New Adaptive Projection Technique for Krylov Subspace Method
|
|
- Ευδώρα Ρόκας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1 2 New Adaptive Projection Technique for Krylov Subspace Method Akinori Kumagai 1 and Takashi Nodera 2 Generally projection technique in the numerical operation is one of the preconditioning commonly used when the linear system is solved. In this paper, we describe the method that the value of some eigenvalues to the coefficient matrix by using this preconditioning is shifted. Moreover, a new projection technique that uses this projection at the multi-level is derived, and the technique for applying to the Krylov subspace method is given. 1. Krylov Au = b, A R n n (1) A A SPD( ) (1) x 1 Graduate School of Science and Technology, Keio University 2 Faculty of Science and Technology, Keio University κ(a) = λmax(a) λ min(a) λ max(a) λ min(a) A A Krylov 0 A SPD κ(m 1 A) 1 M M 1 A I(I: ) LU Cholesky A 0 Nicolaides 4) CG Krylov Morgan Augmented GMRES 5) Krylov 6) P N = P D + λ N ZE 1 Y T, E = Y T AZ P D = I AZE 1 Y T Z, Y R n r Z, Y ; rank (r) Z A SPD Z = Y A P N P D σ(p N A) = {λ n,..., λ n, λ r+1,..., λ n}. σ(p DA) = {0,..., 0, λ r+1,..., λ n}. A r λ n 0 r(z ) (2) Z Krylov E 1 Z Krylov E 1 E 1 E = Y T AZ Galerkin Galerkin Galerkin (2) 1 c 2009 Information Processing Society of Japan
2 1) Galerkin Krylov ( Multi-level ) Multi-level projection Krylov method Krylov GMRES 2. Krylov n A n b Krylov K n K n = span{b, Ab, A 2 b,..., A n 1 b} 1 b, Ab A A 2 b Krylov Krylov Lanczos Arnoldi Krylov Arnoldi Lanczos GMRES generalized minimum residual BiCGSTAB stabilized biconjugate gradient Multilevel projection Krylov method GMRES 2.1 GMRES GMRES r n = Ax n b x n K n Ax = b Krylov K n = span{b, Ab, A 2 b,..., A n 1 b} Arnoldi K n {q 1, q 2,..., q n } x n K n y n R n x n = Q ny n Q n q 1, q 2,..., q n m n Arnoldi AQ n = Q n+1h n (n + 1) n Hessenberg H n Q n e 1 = (1, 0, 0,..., 0) R n+1 Ax n b = H ny n e 1 x n r n = H ny n e 1 GMRES ( 1 ) 1 ( 2 ) r n y n ( 3 ) x n=q ny n ( 4 ) 3. GMRES (1) Âû = ˆb  (3)  = M 1 A, û = u, ˆb = M 1 b 1  σ(â) = {λ1,..., λn}, λi λi+1, i N 3.1 ˆ A 1,γ =  γ1z1yt, y T z 1 = 1, γ R. 3 y T i Aˆ 1,γ = y T i ( γ1z1yt ) = λ iz 1y T i 2 c 2009 Information Processing Society of Japan
3 Â 1,γy i = (Â γ1z1yt )y i = Ây1 γ1z1yt y 1 = λ iy 1 Â 1,γz 1 = (Â γ1z1yt )z 1 = Âz1 γ1z1yt z 1 = (λ 1 γ 1)z 1 3 σ(â1,γ) = {λ1 γ1, λ2,..., λn} γ 1 = λ 1 σ(â1,γ) = {0, λ2,..., λn} γ 1 = λ 1 λ n σ(â1,γ) = {λn, λ2,..., λn} γ 1z 1y T λ 1 γ 1 r λ n 0 Â r = Â ZΓrY T, Y T Z = 1 Z = [z 1,..., z r] Γ = diag(γ 1,..., γ r) Â rz i = (Â ZΓrY T )z i = Âzi [z1,..., zr]diag(γ1,..., γr)[y1,..., yr]t z i = λ iz i γ iz i = (λ i γ i)z i. (3) i = 1,..., r Ârzi = (λi γi)zi i = r + 1,..., n Ârzi = λizi (γ1,..., γr) = (λ1,..., λr) Γ r = E = diag(λ 1,..., λ r) ÂZ = ZÊ Aˆ T Y = Y Ê Â r = Â ZÊY T = Â ZÊ ˆ E 1ÊY T = Â ÂZ ˆ E 1 Y T Â (4) Â r = (I ÂZ E ˆ 1 Y T )Â := P ˆDÂ (5) Â r = Â(I ÂZE ˆ 1 Y T ) = ÂQ ˆD (6) (γ 1,..., γ r) = (λ 1 λ n,..., λ r λ n) Γ r = E = diag(λ 1 λ n,..., λ r λ n) Â r,γ = (I ÂZ E ˆ 1 Y T + λ nze ˆ 1 Y T )Â = P ˆN Â (7) Â r,γ = Â(I ÂZE ˆ 1 Y T + λ nze ˆ 1 Y T ) = ÂQ ˆN (8) P (e.g., P ˆD) Q(e.g., Q ˆD) 3.2 (5) (6) (7) (8) σ(âr) = σ(p ˆDÂ) = σ(âq ˆD) σ( ˆ A r,γ) = σ(p ˆN Â) = σ(âq ˆN ) 3 c 2009 Information Processing Society of Japan
4 σ(p ˆDÂ) = σ(âq ˆD) = {0,..., 0, λ r+1,..., λ n} σ(p ˆN Â) = σ(âq ˆN ) = {λ n,..., λ n, λ r+1,..., λ n} A A λ 1 λ n P ˆDÂ P ˆN Â λ r+1 λ n κ(a) = λ n/λ 1 λ n/λ r+1 = κ(âr,γ) Krylov (GMRES ) 4. GMRES GMRES 4.1 P ˆN P ˆD Q ˆD P ˆN P ˆD Q ˆD r 0 Galerkin Galerkin P ˆD Q ˆD < ɛ λ 1 P ˆD Q ˆD P ˆN λ n P ˆN 4.2 P ˆN P ˆN P ˆN ( ) E 1 :λ n,est n λ n λ n,est E E E E E E + 4 Q ˆN 4.3 λ n Q ˆN λ n λ n λ n ρ(â) max aˆ i.j i N j N ρ(â) Â λ n max a i.j = λ n,est. i N j N Poisson λ n (3.24) λ n,est 1 1 λ n,est λ n λ n,est 4.4 GMRES ÂQ ˆN û = ˆb, u = Q ˆN û Q ˆN = I ZE 1 Y T Â + ωλ N,estZE 1 Y T Ê = Y T ÂZ ω λ N = ωλ N,est GMRES 1 4 x j := Q ˆN v j Q ˆN Q ˆN 4 c 2009 Information Processing Society of Japan
5 1. Choose u 0, ω, and λ n,est.compute Q N. 2. Compute r 0 = b Au 0,β = r 0 2,and v 1 = r 0 β. 3. For j = 1,..., k 4. x j := Q ˆN v j; 5. w := AM 1 x j. 6. For i = 1,..., j 7. h i,j = (w, v j); 8. w := w h i,jv i. 9. Endfor 10. h j+1,j := w 2 and v j+1 = w h j+1,j 11. Endfor 12. Set X k := [x 1... x k ] and Ĥk = {h i,j} 1 i j+1;1 j k 13. Compute y k = argmin y βe 1 Ĥky 2 and u k = u 0 + M 1 X k y k 1 GMRES x j = v j ZE 1 Y T Âv j + ωλ N,estZE 1 Y T v j = v j ZE 1 Y T (AM 1 ωλ N,estI)v j s = AM 1 v j ˆv = Y T (s ωλ n,estv j) x j x j = v j ZE 1ˆv Galerkin E 1ˆv ˆv = Êṽ ṽ ṽ t := Zṽ x j := s t Z : R r R n Y T : R n R r Z prolongation operater Y T restrictio operater) 2 1. Choose u 0, ω, and λ n,est. 2. Compute r 0 = b Au 0,β = r 0 2,and v 1 = r 0 β. 3. For j = 1,..., k 4. s := AM 1 v j. 5.Restriction:ˆv = Y T (s ωλ n,estv j) 6.Solve for ṽ:êṽ = ˆv 7.Prolongation:t := Zṽ 8.x j := v j t. 9. w := AM 1 x j. 10. For i = 1,..., j 11. h i,j = (w, v j); 12. w := w h i,jv i. 13. Endfor 14. h j+1,j := w 2 and v j+1 = w h j+1,j 15. Endfor 16. Set X k := [x 1... x k ] and Ĥk = {h i,j} 1 i j+1;1 j k 17. Compute y k = argmin y βe 1 Ĥky 2 and u k = u 0 + M 1 X k y k 2 GMRES 5. multilevel projection Krylov method 3 Galerkin ˆv = Êṽ A (2) := E = Y T A (1) Z Q (1) ˆN = I (1) Z (1,2) A (2) 1 Y (1,2)T A (1) + ω 1 λ (1) N,estZ (1,2) A (2) 1 Y (1,2)T level Galerkin A (2) Q N (2) p (2) = ˆv (2), ˆv (2) = Q N (2) p (2) 5 c 2009 Information Processing Society of Japan
6 Galerkin Krylov Galerkin 5.2 Multi-level Galerkin Multi-level Krylov (4,3) Galerkin Galerkin A (l+1) = Y (l,l+1)t A (l) Z (l,l+1) Q N Q (l) ˆN = I (l) Z (l,l+1) A (l+1) 1 Y (l,l+1)t A (l) + ω (l) λ (l) N,estZ (l,l+1) A (l+1) 1 Y (l,l+1)t l = m Galerkin A (m) Galerkin GMRES Galerkin Galerkin Galerkin Galerkin (Z Y ) ( ) Swopp09 1. l = 1. With an initial guess u 0 (1) = 0, Solve A (1) u (1) = b (1) with FGMRES by computing 2. s (1) := A (1) M (1) 1 v j (1) ; 3. restriction:ˆv (2) = Y (1,2)T (s (1) ω (1) λ (1) n,estv j (1) ); 4. if l + 1 = m 5. solve exactly Â(2) 1 ˆv (2) = ṽ (2) ; 6. else 7. l=l+1. With ṽ (2) 0 = 0, solve Â(2) ṽ (2) = ˆv (2) with FGMRES by computing 8. s (2) := Â(2) v (2) ; 9. restriction: ˆv (3) := Y (2,3)T (s (2) ω (2) λ (2) n,estv (2) ); 10. if l + 1 = m 11. solve exactly Â(3) 1 ˆv (3) = ṽ (3) ; 12. else 13. l = l + 1; endif 16. prolongation: t (2) := Z (2,3) ṽ (3) ; 17. x (2) = v (2) t (2) ; 18. w (2) = Â(2) x (2) ; 19. endif 20. prolongation: t (1) := Z (1,2) ṽ (2) ; 21. x (1) = v (1) t (1) ; 22. w (2) = A (1) M (1) 1 x (2) ; 3 multilevel projection Krylov method 6 c 2009 Information Processing Society of Japan
7 1) Y. A. Erlangga and R. Nabben, Multilevel projection-based nested Krylov iteration for boundary value problems, SIAM J.Sci.Comput.,pp , ) D. Day, An Efficient Implementation Of The Nonsymmetric Lanczos Algorithm, SIAM J.Matrix Anal.Appl.,18, pp , ) Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm For Solving Nonsymmetric Linear Systems, SIAM J.Sci.Comput.,7,pp , ) R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J.Numer. Anal.,24,pp , ) R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J.Matrix Anal.Appl.,16,pp , ) J. Frank and C. Vuik, On the construction of deflation-based preconditioners, SIAM J.Sci.Comput.,23,pp , c 2009 Information Processing Society of Japan
GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.
211 9 12, GMRES,.,., Look-Back.,, Ax = b, A C n n, x, b C n (1),., Krylov., GMRES [5],.,., Look-Back [3]., 2 Krylov,. 3, Look-Back, 4. 5. 1 Algorith 1 The GMRES ethod 1: Choose the initial guess x and
Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός
Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 15η: 12/05/2014 1 Το πρόβλημα PageRank ως γραμμικό σύστημα 2 PageRank ως γραμμικό σύστημα Το πρόβλημα του PageRank μπορεί να γραφεί είτε ως Πρόβλημα
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Επιστηµονικός Υπολογισµός ΙΙ
Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 24/4/13 Θέµατα αριθµητικής Οι παραπάνω µέθοδοι (FOM, GMRES)
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors
1 Av=λBv [a, b] subspace subspace B- subspace B- [a, b] B- Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors Hiroshi
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi
BiCGStab 1 1 2 3 1 4 2 BiCGStab PBiCGStab BiCG CGS CGS PBiCGStab BiCGStab M PBiCGStab An improvement in preconditioned algorithm of BiCGStab method Shoji Itoh, 1 aahiro Katagiri, 1 aao Saurai, 2 Mitsuyoshi
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Επιστηµονικός Υπολογισµός ΙΙ
Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 3/4/13 ιαδικασία Arnoldi Υπενθύµιση Εξειδίκευση της διαδικασίας
GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2
GPU 4 1,a) 2,b) 1 GPU Tesla M2050 Double-Double DD 4 BiCGStab GPU 4 BiCGStab 1 1.0 2.2 4 GPU 4 1. IEEE754-2008[1] 128bit binary128 CG Conjugate Gradient [2] 1 1 2 a) mukunoki@hpcs.cs.tsukuba.ac.jp b) daisuke@cs.tsukuba.ac.jp
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Επιστηµονικός Υπολογισµός ΙΙ
Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 5/5/13 Συµµετρικός αλγόριθµος Lanczos Αν ο A = A, τότε το
Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices
Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n
GCG-type Methods for Nonsymmetric Linear Systems
GCG-type Methods for Nonsymmetric Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University December 6, 2011 T.M. Huang (NTNU) GCG-type Methods for Nonsymmetric LS December
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός. Διάλεξη 14η
Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 14η 1 Το πρόβλημα PageRank ως γραμμικό ζύζηημα 2 PageRank ως γραμμικό σύστημα Το πρόβλημα του PageRank μπορεί να γραφεί είτε ως Πρόβλημα ιδιοδιανύσματος:
Επιστηµονικός Υπολογισµός Ι
Επιστηµονικός Υπολογισµός Ι Ενότητα 7 : ιαχείρηση Μητρώων Ειδικής οµής Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μαριλένα Σπυράκη Μέθοδοι Υποχώρων Krylov Για Την Επίλυση Γραμμικών Συστημάτων ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ Ιωάννινα, 2016 Στους γονείς μου Η παρούσα Μεταπτυχιακή Διατριβή
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on
Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
CORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
CORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD
FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
A Lambda Model Characterizing Computational Behaviours of Terms
A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
ECON 381 SC ASSIGNMENT 2
ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
x j (t) = e λ jt v j, 1 j n
9.5: Fundamental Sets of Eigenvector Solutions Homogenous system: x 8 5 10 = Ax, A : n n Ex.: A = Characteristic Polynomial: (degree n) p(λ) = det(a λi) Def.: The multiplicity of a root λ i of p(λ) is
Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix
Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Orthogonalization Library with a Numerical Computation Policy Interface
Vol. 46 No. SIG 7(ACS 10) May 2005 DGKS PC 10 8 10 14 4.8 Orthogonalization Library with a Numerical Computation Policy Interface Ken Naono, Mitsuyoshi Igai and Hiroyuki Kidachi We propose an orthogonalization
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17
Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα) Επαναληπτικές µέθοδοι και Ηµι-Επαναληπτικές Μέθοδοι Πανεπιστήµιο Αθηνών 31 Μαρτίου 2017 Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)
J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on
«ΔΙΑΧΩΡΙΣΜΟΣ ΜΕΓΑΛΟΥ ΚΑΙ ΑΡΑΙΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΑΝΕΞΑΡΤΗΤΑ ΥΠΟΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΠΙΛΥΣΗ ΤΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ SCHUR COMPLEMENT-GMRES»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ ΑΝΑΛΥΣΗΣ, ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ «ΔΙΑΧΩΡΙΣΜΟΣ ΜΕΓΑΛΟΥ ΚΑΙ ΑΡΑΙΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΑΝΕΞΑΡΤΗΤΑ ΥΠΟΣΥΣΤΗΜΑΤΑ
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μελέτη και υλοποίηση μεθόδων φασματικής ανάλυσης γράφων για προσομοίωση μεγάλης κλίμακας γραμμικών κυκλωμάτων
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
d 2 u(t) dt 2 = u 16.4 ε(u) = 0 u(x,y) =?
d 2 u(t) dt 2 = 9.8 u(t) = 4.9t 2 +v 0 t+u 0 10.4 2 u 16.4 ε(u) = 0 u(x,y) =? Find u H 2 (Ω) s.t. (a(x,y) u)+b(x,y) u+c(x,y)u = f(x,y) in Ω a(x,y) u n = g N (x,y) on Ω N u = g D (x,y) on Ω D Here Ω R d
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Echo path identification for stereophonic acoustic echo cancellation without pre-processing
Echo path identification for stereophonic acoustic echo cancellation without pre-processing Yuusuke MIZUNO Takuya NUNOME Akihiro HIRANO Kenji NAKAYAMA Division of Electronics and Computer Science Graduate
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer;
program name definitions of (nonglobal) variables state of the data space before execution transformations by the program { state of the data space after execution } program Inner-Product-1 m: integer
Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3
DEWS2007 D3-6 y yy y y y y yy / DC 7313194 341 E-mail: yfktamura,mori,kuroki,kitakamig@its.hiroshima-cu.ac.jp, yymakoto@db.its.hiroshima-cu.ac.jp Newman Newman Newman Newman Newman A Clustering Algorithm
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields
33 4 04 GLOBAL GEOLOGY Vol. 33 No. 4 Dec. 04 004 5589 04 04 096 09. 3006. 30070 P63. 35 A doi 0. 3969 /j. issn. 0045589. 04. 04. 0 Research on divergence correction method in 3D numerical modeling of 3D
Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices
Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System
Vol. 3 No. 3 189 198 (Sep. 2010) 1 1 1 2 2 Arnold Folk Winther A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System Takeshi Mifune, 1 Yu Hirotani, 1 Takeshi Iwashita, 1 Toshio
Neural'Networks' Robot Image Credit: Viktoriya Sukhanova 123RF.com
Neural'Networks' These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides
Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1
Maxima SCORM 1 2, 1 Muhammad Wannous 1 3, 4 2, 4 Maxima Web LMS MathML HTML5 Flot jquery JSONP JavaScript SCORM SCORM Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Μοντέρνα Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Υπολογισμός του εκθετικού πίνακα Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±
Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer