New Adaptive Projection Technique for Krylov Subspace Method

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "New Adaptive Projection Technique for Krylov Subspace Method"

Transcript

1 1 2 New Adaptive Projection Technique for Krylov Subspace Method Akinori Kumagai 1 and Takashi Nodera 2 Generally projection technique in the numerical operation is one of the preconditioning commonly used when the linear system is solved. In this paper, we describe the method that the value of some eigenvalues to the coefficient matrix by using this preconditioning is shifted. Moreover, a new projection technique that uses this projection at the multi-level is derived, and the technique for applying to the Krylov subspace method is given. 1. Krylov Au = b, A R n n (1) A A SPD( ) (1) x 1 Graduate School of Science and Technology, Keio University 2 Faculty of Science and Technology, Keio University κ(a) = λmax(a) λ min(a) λ max(a) λ min(a) A A Krylov 0 A SPD κ(m 1 A) 1 M M 1 A I(I: ) LU Cholesky A 0 Nicolaides 4) CG Krylov Morgan Augmented GMRES 5) Krylov 6) P N = P D + λ N ZE 1 Y T, E = Y T AZ P D = I AZE 1 Y T Z, Y R n r Z, Y ; rank (r) Z A SPD Z = Y A P N P D σ(p N A) = {λ n,..., λ n, λ r+1,..., λ n}. σ(p DA) = {0,..., 0, λ r+1,..., λ n}. A r λ n 0 r(z ) (2) Z Krylov E 1 Z Krylov E 1 E 1 E = Y T AZ Galerkin Galerkin Galerkin (2) 1 c 2009 Information Processing Society of Japan

2 1) Galerkin Krylov ( Multi-level ) Multi-level projection Krylov method Krylov GMRES 2. Krylov n A n b Krylov K n K n = span{b, Ab, A 2 b,..., A n 1 b} 1 b, Ab A A 2 b Krylov Krylov Lanczos Arnoldi Krylov Arnoldi Lanczos GMRES generalized minimum residual BiCGSTAB stabilized biconjugate gradient Multilevel projection Krylov method GMRES 2.1 GMRES GMRES r n = Ax n b x n K n Ax = b Krylov K n = span{b, Ab, A 2 b,..., A n 1 b} Arnoldi K n {q 1, q 2,..., q n } x n K n y n R n x n = Q ny n Q n q 1, q 2,..., q n m n Arnoldi AQ n = Q n+1h n (n + 1) n Hessenberg H n Q n e 1 = (1, 0, 0,..., 0) R n+1 Ax n b = H ny n e 1 x n r n = H ny n e 1 GMRES ( 1 ) 1 ( 2 ) r n y n ( 3 ) x n=q ny n ( 4 ) 3. GMRES (1) Âû = ˆb  (3)  = M 1 A, û = u, ˆb = M 1 b 1  σ(â) = {λ1,..., λn}, λi λi+1, i N 3.1 ˆ A 1,γ =  γ1z1yt, y T z 1 = 1, γ R. 3 y T i Aˆ 1,γ = y T i ( γ1z1yt ) = λ iz 1y T i 2 c 2009 Information Processing Society of Japan

3 Â 1,γy i = (Â γ1z1yt )y i = Ây1 γ1z1yt y 1 = λ iy 1 Â 1,γz 1 = (Â γ1z1yt )z 1 = Âz1 γ1z1yt z 1 = (λ 1 γ 1)z 1 3 σ(â1,γ) = {λ1 γ1, λ2,..., λn} γ 1 = λ 1 σ(â1,γ) = {0, λ2,..., λn} γ 1 = λ 1 λ n σ(â1,γ) = {λn, λ2,..., λn} γ 1z 1y T λ 1 γ 1 r λ n 0 Â r = Â ZΓrY T, Y T Z = 1 Z = [z 1,..., z r] Γ = diag(γ 1,..., γ r) Â rz i = (Â ZΓrY T )z i = Âzi [z1,..., zr]diag(γ1,..., γr)[y1,..., yr]t z i = λ iz i γ iz i = (λ i γ i)z i. (3) i = 1,..., r Ârzi = (λi γi)zi i = r + 1,..., n Ârzi = λizi (γ1,..., γr) = (λ1,..., λr) Γ r = E = diag(λ 1,..., λ r) ÂZ = ZÊ Aˆ T Y = Y Ê Â r = Â ZÊY T = Â ZÊ ˆ E 1ÊY T = Â ÂZ ˆ E 1 Y T Â (4) Â r = (I ÂZ E ˆ 1 Y T )Â := P ˆDÂ (5) Â r = Â(I ÂZE ˆ 1 Y T ) = ÂQ ˆD (6) (γ 1,..., γ r) = (λ 1 λ n,..., λ r λ n) Γ r = E = diag(λ 1 λ n,..., λ r λ n) Â r,γ = (I ÂZ E ˆ 1 Y T + λ nze ˆ 1 Y T )Â = P ˆN Â (7) Â r,γ = Â(I ÂZE ˆ 1 Y T + λ nze ˆ 1 Y T ) = ÂQ ˆN (8) P (e.g., P ˆD) Q(e.g., Q ˆD) 3.2 (5) (6) (7) (8) σ(âr) = σ(p ˆDÂ) = σ(âq ˆD) σ( ˆ A r,γ) = σ(p ˆN Â) = σ(âq ˆN ) 3 c 2009 Information Processing Society of Japan

4 σ(p ˆDÂ) = σ(âq ˆD) = {0,..., 0, λ r+1,..., λ n} σ(p ˆN Â) = σ(âq ˆN ) = {λ n,..., λ n, λ r+1,..., λ n} A A λ 1 λ n P ˆDÂ P ˆN Â λ r+1 λ n κ(a) = λ n/λ 1 λ n/λ r+1 = κ(âr,γ) Krylov (GMRES ) 4. GMRES GMRES 4.1 P ˆN P ˆD Q ˆD P ˆN P ˆD Q ˆD r 0 Galerkin Galerkin P ˆD Q ˆD < ɛ λ 1 P ˆD Q ˆD P ˆN λ n P ˆN 4.2 P ˆN P ˆN P ˆN ( ) E 1 :λ n,est n λ n λ n,est E E E E E E + 4 Q ˆN 4.3 λ n Q ˆN λ n λ n λ n ρ(â) max aˆ i.j i N j N ρ(â) Â λ n max a i.j = λ n,est. i N j N Poisson λ n (3.24) λ n,est 1 1 λ n,est λ n λ n,est 4.4 GMRES ÂQ ˆN û = ˆb, u = Q ˆN û Q ˆN = I ZE 1 Y T Â + ωλ N,estZE 1 Y T Ê = Y T ÂZ ω λ N = ωλ N,est GMRES 1 4 x j := Q ˆN v j Q ˆN Q ˆN 4 c 2009 Information Processing Society of Japan

5 1. Choose u 0, ω, and λ n,est.compute Q N. 2. Compute r 0 = b Au 0,β = r 0 2,and v 1 = r 0 β. 3. For j = 1,..., k 4. x j := Q ˆN v j; 5. w := AM 1 x j. 6. For i = 1,..., j 7. h i,j = (w, v j); 8. w := w h i,jv i. 9. Endfor 10. h j+1,j := w 2 and v j+1 = w h j+1,j 11. Endfor 12. Set X k := [x 1... x k ] and Ĥk = {h i,j} 1 i j+1;1 j k 13. Compute y k = argmin y βe 1 Ĥky 2 and u k = u 0 + M 1 X k y k 1 GMRES x j = v j ZE 1 Y T Âv j + ωλ N,estZE 1 Y T v j = v j ZE 1 Y T (AM 1 ωλ N,estI)v j s = AM 1 v j ˆv = Y T (s ωλ n,estv j) x j x j = v j ZE 1ˆv Galerkin E 1ˆv ˆv = Êṽ ṽ ṽ t := Zṽ x j := s t Z : R r R n Y T : R n R r Z prolongation operater Y T restrictio operater) 2 1. Choose u 0, ω, and λ n,est. 2. Compute r 0 = b Au 0,β = r 0 2,and v 1 = r 0 β. 3. For j = 1,..., k 4. s := AM 1 v j. 5.Restriction:ˆv = Y T (s ωλ n,estv j) 6.Solve for ṽ:êṽ = ˆv 7.Prolongation:t := Zṽ 8.x j := v j t. 9. w := AM 1 x j. 10. For i = 1,..., j 11. h i,j = (w, v j); 12. w := w h i,jv i. 13. Endfor 14. h j+1,j := w 2 and v j+1 = w h j+1,j 15. Endfor 16. Set X k := [x 1... x k ] and Ĥk = {h i,j} 1 i j+1;1 j k 17. Compute y k = argmin y βe 1 Ĥky 2 and u k = u 0 + M 1 X k y k 2 GMRES 5. multilevel projection Krylov method 3 Galerkin ˆv = Êṽ A (2) := E = Y T A (1) Z Q (1) ˆN = I (1) Z (1,2) A (2) 1 Y (1,2)T A (1) + ω 1 λ (1) N,estZ (1,2) A (2) 1 Y (1,2)T level Galerkin A (2) Q N (2) p (2) = ˆv (2), ˆv (2) = Q N (2) p (2) 5 c 2009 Information Processing Society of Japan

6 Galerkin Krylov Galerkin 5.2 Multi-level Galerkin Multi-level Krylov (4,3) Galerkin Galerkin A (l+1) = Y (l,l+1)t A (l) Z (l,l+1) Q N Q (l) ˆN = I (l) Z (l,l+1) A (l+1) 1 Y (l,l+1)t A (l) + ω (l) λ (l) N,estZ (l,l+1) A (l+1) 1 Y (l,l+1)t l = m Galerkin A (m) Galerkin GMRES Galerkin Galerkin Galerkin Galerkin (Z Y ) ( ) Swopp09 1. l = 1. With an initial guess u 0 (1) = 0, Solve A (1) u (1) = b (1) with FGMRES by computing 2. s (1) := A (1) M (1) 1 v j (1) ; 3. restriction:ˆv (2) = Y (1,2)T (s (1) ω (1) λ (1) n,estv j (1) ); 4. if l + 1 = m 5. solve exactly Â(2) 1 ˆv (2) = ṽ (2) ; 6. else 7. l=l+1. With ṽ (2) 0 = 0, solve Â(2) ṽ (2) = ˆv (2) with FGMRES by computing 8. s (2) := Â(2) v (2) ; 9. restriction: ˆv (3) := Y (2,3)T (s (2) ω (2) λ (2) n,estv (2) ); 10. if l + 1 = m 11. solve exactly Â(3) 1 ˆv (3) = ṽ (3) ; 12. else 13. l = l + 1; endif 16. prolongation: t (2) := Z (2,3) ṽ (3) ; 17. x (2) = v (2) t (2) ; 18. w (2) = Â(2) x (2) ; 19. endif 20. prolongation: t (1) := Z (1,2) ṽ (2) ; 21. x (1) = v (1) t (1) ; 22. w (2) = A (1) M (1) 1 x (2) ; 3 multilevel projection Krylov method 6 c 2009 Information Processing Society of Japan

7 1) Y. A. Erlangga and R. Nabben, Multilevel projection-based nested Krylov iteration for boundary value problems, SIAM J.Sci.Comput.,pp , ) D. Day, An Efficient Implementation Of The Nonsymmetric Lanczos Algorithm, SIAM J.Matrix Anal.Appl.,18, pp , ) Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm For Solving Nonsymmetric Linear Systems, SIAM J.Sci.Comput.,7,pp , ) R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J.Numer. Anal.,24,pp , ) R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J.Matrix Anal.Appl.,16,pp , ) J. Frank and C. Vuik, On the construction of deflation-based preconditioners, SIAM J.Sci.Comput.,23,pp , c 2009 Information Processing Society of Japan

GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.

GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov. 211 9 12, GMRES,.,., Look-Back.,, Ax = b, A C n n, x, b C n (1),., Krylov., GMRES [5],.,., Look-Back [3]., 2 Krylov,. 3, Look-Back, 4. 5. 1 Algorith 1 The GMRES ethod 1: Choose the initial guess x and

Διαβάστε περισσότερα

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 15η: 12/05/2014 1 Το πρόβλημα PageRank ως γραμμικό σύστημα 2 PageRank ως γραμμικό σύστημα Το πρόβλημα του PageRank μπορεί να γραφεί είτε ως Πρόβλημα

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 24/4/13 Θέµατα αριθµητικής Οι παραπάνω µέθοδοι (FOM, GMRES)

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation 3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors

Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors 1 Av=λBv [a, b] subspace subspace B- subspace B- [a, b] B- Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors Hiroshi

Διαβάστε περισσότερα

Buried Markov Model Pairwise

Buried Markov Model Pairwise Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi

BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi BiCGStab 1 1 2 3 1 4 2 BiCGStab PBiCGStab BiCG CGS CGS PBiCGStab BiCGStab M PBiCGStab An improvement in preconditioned algorithm of BiCGStab method Shoji Itoh, 1 aahiro Katagiri, 1 aao Saurai, 2 Mitsuyoshi

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 3/4/13 ιαδικασία Arnoldi Υπενθύµιση Εξειδίκευση της διαδικασίας

Διαβάστε περισσότερα

GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2

GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2 GPU 4 1,a) 2,b) 1 GPU Tesla M2050 Double-Double DD 4 BiCGStab GPU 4 BiCGStab 1 1.0 2.2 4 GPU 4 1. IEEE754-2008[1] 128bit binary128 CG Conjugate Gradient [2] 1 1 2 a) mukunoki@hpcs.cs.tsukuba.ac.jp b) daisuke@cs.tsukuba.ac.jp

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 5/5/13 Συµµετρικός αλγόριθµος Lanczos Αν ο A = A, τότε το

Διαβάστε περισσότερα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n

Διαβάστε περισσότερα

GCG-type Methods for Nonsymmetric Linear Systems

GCG-type Methods for Nonsymmetric Linear Systems GCG-type Methods for Nonsymmetric Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University December 6, 2011 T.M. Huang (NTNU) GCG-type Methods for Nonsymmetric LS December

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός. Διάλεξη 14η

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός. Διάλεξη 14η Ανάκληση Πληποφοπίαρ Διδάζκων Δημήηριος Καηζαρός Διάλεξη 14η 1 Το πρόβλημα PageRank ως γραμμικό ζύζηημα 2 PageRank ως γραμμικό σύστημα Το πρόβλημα του PageRank μπορεί να γραφεί είτε ως Πρόβλημα ιδιοδιανύσματος:

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 7 : ιαχείρηση Μητρώων Ειδικής οµής Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for

Διαβάστε περισσότερα

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo

Διαβάστε περισσότερα

Probabilistic Approach to Robust Optimization

Probabilistic Approach to Robust Optimization Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μαριλένα Σπυράκη Μέθοδοι Υποχώρων Krylov Για Την Επίλυση Γραμμικών Συστημάτων ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ Ιωάννινα, 2016 Στους γονείς μου Η παρούσα Μεταπτυχιακή Διατριβή

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Prey-Taxis Holling-Tanner

Prey-Taxis Holling-Tanner Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07

Διαβάστε περισσότερα

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

CORDIC Background (4A)

CORDIC Background (4A) CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)

Διαβάστε περισσότερα

CORDIC Background (2A)

CORDIC Background (2A) CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P) ( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"

Διαβάστε περισσότερα

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Applying Markov Decision Processes to Role-playing Game

Applying Markov Decision Processes to Role-playing Game 1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo

Διαβάστε περισσότερα

x j (t) = e λ jt v j, 1 j n

x j (t) = e λ jt v j, 1 j n 9.5: Fundamental Sets of Eigenvector Solutions Homogenous system: x 8 5 10 = Ax, A : n n Ex.: A = Characteristic Polynomial: (degree n) p(λ) = det(a λi) Def.: The multiplicity of a root λ i of p(λ) is

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Orthogonalization Library with a Numerical Computation Policy Interface

Orthogonalization Library with a Numerical Computation Policy Interface Vol. 46 No. SIG 7(ACS 10) May 2005 DGKS PC 10 8 10 14 4.8 Orthogonalization Library with a Numerical Computation Policy Interface Ken Naono, Mitsuyoshi Igai and Hiroyuki Kidachi We propose an orthogonalization

Διαβάστε περισσότερα

Simplex Crossover for Real-coded Genetic Algolithms

Simplex Crossover for Real-coded Genetic Algolithms Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute

Διαβάστε περισσότερα

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7] Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Schedulability Analysis Algorithm for Timing Constraint Workflow Models CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,

Διαβάστε περισσότερα

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17 Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα) Επαναληπτικές µέθοδοι και Ηµι-Επαναληπτικές Μέθοδοι Πανεπιστήµιο Αθηνών 31 Μαρτίου 2017 Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και

Διαβάστε περισσότερα

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Estimation of stability region for a class of switched linear systems with multiple equilibrium points 29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with

Διαβάστε περισσότερα

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006) J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on

Διαβάστε περισσότερα

«ΔΙΑΧΩΡΙΣΜΟΣ ΜΕΓΑΛΟΥ ΚΑΙ ΑΡΑΙΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΑΝΕΞΑΡΤΗΤΑ ΥΠΟΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΠΙΛΥΣΗ ΤΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ SCHUR COMPLEMENT-GMRES»

«ΔΙΑΧΩΡΙΣΜΟΣ ΜΕΓΑΛΟΥ ΚΑΙ ΑΡΑΙΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΑΝΕΞΑΡΤΗΤΑ ΥΠΟΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΠΙΛΥΣΗ ΤΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ SCHUR COMPLEMENT-GMRES» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ ΑΝΑΛΥΣΗΣ, ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ «ΔΙΑΧΩΡΙΣΜΟΣ ΜΕΓΑΛΟΥ ΚΑΙ ΑΡΑΙΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΑΝΕΞΑΡΤΗΤΑ ΥΠΟΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μελέτη και υλοποίηση μεθόδων φασματικής ανάλυσης γράφων για προσομοίωση μεγάλης κλίμακας γραμμικών κυκλωμάτων

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

d 2 u(t) dt 2 = u 16.4 ε(u) = 0 u(x,y) =?

d 2 u(t) dt 2 = u 16.4 ε(u) = 0 u(x,y) =? d 2 u(t) dt 2 = 9.8 u(t) = 4.9t 2 +v 0 t+u 0 10.4 2 u 16.4 ε(u) = 0 u(x,y) =? Find u H 2 (Ω) s.t. (a(x,y) u)+b(x,y) u+c(x,y)u = f(x,y) in Ω a(x,y) u n = g N (x,y) on Ω N u = g D (x,y) on Ω D Here Ω R d

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Echo path identification for stereophonic acoustic echo cancellation without pre-processing

Echo path identification for stereophonic acoustic echo cancellation without pre-processing Echo path identification for stereophonic acoustic echo cancellation without pre-processing Yuusuke MIZUNO Takuya NUNOME Akihiro HIRANO Kenji NAKAYAMA Division of Electronics and Computer Science Graduate

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer;

program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer; program name definitions of (nonglobal) variables state of the data space before execution transformations by the program { state of the data space after execution } program Inner-Product-1 m: integer

Διαβάστε περισσότερα

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3 DEWS2007 D3-6 y yy y y y y yy / DC 7313194 341 E-mail: yfktamura,mori,kuroki,kitakamig@its.hiroshima-cu.ac.jp, yymakoto@db.its.hiroshima-cu.ac.jp Newman Newman Newman Newman Newman A Clustering Algorithm

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields

Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields 33 4 04 GLOBAL GEOLOGY Vol. 33 No. 4 Dec. 04 004 5589 04 04 096 09. 3006. 30070 P63. 35 A doi 0. 3969 /j. issn. 0045589. 04. 04. 0 Research on divergence correction method in 3D numerical modeling of 3D

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System

A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System Vol. 3 No. 3 189 198 (Sep. 2010) 1 1 1 2 2 Arnold Folk Winther A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System Takeshi Mifune, 1 Yu Hirotani, 1 Takeshi Iwashita, 1 Toshio

Διαβάστε περισσότερα

Neural'Networks' Robot Image Credit: Viktoriya Sukhanova 123RF.com

Neural'Networks' Robot Image Credit: Viktoriya Sukhanova 123RF.com Neural'Networks' These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides

Διαβάστε περισσότερα

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1 Maxima SCORM 1 2, 1 Muhammad Wannous 1 3, 4 2, 4 Maxima Web LMS MathML HTML5 Flot jquery JSONP JavaScript SCORM SCORM Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Υπολογισμός του εκθετικού πίνακα Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ± Ó³ Ÿ. 2009.. 6, º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ Œ ˆ ˆ Œ ˆŒ ˆ ˆ ˆ ˆ ˆ Ÿ Œ ƒ ˆ ˆŠ ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ÿ. ʲ ±μ ± ˆ É ÉÊÉ Ö μ Ë ± μ²ó ±μ ± ³ ʱ, Š ±μ, μ²óï Œ É ³ É Î ±μ ±μ³

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα