Επιστηµονικός Υπολογισµός ΙΙ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επιστηµονικός Υπολογισµός ΙΙ"

Transcript

1 Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 5/5/13

2 Συµµετρικός αλγόριθµος Lanczos Αν ο A = A, τότε το άνω Hessenberg µητρώο H m που υπολογιζεται από τον Arnoldi είναι συµµετρικό και εποµένως τριδιαγωνιο. Εποµένως µπορούµε να γράψουµε τον H m ως α 1 β 2 0. β 2 α 2 β.. 3 T m = β m 1 α m 1 β m... 0 βm α m Προσέξτε ότι από τη σχέση για την τελευταία στήλη του AV m = AV m e m έχουµε Av m = V m T m e m + h m 1,m v m+1 e m e m = β m v m 1 + α m v m + h m 1,m v m+1 = β m v m 1 + α m v m + β m v m+1

3 Arnoldi όταν A = A συµµετρικός Lanczos Ο (τροποποιηµένος) αλγόριθµος Arnoldi για την περίπτωση αυτή ονοµάζεται αλγόριθµος Lanczos και έχει ως εξής: v 1 := v/ v 2, β 1 = 0, v 0 = 0 for j = 1,...,m w j := Av j β j v j 1 α j = (w j,v j ), w j := w j α j v j β j+1 = w j if β j+1 = 0 Stop v j+1 = w j /β j+1 end Το κόστος πολύ µικρότερο από Arnoldi Τα διανύσµατα ϐάσης είναι ορθογώνια... αν και, η α.κ.υ. οδηγεί σε γρήγορη απώλεια της ορθογωνιότητας των v j, οπότε χρησιµοποιείται: επαναρθογωνιοποίηση: πλήρης, µερική ή επιλεκτική

4 Συµµετρικός FOM Συµµετρικός αλγόριθµος Lanczos Εφαρµόζουµε την παραπάνω ιδέα στον FOM και παίρνουµε τον αλγόριθµο επίλυσης «συµµετρικός Lanczos». r (0) = b Ax (0), β := r (0) 2, v 1 := r (0) /β. for j = 1,...,m w j := Av j β j v j 1 α j = (w j,v j ), w j := w j α j v j β j+1 = w j if β j+1 = 0 then m := j; break; end v j+1 = w j /β j+1 end T m = trid(β i,α i,β i+1 ), V m = [v 1,...,v m ]. y m := Tm 1 (βe 1 ) και x (m) = x (0) + V m Οπως και στον FOM, το νέο κατάλοιπο έχει την κατεύθυνση του v m+1 : εποµένως r (m) = β m+1 e T m y mv m+1 r (m) r (m j),j = 1,...,m

5 Αµεσος αλγόριθµος Lanczos: D-Lanczos Αντιστοιχεί στον Lanczos όπως και η DIOM στην IOM. T m = L m U m όπου L m, U m κάτω και άνω διδιαγώνια: L m = trid[λ j,1,0],u m = trid[0,η j,β j+1 ] x (m) = x (0) + V m H 1 m (βe 1 ) = x (0) + V m U 1 1 m Lm (βe }{{} 1 ) }{{} z m P m = x (0) + P m z m Ο υπολογισµός µπορεί να γίνει σταδιακά χωρίς να χρησιµοποιήσουµε όλα τα διανύσµατα του V m : Από τη σχέση V m = P m U m v m = η m p (m) + β }{{} m p (m 1) από Lanczos

6 Ιδέα Αλγόριθµος στον οποίο x (m+1) = x (m) + α m p (m), τα υπόλοιπα είναι ορθογώνια και τα διανύσµατα p είναι A-συζυγή: Εποµένως: και r (m+1) = r (m) α m Ap (m) 0 = (r (m+1),r (m) ) = (r (m),r (m) ) α m (Ap (m),r (m) ) α m = (r(m),r (m) ) (Ap (m),r (m) ) εφόσον (Ap (m),r (m) ) 0.

7 Επίσης Ap (m) = 1 α m (r (m+1) r (m) ) Τα p (m+1) r (m+1),p (m) είναι A-ορθογώνια, εποµένως αν γράψουµε p (m+1) = r (m+1) + β m p (m) ισχύει (Ap (m),r (m) ) = (Ap (m),p (m) β m 1 p (m 1) ) = (Ap (m),p (m) ) 0

8 Εποµένως, αν A ΣΘΟ, ο α m µπορεί να υπολογιστεί: α m = (r (m),r (m) ) (Ap (m),p (m) ) 0 = (p (m+1),ap (m) ) = (r (m+1) + β m p (m),ap (m) ) = (r (m+1),ap (m) ) + β m (p (m),ap (m) ) β m = (r(m+1),ap (m) ) (p (m),ap (m) ) = 1 α m (r (m+1),r (m+1) r (m) ) (p (m),ap (m) ) = (Ap(m),p (m) ) (r (m+1),r (m+1) ) (r (m),r (m) ) (p (m),ap (m) ) = (r(m+1),r (m+1) ) (r (m),r (m) ) και ο β m µπορεί επίσης να υπολογιστεί. Επιλέγοντας τις παραµέτρους α m,β m και τα διανύσµατα x (m),p (m),r (m) µε τον παραπάνω τρόπο, οδηγούµαστε στον αλγόριθµο ϐλυεconjugate Gradient.

9 Μέθοδος Conjugate Gradient Ο πιο σηµαντικός και αποτελεσµατικός επαναληπτικός αλγόριθµος για τη λύση ΣΘΟ συστηµάτων. Η ϐασική ιδέα και περιγραφή οφείλεται στους Hestenes και Stiefel (εργασία του 1952!) αλλά για δεκαετίες ϑεωρείτο µη πρακτική σε σύγκριση µε την απαλοιφή Gauss και επαναληπτικές µεθόδους. r (0) = b Ax (0), p (0) = r (0) for j = 1,...,m Compute Ap (j 1), α j 1 = (r(j 1),r (j 1) ) (p (j 1),Ap (j 1) ) x (j) = x (j 1) + α j 1 p (j 1), r (j) = r (j 1) α j 1 Ap (j 1), β j 1 = (r(j),r (j) ) (r (j 1),r (j 1) ) p (j) = r (j) + β j 1 p (j 1) end

10 Χρήσιµες ιδιότητες Θεώρηµα Εστω ότι εφαρµόζουµε τη CG σε ΣΘΟ µητρώο A. Μέχρι τη σύγκλιση (οπότε και r (j) 0) ισχύουν τα παρακάτω: K m (A,r (0) ) = x (1),x (2),,x (m) = p (0),p (1),,p (m 1) = r (0),r (1),,r (m 1) Τα υπόλοιπα είναι ορθογώνια: (r (j),r (k) ) = 0, Οι κατευθύνσεις είναι A ορθογώνιες (συζυγείς): (p (j),p (k) ) A = 0, j k j k

11 Σύγκλιση CG Γνωρίζουµε ότι 1) Η CG είναι µέθοδος ΟΠ µε K = K m (A;r (0) ). Εποµένως η προσέγγιση x (m), m = 1,2,... ελαχιστοποιεί την A-νόρµα του σφάλµατος επί του x (0) + K m, δηλ. x (m) := arg min (A(x sol x),x sol x) 1/2 x x (0) +K m 2) Αν x (m) := x (0) + δ τότε δ είναι η A-ΟΠ του e (0) επί του K. 3) e (m) = p(a)e (0) για p Π m και p(0) = 1 εποµένως x sol x (m) A = min p Π m p(0) = 1 p(a)(x sol x (0) ) A

12 Η µελέτη της σύγκλισης της CG χρησιµοποιεί την έννοια των ενεργών ιδιοτιµών και ιδιοδιανυσµάτων: Αν A = QΛQ T τότε είναι τα (q j,λ j ),j = 1 : m που συµµετέχουν στο e (0) = n j=1 γ j q j, Ισχύει ότι για το πολυώνυµο υπολοίπου p(a) έχουµε p(0) = 1 και p(a)e (0) 2 A = n j=1 λ j (p(λ j )) 2 γ 2 j max(p(λ j )) 2 e (0) 2 A j max(p(λ j )) 2 e (0) 2 A j max λ [λ min,λ max ] (p(λ))2 e (0) 2 A

13 Εστω ότι A ΣΘΟ. Τότε σε αριθµητική άπειρης ακρίβειας ο αλγόριθµος παράγει τη λύση σε n κατά µέγιστο ϐήµατα. Ισχύουν οι συνθήκες: (e (k+1),ap (j) ) = (p (k+1),ap (j) ) = (r (k+1),r (j) ) = 0, j k και από όλα τα διανύσµατα στο χώρο e (0) + span{ae (0),,A k+1 e (0) } το e (k+1) έχει την ελάχιστη A-νόρµα. Επίσης e (k) A κ(a) 1 e (0) 2( ) k A κ(a) + 1

14 Παρατηρήσεις υλοποίησης σε α.κ.υ. Αν γίνουν «αρκετά» ϐήµατα η CG ϑα υπολογίσει εντέλει αποδεκτή προσέγγιση στην ακριβή λύση αλλά: «Αρκετά» µπορεί να είναι πάνω από n Ο αριθµός ϐηµάτων δεν προβλέπεται µε ακρίβεια από το παραπάνω ϕράγµα για το e(k) A e (0) A. είτε σχετικές εργασίες της Anne Greenbaum. Η «ακριβής λύση» της CG προσεγγίζεται χρησιµοποιώντας συµµετρικό αλγόριθµο Lanczos και περαιτέρω ορθογωνιοποίηση.

15 Πείραµα Μητρώο , διαγώνια όλα ίσα µε 1, εκτός διαγωνίου οµοιόµορφα κατανεµηµένα στο [ 1,1], µηδέν όποτε α i,j > τ.

16 Η υπεργραµµική σύγκλιση της CG Αν παρατηρήσει κανείς τις καµπύλες σύγκλισης της CG για διάφορα µητρώα, παρουσιάζεται η εξής γενική συµπεριφορά, που µπορούµε να συνοψίσουµε σε 3 ϕάσεις: κατˆαρχήν γρήγορη πτώση του σφάλµατος ως ένα σηµείο καµπής σχετική καθυστέρηση - στασιµότητα, αργή σύκγλιση πολύ γρήγορη πτώση του σφάλµατος σε αποδεκτά όρια Η συµπεριφορά αυτή αναλύθηκε πειστικά από τους van der Sluis και van der Vorst.

17 Πότε µπορούµε να κατασκευάσουµε οικονοµικές και ϐέλτιστες µεθόδους Krylov; Βέλτιστες: Σε κάθε ϐήµα m, µεταξύ όλων των δυνατών επιλογών από τον υπόχωρο K m (A,b), η προσεγγιστική λύση οδηγεί στο ελάχιστο κάποιου µέτρου σφάλµατος ή υπολοίπου. Οικονοµικές Οτι σε κάθε ϐήµα m, η νέα προσέγγιση της λύσης υπολογίζεται από µια «κοντή αναδροµή» µεγέθους το πολύ s n (π.χ. το µητρώο Hessenberg έχει το πολύ s µη µηδενικά σε κάθε στήλη.) Ως «οικονοµικές» εννοούµε µεθόδους που ϐασίζονται σε κοντές αναδροµές για την κατασκευή κάθε νέας εκτίµησης, π.χ. νέα εκτίµηση λύσης (ϐήµα j + 1) = F ( (τρέχουσα εκτίµηση), (υπολογίσιµη διόρθωση)

18 Το ϑέµα της ύπαρξης επαναληπτικών µεθόδων Krylov µε ϐέλτιστο σφάλµα και κοντή αναδροµή για γενικά (µη κανονικά) µητρώα απαντήθηκε - αρνητικά - από τους Faber και Manteuffel στα µέσα του Γενικά, η κατασκευή είναι δυνατή για κανονικά µητρώα ή γενικεύσεις τους. Εχει αποδειχθεί ότι υπάρχει µέθοδος ϐραχείας αναδροµής µήκους 1 (όπως η CG) αν και µόνον αν συµβαίνει ένα από τα παρακάτω: 1 το ελάχιστο πολυώνυµο του A είναι 0 ή 1 ή 2 το A είναι ερµιτιανό, ή 3 A = e ιθ (ρi + B) όπου θ,ρ R και B = B (αντιερµιτιανό).

19 Μέθοδος CGN (CG Normal) Υπάρχουν οικονοµικές µέθοδοι για µη συµµετρικά/ερµιτιανά προβλήµατα; Ιδέα: Ax = b }{{} A A x = A b συµµετρικό εποµένως αν x (0) = 0 χρησιµοποιούµε µέθοδο ΟΠ για το χώρο K := K m (A A,A b) οπότε αν A αντιστρέψιµο, σε κάθε ϐήµα m = 1,... ελαχιστοποιείται επί του K m (A A,A b) e (m) e (m) A A = (e (m) ) A Ae (m) 2 = (r (m) ) r (m) 2

20 Παρατηρήσεις Σε κάθε ϐήµα ελαχιστοποιείται η 2-νόρµα του υπολοίπου επί του K m (A A,A b) ενώ στη GMRES η ελαχιστοποίηση είναι επί του K m (A,b). Η ανάλυση σύγκλισης γίνεται όπως και στη CG αλλά r (m) 2 r (0) 2 2( κ(a) 1 κ(a) + 1 )m εποµένως η σύγκλιση µπορεί να είναι πολύ πιο αργή γιατί εξαρτάται από το κ(a) και όχι από το κ(a) Η σύγκλιση εξαρτάται από την κατανοµή των ιδιαζουσών τιµών παρά από την κατανοµή των ιδιοτιµών

21 Μέθοδοι διορθογωνιοποίησης (biorthogonalization) Η Arnoldi ανάγει µη συµµετρικά µητρώα σε άνω Hessenberg AV m = V m H m + h m+1,m v m+1 e m H m = V m AV m Μία σηµαντική κατηγορία µεθόδων ϐασίζεται στη (µερική) αναγωγή (µη συµµετρικών) µητρώων σε τριδιαγώνια µορφή. Ιδέα Οποιοδήποτε αντιστρέψιµο µητρώο είναι όµοιο µε τριδιαγώνιο! det(a) 0 υπάρχει αντιστρέψιµο Q τ.ώ. Q 1 AQ = T = trid[β j 1,α j,β j ] Αν ϑέσουµε Q 1 = P οπότε QAP = T και P Q = I

22 Επαναληπτική εκδοχή Αν εφαρµόσουµε Arnoldi για να υπολογίσουµε ϐάσεις: span{v 1,...,v m } = K m (A,v), span{w 1,...,w m } = K m (A,w) AV m = V m H m + h m+1,m v m+1 e m, A W m = W m Hm + hm+1,m w m+1 e m Αναστρέφοντας την 2η σχέση W m A = H m W m + hm+1,m e m w m+1 Επιλέγουµε τις στήλες των V m,w m να είναι διορθογώνιες, δηλ. W m V m = I (τα W m,v m λέγονται συζυζή). οπότε πολλαπλασιάζοντας την πρώτη σχέση από τις παραπάνω µε W m και την προηγούµενη σχέση µε το V m απο τα δεξιά, Τότε εποµένως W m AV m = (W m V m)h m + h m+1,m W m v m+1e m W m AV m = H m (W m V m) + hm+1,m e m w m+1 V m W m AV m = H m = H m άρα H m = H m είναι τουλάχιστον τριδιαγώνιο.

23 Αλγόριθµος ισυζυγών Κλίσεων BiConjugate Gradients (BCG) r (0) = b Ax (0), αρχικοποίηση s (0) τ.ώ. (s (0) )r (0) 0 p (0) = r (0),q (0) = s (0) for m = 0,... και όσο δεν ικανοποιείται το κριτήριο σύγκλισης do α m = (s (m) r (m) )/(q (m) Ap (m) ) x (m+1) = x (m) + α m p (m) r (m+1) = r (m) α m Ap (m) s (m+1) = s (m) α m A q (m) β m = (s (m+1) r (m+1) )/(s (m) r (m) ) p (m+1) = r (m+1) + β m p (m) q (m+1) = s (m+1) + β m q (m) end for Κόστη/επανάληψη 2 MV, 2 DOT, 5 SAXPY

24 Πείραµα (Trefethen)

25 Παρατηρήσεις Η BiCG µπορεί να ϑεωρηθεί ως ϕυσική επέκταση της συµµετρικής Lanczos για ταυτόχρονη επίλυση των συστηµάτων ( ) ( Ax = b και A ˆx 0 A )(ˆx bˆb) = ˆb A = 0 x το τελευταίο σύστηµα είναι 2n 2n, συµµετρικό αλλά µη ορισµένο άρα δεν µπορούµε να εφαρµόσουµε CG v 1 = b K = K m (A,b), x (m) K m (A,b), r (m) L = K m (A,w 1 ) για να πετύχουµε w 1 v 1 = 1, µπορούµε να ϑέσουµε w 1 = v 1 / v 1. Σε κάθε ϐήµα χρειάζεται πολλαπλασιασµός µε το ανάστροφο A. Πώς αποφεύγεται; Transpose-free methods

26 Βασική ιδέα για transpose-free και r (m) = φ m (A)r (0), p (m) = π m (A)r (0) s (m) = φ m (A )s (0), q (m) = π m (A )s (0) α m = (s (m) r (m) )/(q (m) Ap (m) ) = s(0) (φ m (A )) φ m (A)r (0) s (0) (π m (A )) Aπ m (A)r (0) = s(m) φ 2 m(a)r (0) s (0) Aπ 2 m(a)r (0) και αντίστοιχα για το β m. Κλειδί: εν υπάρχουν πια MV µε A. Υλοποίηση: Αλγόριθµος που στηρίζεται στις σχέσεις r (m) = φ 2 m(a)r (0), p (m) = π 2 m(a)r (0) q (m) = φ m+1 (A)π m (A)r (0)

27 εποµένως φ m+1 (z) = φ m (z) α m zπ m (z) π m+1 (z) = φ m+1 (z) + β m π m (z) φ 2 m+1 = φ 2 m 2α m zπ m φ m + α 2 m zπ2 m π m+1 = φ 2 m+1 + 2β m φ m+1 π m + β 2 mπ 2 m και µπορούµε να κατασκευάσουµε την αναδροµή φ 2 m+1 = φ 2 m α m z(2φ 2 m + 2β m 1 φ m π m 1 α m zπ 2 m) φ m+1 π m = φ 2 m + β m 1 φ m π m 1 α m zπ 2 m π 2 m+1 = φ 2 m+1 + 2β m φ m+1 π m + β 2 mπ 2 m φ m π m = φ 2 m + β m 1 φ m π m 1

28 Αλγόριθµος: Τετραγωνισµένος συζυγών κλίσεων Conjugate Gradient Squared (CGS) r (0) = b Ax (0), αυθαίρετο s (0) p (0) = r (0),u (0) = r (0) for m = 0,1,... και όσο δεν ικανοποιείται το κριτήριο σύγκλισης do α m = (s (0) r (m) )/(s (0) Ap (m) ) q (m) = u (m) α m Ap (m) x (m+1) = x (m) + α m (u (m) + q (m) ) r (m+1) = r (m) α m A(u (m) + q (m) ) β m = (s (0) r (m+1) )/(s (0) r (m) ) u (m+1) = r (m+1) + β m q (m) p (m+1) = u (m+1) + β m (q (m) + β m p (m) ) end for Κόστη/επανάληψη 2 MV, 2 DOT, 7 SAXPY

29 BiCGStab Βασική ιδέα Εξοµάλυνση καταλοίπων. r (m) CGS = ιδέαcgs {}}{ φ 2 m(a) r (0), r (m) BiCGStab = ψ m (A)φ m (A)r (0), επιλέγοντας κατάλληλο ψ

30 Αλγόριθµος BiCGStab r (0) = b Ax (0), αυθαίρετο s (0) p (0) = r (0) for m = 0,1,... και όσο δεν ικανοποιείται το κριτήριο σύγκλισης do α m = (s (0) r (m) )/(s (0) Ap (m) ) q (m) = r (m) α m Ap (m) ω m = (q(m) ) Aq (m) (Aq (m) ) Aq (m) x (m+1) = x (m) + α m p (m) + ω m q (m) ) r (m+1) = q (m) ω m Aq (m) β m = (s (0) r (m+1) )/(s (0) r (m) ) α m ω m p (m+1) = r (m+1) + β m (p (m) ω m Ap (m) ) end for Κόστη/επανάληψη 2 MV, 4 DOT, 6 SAXPY

31 BiCGStab

32 BiCGStab

33 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Μη αρνητικά µητρώα Θεωρία Perron-Frobenius για το ϕάσµα Θέµα: Στις εφαρµογές τα µητρώα συχνά είναι µη αρνητικά ή αυστηρά ϑετικά. Τότε διαθέτουν πολλές απροσδόκητες και χρήσιµες ιδιότητες.

34 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Μη αρνητικά µητρώα Θεωρία Perron-Frobenius για το ϕάσµα Θέµα: Στις εφαρµογές τα µητρώα συχνά είναι µη αρνητικά ή αυστηρά ϑετικά. Τότε διαθέτουν πολλές απροσδόκητες και χρήσιµες ιδιότητες. Κάθε A > 0 R n n έχει τουλάχιστον µία µηδενική ιδιοτιµή. Απόδειξη Εστω A > 0. Τότε Αν όλες οι ιδιοτιµές ήταν 0... η κανονική µορφή Jordan του X 1 AX = J ϑα είχε µηδενική διαγώνιο,... οπότε οπωσδήποτε A n = 0, που είναι αδύνατο καθώς A > 0. O. Perron, In Zur Theorie der Matrizen, Math. Ann. 64 (1907),

35 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Πείραµα Μητρώα µε τυχαία στοιχεία από U(0, 1) (MATLAB rand(n)) n = 3

36 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Πείραµα Μητρώα µε τυχαία στοιχεία από U(0, 1) (MATLAB rand(n)) n = 3,5

37 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Πείραµα Μητρώα µε τυχαία στοιχεία από U(0, 1) (MATLAB rand(n)) n = 3,5,7

38 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Πείραµα Μητρώα µε τυχαία στοιχεία από U(0, 1) (MATLAB rand(n)) n = 3,5,7,40

39 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Πείραµα Μητρώα µε τυχαία στοιχεία από U(0, 1) (MATLAB rand(n)) n = 3,5,7,40,100

40 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Θεώρηµα Perron για ϑετικά µητρώα [Perron 1905] Μερικά αποτελέσµατα Αν A > 0 και r = ρ(a) (ϕασµατική ακτίνα) τότε: 1 r > 0 2 r λ(a) 3 Η αλγεβρική πολλαπλότητα του ρ(a) είναι 1. 4 Υπάρχει ιδιοδιάνυσµα x > 0 τ.ώ. Ax = rx. 5 Το διάνυσµα Perron p είναι το µοναδικό διάνυσµα για το οποίο ισχύει ότι Ap = rp,p > 0, και p 1 = 1. 6 r είναι η µοναδική ιδιοτιµή του A µε µέτρο r = 1.

41 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Μη αρνητικά µητρώα Πρόκληση: Να επεκταθούν οι παραπάνω ιδιότητες σε µη αρνητικά µητρώα;

42 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Μη αρνητικά µητρώα Πρόκληση: Να επεκταθούν οι παραπάνω ιδιότητες σε µη αρνητικά µητρώα; Μη προφανές! Αν ( 0 1 A = 0 0 ) τότε Αν r = 0 (παραβαίνει την 1η ιδιότητα Perron) η αλγεβρική πολλαπλότητα είναι 2 (παραβαίνει την 3η ιδιότητα Perron) x = [1,0] είναι το µοναδικό ιδιοδιάνυσµα για το οποίο e x = 1, αλλά το x δεν είναι ϑετικό (παραβαίνει την 4η ιδιότητα Perron) ( 0 1 A = 1 0 ) τότε λ(a) = ±i άρα υπάρχουν 2 ιδιοτιµές ίσες µε 1 σε απόλυτη τιµή (παραβαίνει την 6η ιδιότητα Perron).

43 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Η µάχη δεν χάθηκε Χωρίς περαιτέρω υποθέσεις µπορούµε να δείξουµε ότι Αν A 0 R n n και r = ρ(a) τότε r λ(a) και υπάρχει αντίστοιχο ιδιοδιάνυσµα x 0 τέτοιο ώστε Ax = rx. Ο Frobenius συνειδητοποίησε ότι τα προβλήµατα οφείλονταν όχι µόνον στην ύπαρξη µηδενικών, αλλά στη ϑέση αυτών µέσα στο µητρώο (G. Frobenius, em Ueber Matrizen aus nicht negativen Elementen, S.-B. Preuss Acad. Wiss. Berlin (1912), )

44 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Αναγωγήσιµα µητρώα Ορισµός Ενα µητρώο A καλείται αναγωγήσιµο αν υπάρχει µεταθετικό µητρώο P ώστε το P AP να είναι κατά πλοκάδες άνω τριγωνικό, διαφορετικά καλείται µη αναγωγήσιµο. δηλ. ανν P AP = ( ) A11 A 12 0 A 22 Αν ένα µητρώο είναι µη αναγωγήσιµο, κάθε γραµµή και κάθε στήλη ϑα έχει τουλάχιστον ένα µη µηδενικό στοιχείο πέραν της διαγωίου. A R n n 0 είναι µη αναγωγήσιµο ανν (I + A) n 1 > 0. Υπάρχουν αλγόριθµοι κόστους αναγωγής µητρώου σε σε κατά πλοκάδες άνω τριγωνική µορφή (Tarjan, ϐασισµένες σε γραφοθωρία µε DFS κόστους O(n + nnz) Αναγωγησιµότητα αναγωγή ορισµένων προβληµάτων σε µικρότερα αλλά περισσότερα.

45 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Επέκταση ϕασµατικών ιδιοτήτων [Frobenius 12] Θεώρηµα Perron-Frobenius Αν A 0 και µη αναγωγήσιµο ισχύουν τα παρακάτω: 1 r = ρ(a) λ(a) και r > 0. 2 Η αλγεβρική πολλαπλότητα του ρ(a) είναι 1. 3 Υπάρχει ιδιοδιάνυσµα x > 0 τέτοιο ώστε Ax = rx. 4 Το διάνυσµα Perron είναι το µοναδικό διάνυσµα p που ικανοποιεί Ap = rp,p > 0, και p 1 = 1. εν υπάρχουν άλλα µη αρνητικά ιδιοδιανύσµατα του A εκτός από ϑετικά πολλαπλάσια του p. 5 Το ρ(a) αυξάνει αν αυξήσουµε οποιοδήποτε στοιχείο του A.

46 Θεωρία Perron-Frobenius για µη αρνητικά µητρώα Στοχαστικά µητρώα Κίνητρο: Πολλές εφαρµογές οδηγούν σε µητρώα µε στοιχεία που είναι πιθανότητες. Αυτά είναι ϑετικά και στοχαστικά (κατά στήλες ή κατά γραµµές). Ορολογία: Ενα διάνυσµα ή µητρώο, A 0, καλείται στοχαστικό κατά γραµµές όταν το άθροισµα των στοιχείων κάθε γραµµής ισούται µε 1. Παραδείγµατα: Στοχαστικές διαδικασίες, ουρές Markov Υπενθύµιση: Perron-Frobenius Αν A R n n είναι στοχαστικό τότε ρ(a) = 1 = λ max όπου το λ max αποκαλείται ϱίζα Perron και ικανοποιεί Ap = λ max (A)p όπου p > 0 είναι στοχαστικό. Εργοδικό ϑεώρηµα Αν ένα µητρώο είναι µη αναγωγήσιµο, στοχαστικό κατά στήλες (δηλ e A = e ) και η µοναδική ιδιοτιµή λ max = 1 είναι µεγαλύτερη όλων των άλλων σε µέτρο, τότε lim k Ak = pe

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 27/3/13 Μέθοδος ελαχίστου υπολοίπου (Minimum residual) Θέµα:

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 3/4/13 ιαδικασία Arnoldi Υπενθύµιση Εξειδίκευση της διαδικασίας

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 5 : Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 6/3/13 Σταθµισµένη νόρµα (Νόρµα ενέργειας) Οταν ένα µητρώο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (2 Ιουλίου 2009) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( Ιουλίου 009 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ I. (εκδχ. Α. Σωστό ή Λάθος: α Αν A,B R n n είναι αντιστρέψιµα, τότε το ίδιο ισχύει και για το AB. ϐ Αν A R n n, τότε A AA. γ Αν A R και συµµετρικό

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ.

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 11/5/2012 Σηµαντικό χαρακτηριστικό µέγεθος (ϐαθµωτός) για κάθε τετραγωνικό

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7 Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 27/2/13 Επαναληπτικές µέθοδοι και «τεχνολογία αραιών µητρώων»

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 24/4/13 Θέµατα αριθµητικής Οι παραπάνω µέθοδοι (FOM, GMRES)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Μαριλένα Σπυράκη Μέθοδοι Υποχώρων Krylov Για Την Επίλυση Γραμμικών Συστημάτων ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ Ιωάννινα, 2016 Στους γονείς μου Η παρούσα Μεταπτυχιακή Διατριβή

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 2 : Επίλυση Γραµµικών Εξισώσεων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Συστήματα Γραμμικών Εξισώσεων Εισαγωγή Σύστημα γραμμικών εξισώσεων a x a x a x b 11

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 04 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ = U1SV 1 V 2 A = [U1 U2] S = diag(σ 1,...,σ r ) R r r. και σ 1 σ r > 0. Ειδικότερα,

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ = U1SV 1 V 2 A = [U1 U2] S = diag(σ 1,...,σ r ) R r r. και σ 1 σ r > 0. Ειδικότερα, ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 22/5/2012 ιάσπαση SVD ιάσπαση SVD Θεώρηµα Εστω το µητρώο A R m n τάξης

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και

Διαβάστε περισσότερα

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3

x 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x

Διαβάστε περισσότερα

1 Μέθοδοι ελαχιστοποίησης

1 Μέθοδοι ελαχιστοποίησης 1 Μέθοδοι ελαχιστοποίησης Θεωρούμε το n n πραγματικό σύστημα (1.1) Ax = b, με A ένα συμμετρικό και θετικά ορισμένο πίνακα και b R n. Ορίζουμε το συναρτησιακό ϕ : R n R (1.2) ϕ(x) = 1 (Ax, x) (b, x), 2

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι

Επιστηµονικός Υπολογισµός Ι Επιστηµονικός Υπολογισµός Ι Ενότητα 5 : Επίλυση Γραµµικών Συστηµάτων Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ IV ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ IV. Γενικές επαναληπτικές µέθοδοι Όπως είδαµε η ανάλυση της µεθόδου Guss έδειξε ότι η υπολογιστική προσπάθεια της µεθόδου για τη λύση ενός

Διαβάστε περισσότερα

Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ

Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων. Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ Αριθμητική Ανάλυση 4.5 Ιδιοτιμές και ιδιοδιανύσματα πινάκων Γ. Παπαευαγγέλου, ΕΔΙΠ, ΤΑΤΜ/ΑΠΘ 1. Υπενθύμιση έννοιας νόρμας και βασικών ιδιοτήτων της 2. Σπουδαιότητα των ιδιοτιμών και ιδιοδιανυσμάτων πινάκων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

[ ] και το διάνυσµα των συντελεστών:

[ ] και το διάνυσµα των συντελεστών: Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του

Διαβάστε περισσότερα

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα. Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4) -- Αριθµητική Ανάλυση και Περιβ. Υλοποίησης Απαντήσεις στα Θέµατα Ιουνίου (3 και 4) Θέµα 3 [6µ] Θεωρούµε ότι κατά την επίλυση ενός προβλήµατος προσέγγισης προέκυψε ένα γραµµικό σύστηµα Αxb, µε αγνώστους,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ( , c Ε. Γαλλόπουλος) ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Ε. Γαλλόπουλος. ΤΜΗΥΠ Πανεπιστήµιο Πατρών. ιαφάνειες διαλέξεων 28/2/12 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος ΤΜΗΥΠ Πανεπιστήµιο Πατρών ιαφάνειες διαλέξεων 28/2/12 Μαθηµατική Οµάδα Οµάδα είναι ένα σύνολο F µαζί µε µία πράξη + : F F F έτσι ώστε (Α1) α + (β + γ) = (α + β) + γ για

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 1: Νόρμες Διανυσμάτων και Πινάκων Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 3 : ιανυσµατικοί Χώροι και Υπόχωροι Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

Επιστηµονικοί Υπολογισµοί Μέθοδοι µεταβλητής παρεκτροπής (Variable Extrapolation)

Επιστηµονικοί Υπολογισµοί Μέθοδοι µεταβλητής παρεκτροπής (Variable Extrapolation) Επιστηµονικοί Υπολογισµοί 3.6.1 Μέθοδοι µεταβλητής παρεκτροπής (Variable Extrapolation) Πανεπιστήµιο Αθηνών 10 Μαΐου 2017 (Πανεπιστήµιο Αθηνών) Επιστηµονικοί Υπολογισµοί3.6.1 Μέθοδοι µεταβλητής παρεκτροπής(variable

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 07, 2 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Συμμετρικοί και θετικά ορισμένοι πίνακες. Η ανάλυση Cholesky 2. Νόρμες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Εφαρµοσµένων Μαθηµατικών Παν/µίου Κρήτης Εξεταστική περίοδος εαρινού εξαµήνου Πέµπτη, 2 Ιούνη 28 Γραµµική Αλγεβρα II ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Θέµα

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 2: Θεωρία Perron-Frobenius Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών

Διαβάστε περισσότερα

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

Κεφάλαιο 7 Ορθογώνιοι Πίνακες Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 7 : Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ Καθηγητής ΦΤζαφέρης ΕΚΠΑ 3 Μαρτίου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ Μαρτίου 00 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

21 a 22 a 2n. a m1 a m2 a mn

21 a 22 a 2n. a m1 a m2 a mn Παράρτημα Α Βασική γραμμική άλγεβρα Στην ενότητα αυτή θα παρουσιαστούν με συνοπτικό τρόπο βασικές έννοιες της γραμμικής άλγεβρας. Ο στόχος της ενότητας είναι να αποτελέσει ένα άμεσο σημείο αναφοράς και

Διαβάστε περισσότερα

Χαρακτηριστική Εξίσωση Πίνακα

Χαρακτηριστική Εξίσωση Πίνακα Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και

Διαβάστε περισσότερα

Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)

Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Εστω το ακόλουθο n n τριδιαγώνιο γραµµικό σύστηµα Ax = d A = b 1 c 1 a 2 b 2 c 2 0 a 3 b 3 c

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 08, 5 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Νόρμες πινάκων 2. Δείκτης κατάστασης πίνακα 3. Αριθμητική κινητής

Διαβάστε περισσότερα

Διανύσµατα στο επίπεδο

Διανύσµατα στο επίπεδο Διανύσµατα στο επίπεδο Ένα διάνυσµα v έχει αρχικό και τελικό σηµείο. Χαρακτηρίζεται από: διεύθυνση (ευθεία επί της οποίας κείται φορά (προς ποια κατεύθυνση της ευθείας δείχνει µέτρο (το µήκος του, v ή

Διαβάστε περισσότερα

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN

Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDAN Η ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ JORDN Εάν ένας πίνακας δεν διαγωνοποιείται, τότε ο στόχος μας είναι υπολογίσουμε μέσω ενός μετασχηματισμού ομοιότητας, έναν απλούστερο πίνακα, «σχεδόν διαγώνιο» όπως ο παρακάτω πίνακας

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 5 : Ορίζουσες. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 5 : Ορίζουσες. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 5 : Ορίζουσες Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 5: Κανονικοί Πίνακες Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 13/3/13 Θεώρηµα Stein-Rosenberg Εστω A = D L U όπου L,U

Διαβάστε περισσότερα

3. Γραμμικά Συστήματα

3. Γραμμικά Συστήματα 3. Γραμμικά Συστήματα Ασκήσεις 3. Αποδείξτε ότι το γινόμενο δύο άνω τριγωνικών πινάκων είναι άνω τριγωνικός πίνακας. Επίσης, στην περίπτωση που ένας άνω τριγωνικός πίνακας U 2 R n;n είναι αντιστρέψιμος,

Διαβάστε περισσότερα

[A I 3 ] [I 3 A 1 ].

[A I 3 ] [I 3 A 1 ]. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 9 (α) Να ϐρεθεί ο αντίστροφος του πίνακα A = 6 4 (ϐ) Εστω b, b, b στο R Να λύθεί το σύστηµα x = b 6x + x + x = b x

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΔΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΑ: ) ΠΙΝΑΚΕΣ ) ΟΡΙΖΟΥΣΕΣ ) ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4) ΠΑΡΑΓΩΓΟΙ ΜΑΡΙΑ ΡΟΥΣΟΥΛΗ ΚΕΦΑΛΑΙΟ ΠΙΝΑΚEΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΣ Πίνακας

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα