχών. Πιθανότητα (π ) 0,5 0,5 0,5 0,5 r Α 10% 6% 13% 3% r Β 0% 5% -1% 16% Α. Να υπολογιστεί η εκτιμώμενη

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΘΕΜΑ 4 Υποθέστε ότι είστε ο διαχειριστής του αµοιβαίου κεφαλαίου ΑΠΟΛΛΩΝ το οποίο εξειδικεύεται σε µετοχές µεγάλης κεφαλαιοποίησης εσωτερικού. Έπειτα από την πρόσφατη ανοδική πορεία του Χρηματιστηρίου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

CAPM. Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές

CAPM. Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές CAPM Το Μοντέλο Αποτίμησης Κεφαλαιουχικών Αγαθών (Capital Asset Pricing Model): ανάλυση ρίσκου και απόδοσης επενδύοντας στις παγκόσμιες χρηματαγορές 1 Το Capital Asset Pricing Model & Tο Κόστος Κεφαλαίου

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20, ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν

Διαβάστε περισσότερα

ΔΙΑΧΩΡΙΣΜΟΣ ΚΙΝΔΥΝΟΥ Ο συνολικός κίνδυνος ή τυπική απόκλιση χωρίζεται σε : α) συστηματικό κίνδυνο δηλαδή ο κίνδυνος που οφείλεται στις οικονομικοπολιτικές (γενικές) συνθήκες της αγοράς β) μη συστηματικό

Διαβάστε περισσότερα

Η ΕΚΤΙΜΗΣΗ ΤΟΥ ΒΗΤΑ ΤΩΝ ΜΕΤΟΧΩΝ ΜΕΣΩ ΕΝΟΣ ΥΠΟΔΕΙΓΜΑΤΟΣ ΜΕ ΔΙΑΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ ΠΕΡΙΕΧΟΜΕΝΑ

Η ΕΚΤΙΜΗΣΗ ΤΟΥ ΒΗΤΑ ΤΩΝ ΜΕΤΟΧΩΝ ΜΕΣΩ ΕΝΟΣ ΥΠΟΔΕΙΓΜΑΤΟΣ ΜΕ ΔΙΑΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 1.1 ΕΙΣΑΓΩΓΗ...2 1.2 ΣΚΟΠΟΙ ΚΑΙ ΧΡΗΣΙΜΟΤΗΤΑ ΤΗΣ ΕΡΓΑΣΙΑΣ...6 1.3 ΠΕΡΙΟΡΙΣΜΟΙ ΤΗΣ ΕΡΓΑΣΙΑΣ...9 1.4 ΣΥΝΤΟΜΗ ΕΠΙΣΚΟΠΗΣΗ ΥΠΟΛΟΙΠΩΝ ΚΕΦΑΛΑΙΩΝ...9 ΚΕΦΑΛΑΙΟ 2 2.1 ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ...11

Διαβάστε περισσότερα

Συνοπτικά περιεχόμενα

Συνοπτικά περιεχόμενα b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 5: Η ΥΠΟΘΕΣΗ ΤΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΤΩΝ ΑΓΟΡΩΝ

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 5: Η ΥΠΟΘΕΣΗ ΤΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΤΩΝ ΑΓΟΡΩΝ ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 5: Η ΥΠΟΘΕΣΗ ΤΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΤΩΝ ΑΓΟΡΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104 ΘΕΜΑ 3 ΙΑ) Η οικονομική αξία της μετοχής BC θα υπολογιστεί από το συνδυασμό των υποδειγμάτων α) D D προεξόφλησης IV για τα πρώτα έτη 05 και 06 και β) σταθερής k k αύξησης μερισμάτων D IV (τυπολόγιο σελ.

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1. Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΜΣ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΤΡΑΠΕΖΙΚΗ ΙΟΙΚΗΤΙΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Η επίδραση των δεικτών τιµής / κέρδος και χρηµατιστηριακής αξίας / λογιστική αξία στις αποδόσεις των µετοχών

Διαβάστε περισσότερα

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 1 ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 2015-16 Προσοχή! Όλες οι εργασίες ελέγχονται για αντιγραφή. Μελετήστε προσεκτικά και δώστε τη δική σας λύση ΘΕΜΑ 1 ο Α) Αρχικά θα πρέπει να υπολογίσουμε τη μηνιαία πραγματοποιηθείσα

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 4: ΘΕΩΡΙΑ ΤΗΣ ΚΕΦΑΛΑΙΑΓΟΡΑΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ονοματεπώνυμο φοιτητή. Γεώργιος Καπώλης (ΜΧΑΝ 1021)

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ονοματεπώνυμο φοιτητή. Γεώργιος Καπώλης (ΜΧΑΝ 1021) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Σχέση μεταξύ αναμενόμενης απόδοσης μετοχών, χρηματιστηριακής αξίας και δείκτη P/E Ονοματεπώνυμο φοιτητή (ΜΧΑΝ 1021) Επιβλέπων Καθηγητής: Γεώργιος Διακογιάννης Επιτροπή: Εμμανουήλ Τσιριτάκης

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΙΚΟΥ ΚΙΝΔΥΝΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΑΓΟΡΑΣ ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ ΑΞΙΩΝ ΑΘΗΝΩΝ

ΕΚΤΙΜΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΙΚΟΥ ΚΙΝΔΥΝΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΑΓΟΡΑΣ ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ ΑΞΙΩΝ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ και ΤΜΗΜΑ ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ ΕΚΤΙΜΗΣΗ ΤΟΥ ΣΥΣΤΗΜΑΤΙΚΟΥ ΚΙΝΔΥΝΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΑΓΟΡΑΣ ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ

Διαβάστε περισσότερα

Γραμμή Αγοράς Αξιογράφου. Υποδείγματα Αποτίμησης Περιουσιακών Στοιχείων

Γραμμή Αγοράς Αξιογράφου. Υποδείγματα Αποτίμησης Περιουσιακών Στοιχείων Γραμμή Αγοράς Αξιογράφου Υποδείγματα Αποτίμησης Περιουσιακών Στοιχείων Η Γραμμή Αγοράς Αξιογράφου (Security Market Line-SML) Αν ένα αξιόγραφο προστεθεί σ ένα καλά διαφοροποιημένο χαρ/κιο, ο κίνδυνος που

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από

Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από 1 ΔΕΟ31 - Λύση 3ης γραπτής εργασίας 2013-14 Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από f ( S I ) Ke t t t r( T t) Aρχικά βρίσκουμε τη παρούσα αξία των μερισμάτων που πληρώνει

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Αγορές Χρήματος και Κεφαλαίου Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ Τμήμα Διοίκησης Επιχειρήσεων (Α.Ν.) Εισαγωγή στη Στατιστική ΜΕΡΟΣ ΙΙ-ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΑΠΟΚΛΙΣΗ ΔΙΑΣΠΟΡΑ-ΔΙΑΚΥΜΑΝΣΗ ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ ΡΟΠΕΣ ΑΣΥΜΜΕΤΡΙΑ-ΚΥΡΤΩΣΗ II.1

Διαβάστε περισσότερα

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων 1 Μονοπαραγοντική Ανάλυση Διακύμανσης Παραμετρικό στατιστικό κριτήριο για τη μελέτη της επίδρασης μιας ανεξάρτητης μεταβλητής στην εξαρτημένη Λογική

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΥ ΣΥΝΟΡΟΥ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΥ ΣΥΝΟΡΟΥ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟ- ΜΙΚΗ Διπλωματική Εργασία ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΥ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 6: «ΑΠΟΔΟΣΗ ΚΙΝΔΥΝΟΥ ΚΑΙ ΛΟΓΙΣΤΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα Φυσική Νέα Ελληνικά Μουσική Α 65 63 35 61 Β 60 58 38 35 Γ 60 60 40 46

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη,

Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα

Διαβάστε περισσότερα

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Εφαρμογες Εξομάλυνσης-Τεχνική Ανάλυση)

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Εφαρμογες Εξομάλυνσης-Τεχνική Ανάλυση) Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Εφαρμογες Εξομάλυνσης-Τεχνική Ανάλυση) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230)

Διαβάστε περισσότερα

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. Διπλωματική Εργασία

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. Διπλωματική Εργασία ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Διπλωματική Εργασία ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΤΟΥ CAPM ΚΑΙ ΤΟΥ ΠΟΛΥΜΕΤΑΒΛΗΤΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΔΕΟ 31 Χρηµατοοικονοµική Διοίκηση Ακαδηµαϊκό Έτος: 2013-2014 Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΛΕΛΕΔΑΚΗΣ Άσκηση : ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΕΤΟΧΗ Α ΜΕΤΟΧΗ Β Απόδοση Πιθανότητα Απόδοση Πιθανότητα -0,0 0,50-0,0 0,50 0,50

Διαβάστε περισσότερα

Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο

Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο Ενότητα 3: ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ ΜΕ ΤΟ ΣΥΝΕΤΛΕΣΤΗ BETA Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

«Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΚΛΑΔΟΥ ΣΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ»

«Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΚΛΑΔΟΥ ΣΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Π.Μ.Σ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ : «Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΚΛΑΔΟΥ ΣΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ»

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ

ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Α. Εισαγωγή Όταν μια επιχείρηση έχει περίσσια διαθέσιμα, μπορεί να πληρώσει άμεσα το διαθέσιμο χρηματικό ποσό ως μέρισμα στους μετόχους, ή να χρηματοδοτήσει κάποια νέα επένδυση.

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 15 2η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση, χρησιμοποιώντας ως δεδομένα τα στοιχεία που προέκυψαν από την 1η

Διαβάστε περισσότερα

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής ΕΚΤΙΜΗΣΗ ΔΙΑΣΤΗΜΑΤΟΣ Δ.Ε. της παραμέτρου θ: ˆ θ cv σ < θ < ˆ θ + cv σ ˆ θ ˆ θ θ = η παράμετρος που θέλουμε να εκτιμήσουμε, ˆ θ = η εκτίμηση της θ που προκύπτει από το τ.δ. cv = κατάλληλη κριτική (κρίσιμη)

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

O έλεγχος ποιότητας του αναλυτή Cobas Mira

O έλεγχος ποιότητας του αναλυτή Cobas Mira O έλεγχος ποιότητας του αναλυτή Cobas Mira Επιμέλεια: Πέτρος Καρκαλούσος Εισαγωγή Ο αναλυτής Cobas Mira είναι βιοχημικός αναλυτής που εκτελεί φωτομετρικές αναλύσεις (σάκχαρο, ουρία κτλ), μετρήσεις φαρμάκων

Διαβάστε περισσότερα

Ο Συντελεστής Beta μιας Μετοχής

Ο Συντελεστής Beta μιας Μετοχής Φεβρουάριος 2005 Ο Συντελεστής Beta μιας Μετοχής Νικόλαος Ηρ. Γεωργιάδης Υπεύθυνος Ανάλυσης Valuation & Research Specialists ( VRS ) Investment Research & Analysis Journal - Value Invest - www.valueinvest.gr

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΑΘΙΑΝΟΣ ΣΤΕΡΓΙΟΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΜΙΚΤΩΝ ΑΜΟΙΒΑΙΩΝ ΚΕΦΑΛΑΙΩΝ. Ηλίας Γ. Κιντής Διπλωματική Εργασία ΠΜΣ.ΔΕ

ΑΞΙΟΛΟΓΗΣΗ ΜΙΚΤΩΝ ΑΜΟΙΒΑΙΩΝ ΚΕΦΑΛΑΙΩΝ. Ηλίας Γ. Κιντής Διπλωματική Εργασία ΠΜΣ.ΔΕ ΑΞΙΟΛΟΓΗΣΗ ΜΙΚΤΩΝ ΑΜΟΙΒΑΙΩΝ ΚΕΦΑΛΑΙΩΝ Ηλίας Γ. Κιντής Διπλωματική Εργασία ΠΜΣ.ΔΕ 2005 ΑΞΙΟΛΟΓΗΣΗ ΜΙΚΤΩΝ ΑΜΟΙΒΑΙΩΝ ΚΕΦΑΛΑΙΩΝ Η περίπτωση των ελληνικών μικτών αμοιβαίων κεφαλαίων εσωτερικού κατά την περίοδο

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΕΡΩΤΗΣΗ 3 (25 μονάδες) www.onlineclassroom.gr Το τμήμα έρευνας μιας χρηματιστηριακής εταιρείας συλλέγοντας δεδομένα και αναλύοντας τα κατέληξε ότι για τις παρακάτω μετοχές που διαπραγματεύονται στο χρηματιστήριο

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Β. Τα μερίσματα θα αυξάνονται συνεχώς με ένα σταθερό ρυθμό 5% ανά έτος.

Β. Τα μερίσματα θα αυξάνονται συνεχώς με ένα σταθερό ρυθμό 5% ανά έτος. Τελικές 009 Θέμα 4 Η οικονομική διεύθυνση της «ΓΒΑ ΑΕ» εξετάζει την αξία των κοινών μετοχών της εταιρίας. Το τελευταίο μέρισμα που διανεμήθηκε () ήταν 6 ανά μετοχή. Έχει εκτιμηθεί ότι ο συστηματικός κίνδυνος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Σύγχρονες Μορφές Χρηματοδότησης

Σύγχρονες Μορφές Χρηματοδότησης Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μέτρα συγκέντρωσης και ανισοκατανομής μεγέθους. Στατική Συγκέντρωση

Μέτρα συγκέντρωσης και ανισοκατανομής μεγέθους. Στατική Συγκέντρωση Μέτρα συγκέντρωσης και ανισοκατανομής μεγέθους Στατική Συγκέντρωση Τα μέτρα συγκέντρωσης:. Προσδιορίζουν στοιχεία της κατανομής μεγέθους των επιχειρήσεων σε έναν κλάδο.. Αποτυπώνουν σε κάποιο βαθμό την

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΔΙΑΤΡΙΒΗ Η ΣΧΕΣΗ ΜΕΣΗΣ ΑΠΟΔΟΣΗΣ ΚΙΝΔΥΝΟΥ. Μεταπτυχιακή Φοιτήτρια Μάγκα Ελένη

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΔΙΑΤΡΙΒΗ Η ΣΧΕΣΗ ΜΕΣΗΣ ΑΠΟΔΟΣΗΣ ΚΙΝΔΥΝΟΥ. Μεταπτυχιακή Φοιτήτρια Μάγκα Ελένη ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΔΙΑΤΡΙΒΗ Η ΣΧΕΣΗ ΜΕΣΗΣ ΑΠΟΔΟΣΗΣ ΚΙΝΔΥΝΟΥ Μεταπτυχιακή Φοιτήτρια Μάγκα Ελένη Επιβλέπων καθηγητής Διακογιάννης Γεώργιος Μέλη Επιτροπής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΣΤΑΤΙΣΤΙΚΗ ΙΙ. Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΣΤΑΤΙΣΤΙΚΗ ΙΙ Ενότητα 2: ΣΤΑΤΙΣΤΙΚΗ ΙΙ (2/4). Επίκ. Καθηγητής Κοντέος Γεώργιος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Διοίκησης Επιχειρήσεων Μεταπτυχιακό Πρόγραμμα Σπουδών (Μ.Β.Α.) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Πανεπιστήμιο Πατρών Τμήμα Διοίκησης Επιχειρήσεων Μεταπτυχιακό Πρόγραμμα Σπουδών (Μ.Β.Α.) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Πανεπιστήμιο Πατρών Τμήμα Διοίκησης Επιχειρήσεων Μεταπτυχιακό Πρόγραμμα Σπουδών (Μ.Β.Α.) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: «ΠΩΣ ΤΟ ΜΈΓΕΘΟΣ ΤΗΣ ΕΠΙΧΕΊΡΗΣΗΣ ΕΠΗΡΕΆΖΕΙ ΤΗΝ ΑΠΌΔΟΣΗ ΤΗΣ ΤΙΜΉΣ ΤΗΣ ΜΕΤΟΧΉΣ ΤΗΣ» ΕΚΠΟΝΗΣΗ

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Διαδικασία Διαχείρισης Επενδύσεων (Investment Management Process)

Διαδικασία Διαχείρισης Επενδύσεων (Investment Management Process) Διαδικασία Διαχείρισης Επενδύσεων (Investment Management Process) 1. Καθορισμός Επενδυτικών στόχων (Setting Investment Objectives) Ιδιώτες επενδυτές (Individual Investors) Θεσμικοί επενδυτές (Institutional

Διαβάστε περισσότερα

Vol. 15 No. 6 Jun JOURNAL OF MANAGEMENT SCIENCES IN CHINA CAPM F J xmu. edu.

Vol. 15 No. 6 Jun JOURNAL OF MANAGEMENT SCIENCES IN CHINA CAPM F J xmu. edu. 5 6 202 6 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 5 No 6 Jun 202 36005 CAPM F830 9 A 007 9807 202 06 0040 09 0 4 5 6 2 7 8 9 5 2 20 03 24 20 0 0 70974 702 2009J036 966 Emal zlzheng@ xmu edu cn NYSE

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

Περίπου ίση µε την ελάχιστη τιµή του δείγµατος.

Περίπου ίση µε την ελάχιστη τιµή του δείγµατος. 1. Η µέση υπερετήσια τιµή δείγµατος µέσων ετήσιων παροχών Q (m3/s) που ακολουθούν κατανοµή Gauss, ξεπερνιέται κατά µέσο όρο κάθε: 1/0. = 2 έτη. 1/1 = 1 έτος. 0./1 = 0. έτος. 2. Έστω δείγµα 20 ετών µέσων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

1. Βασικές Συναρτήσεις Στατιστικής

1. Βασικές Συναρτήσεις Στατιστικής 1 1. Βασικές Συναρτήσεις Στατιστικής ΜΑΧ(number1,number2, ) Επιστρέφει την μέγιστη ενός συνόλου ορισμάτων (παραβλέποντας λογικές τιμές και κείμενο). ΜΙΝ(number1,number2, ) Επιστρέφει την ελάχιστη τιμή

Διαβάστε περισσότερα

Capital Asset Pricing Model

Capital Asset Pricing Model ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Capital Asset Pricing Model Θεωρία & Εφαρμογή στον Τραπεζικό Κλάδο Στοιχεία Φοιτήτριας Μαρία Αδάμ Δημάκη Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ Εισαγωγή Σκοπός Εργασίας Περιορισμοί Εργασίας Επισκόπηση Περιεχομένων Εργασίας ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ Εισαγωγή Σκοπός Εργασίας Περιορισμοί Εργασίας Επισκόπηση Περιεχομένων Εργασίας ΚΕΦΑΛΑΙΟ 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Π.Μ.Σ. ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΣΣΤΤΑΘΕΕΡΟΤΤΗΤΤΑ ΚΑΙΙ ΠΡΟΒΛΕΕΨΙΜΟΤΤΗΤΤΑ ΤΤΟΥ ΣΣΥΝΤΤΕΕΛΕΕΣΣΤΤΗ

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

τατιστική στην Εκπαίδευση II

τατιστική στην Εκπαίδευση II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Επαναληπτικζς ασκήσεις Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα. Γενικές οδηγίες

Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ 31 Χρηματοοικονομική ιοίκηση Ακαδημαϊκό Έτος: 2011-2012 Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα Γενικές

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 2006 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα 1. Εισαγωγή 1 2. Μέθοδοι σταθερών

Διαβάστε περισσότερα

(Margin Account) 1. 2. 3.

(Margin Account)  1. 2. 3. ΑΝΑΛΥΣΗ ΕΠΕΝ ΥΣΕΩΝ Συµπληρωµατικές σηµειώσεις για το εαρινό εξάµηνο 2008-2009 Λογαριασµού Περιθωρίου (Margin Account) Ο θεσµός του «Λογαριασµού Περιθωρίου» (Margin Account) έχει ως στόχο να αποκλείσει

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΑΓΙΟΥ ΝΙΚΟΛΑΟΥ Τμήμα Διοίκησης Επιχειρήσεων Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ Παλινδρόμηση

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Γιατί μετράμε την διασπορά;

Γιατί μετράμε την διασπορά; Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.

Διαβάστε περισσότερα