ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων"

Transcript

1 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και 30 λεπτά Απαντήστε σε όλα τα θέµατα Θέµα Σύνολο: Βαθµός 1

2 ΘΕΜΑ 1 (12 µονάδες) Απαντήστε στις παρακάτω ερωτήσεις. Δεν χρειάζεται να δικαιολογήσετε την απάντησή σας. Απλώς κυκλώστε τις σωστές απαντήσεις (ενδέχεται να υπάρχει παραπάνω από µία σωστή απάντηση ή να µην υπάρχει καµία σωστή απάντηση). Δεν υπάρχει αρνητική βαθµολόγηση, για να πάρετε όµως όλες τις µονάδες πρέπει να κυκλώσετε όλες τις σωστές απαντήσεις. Όπου εµφανίζονται λογάριθµοι παρακάτω χωρίς να αναγράφεται ρητά η βάση τους, εννοείται ότι είναι το n 5 8n n 2 100n = a. O(n 2 ) b. O(n 5 ) c. O(n 8 ) d. O(n!) 2. Οι µέθοδοι ταξινόµησης Quicksort και Insertionsort έχουν a. τις ίδιες απαιτήσεις µνήµης b. την ίδια πολυπλοκότητα χειρότερης περίπτωσης c. την ίδια πολυπλοκότητα µέσης περίπτωσης 3. Σε ένα Β-δέντρο µε παράµετρο Μ, όπου Μ=Ο(1), και µε n αντικείµενα, ο χρόνος αναζήτησης στη χειρότερη περίπτωση είναι a. Ο(logn) b. O((log Μ n) 5 ) c. O(log 4 (log Μ n)) d. O(sqrt(logn)) 4. Το ύψος ενός δέντρου δυαδικής αναζήτησης µε n κόµβους, είναι πάντα a. τουλάχιστον logn 2 b. τουλάχιστον logn + 2 c. το πολύ n-2 d. το πολύ n+2 5. Η συνάρτηση n logn είναι a. O(n!) b. O(n 10 ) c. O(n n ) d. O(logn) 6. Έστω η αναδροµική σχέση f(n) = f(n-1) + n, για n 2, και f(1) = 1. Τότε f(n) = a. O(nlogn) b. O(n) c. O(n 2 ) d. O(n(logn) 2 ) Απαντήσεις: 1. b, c, d 2

3 2. a, b 3. a, b 4. a, d 5. a, c 6. c ΘΕΜΑ 2 (12 µονάδες) Δίνεται ο ακόλουθος ορισµός των κόµβων µίας απλά συνδεδεµένης λίστας. Κάθε κόµβος περιέχει ένα ακέραιο κλειδί key και ένα δείκτη next προς κάποιον άλλο κόµβο (ή είναι null). class Node{ int key; Node next; Node(int x){ key = x; next = null; } } Να γράψετε σε Java τη µέθοδο Node insert(node h, int x) η οποία υλοποιεί την εισαγωγή ενός κόµβου µε κλειδί x στην ταξινοµηµένη λίστα µονής σύνδεσης µε κεφαλή h. Η λίστα είναι ταξινοµηµένη σε αύξουσα σειρά και πρέπει να διατηρείται ταξινοµηµένη µετά την εισαγωγή. Αν το κλειδί υπάρχει ήδη στη λίστα, δεν γίνεται εισαγωγή και η µέθοδος επιστρέφει null, αλλιώς επιστρέφει τον κόµβο που εισήγαγε. Η λίστα δεν έχει κόµβους φρουρούς και τερµατίζεται µε null. Υπάρχουν πάρα πολλοί τρόποι για να υλοποιηθεί µια τέτοια µέθοδος. Ενδεικτικά: Node insert(node h, int x) { if (h==null) return new Node(x); //µην ξεχνάτε τον έλεγχο αυτό!! if (x==h.key) return null; if (x<h.key) { //εισαγωγή στην αρχή, την αντιµετωπίζουµε χωριστά Node t = new Node(x); t.next = h; h=t; return h; } //αν φτάσουµε εδώ η εισαγωγή πρέπει να γίνει µετά την κεφαλή Node t = h; while (t.next!=null) { if (x==t.next.key) return null; //αν υπάρχει επιστρέφει null if (x < t.next.key) //βρήκαµε πού πρέπει να µπει { Node s = new Node(x); s.next = t.next; t.next = s; return s; } else t = t.next; } // end of while Node s = new Node(x); //διαφορετικά, εισαγωγή στο τέλος t.next = s; return s; } 3

4 ΘΕΜΑ 3 (15 µονάδες) Έστω ότι έχουµε ένα σωρό που υποστηρίζει τις βασικές λειτουργίες insert και getmax, όπως τις είδαµε στο µάθηµα. Ο σωρός αρχικά έχει την ακόλουθη µορφή (το στοιχείο στη θέση 0 του πίνακα δεν χρησιµοποιείται, για αυτό και το στοιχείο 20 είναι στη θέση 1): α) Σχεδιάστε την αναπαράσταση του σωρού ως πλήρες δυαδικό δέντρο. β) Έστω ότι ξεκινώντας από το σωρό του ερωτήµατος (α), εισάγουµε διαδοχικά τα στοιχεία 25, 22, 28, σύµφωνα µε τη µέθοδο insert, η οποία όπως έχουµε δει, αρχικά εισάγει ένα στοιχείο στο τέλος και στη συνέχεια καλεί την µέθοδο της ανάδυσης (swim) για να αποκαταστήσει την ιδιότητα του σωρού. Να σχεδιάσετε τον πίνακα και το αντίστοιχο πλήρες δυαδικό δέντρο που προκύπτει για τον σωρό, όταν ολοκληρώνεται κάθε κλήση της insert. 4

5 γ) Εκτελέστε µία αφαίρεση µεγίστου (getmax) στο σωρό που έχει προκύψει από το ερώτηµα (β). Δείξτε όλες τις αλλαγές που γίνονται (µετακινήσεις στοιχείων) µέχρι να ολοκληρωθεί η κλήση της getmax. 5

6 ΘΕΜΑ 4 (12 µονάδες) (α) [8 µονάδες] Έστω ότι εφαρµόζετε κατακερµατισµό µε γραµµική διερεύνηση σε 6,000 αντικείµενα, και έχετε χρησιµοποιήσει πίνακα µεγέθους 12,000. Έστω ότι για τον ίδιο αριθµό αντικειµένων θέλετε να έχετε και ένα σύστηµα που χρησιµοποιεί χωριστή αλυσίδωση και έχει τον ίδιο µέσο όρο διερευνήσεων για ανεπιτυχείς αναζητήσεις µε το προηγούµενο. Ποιο θα πρέπει να είναι το µέγεθος του πίνακα στη χωριστή αλυσίδωση; Για ανεπιτυχείς αναζητήσεις, το µέσο πλήθος διερευνήσεων στη γραµµική διερεύνηση είναι (1 + 1/(1-α) 2 )/2, όπου α ο συντελεστής φορτίου. (β) [4 µονάδες] Να συγκρίνετε το µέσο πλήθος διερευνήσεων για επιτυχείς αναζητήσεις στα 2 παραπάνω συστήµατα. Για επιτυχείς αναζητήσεις, το µέσο πλήθος διερευνήσεων είναι (1 + 1/(1- α))/2, στη γραµµική διερεύνηση. (α) Έχουµε Ν = Για το σύστηµα της γραµµ. διερεύνησης έχουµε ότι α γδ = ½. Αυτό σηµαίνει ότι µε βάση τον τύπο, ο αριθµός διερευνήσεων για ανεπιτυχείς αναζητήσεις στο σύστηµα γραµµ. διερεύνησης είναι (1 + 1/(1-1/2) 2 )/2 = 5/2. Για να έχουµε τώρα ένα ισοδύναµο σύστηµα χωριστής αλυσίδωσης, ως προς τις διερευνήσεις για ανεπιτυχείς αναζητήσεις, έστω Μ χα το µέγεθος του πίνακα που θα χρησιµοποιήσουµε στο σύστηµα αυτό. Ο µέσος όρος διερευνήσεων για ανεπιτυχείς αναζητήσεις στη χωριστή αλυσίδωση είναι Ν/Μ χα. Άρα πρέπει να ισχύει ότι Ν/Μ χα = 5/2. Από αυτή τη σχέση προκύπτει ότι Μ χα = Άρα το µέγεθος του πίνακα πρέπει να είναι (β) Ο αριθµός διερευνήσεων για επιτυχείς αναζητήσεις στη χωριστή αλυσίδωση είναι Ν/(2Μ χα ), καθώς κατά µέσο όρο στις επιτυχείς αναζητήσεις, µέχρι τη µέση της λίστας έχουµε βρει το κλειδί που ψάχνουµε. Άρα στη χωριστή αλυσίδωση είναι 5/4. Για το σύστηµα γραµµικής διερεύνησης, εφαρµόζοντας τον τύπο παίρνουµε (1 + 1/(1-1/2))/2 = 3/2. Άρα µε βάση το κριτήριο του αριθµού διερευνήσεων για επιτυχείς αναζητήσεις, η χωριστή αλυσίδωση είναι καλύτερη. ΘΕΜΑ 5 (17 µονάδες) (α) [5 µονάδες] Θεωρήστε ένα ισορροπηµένο δέντρο µε n κλειδιά (ισορροπηµένο σηµαίνει ότι όλοι οι σύνδεσµοι ισαπέχουν από τη ρίζα). Έστω ότι το µετατρέπετε στην ισοδύναµη αναπαράσταση σε δέντρο κόκκινου-µαύρου. Πόσο αυξάνεται το ύψος του δέντρου στη χειρότερη περίπτωση κατά τη µετατροπή αυτή σε σχέση µε το αρχικό δέντρο 2-3-4; Περιγράψτε από πού προέρχεται η αύξηση αυτή στο ύψος του δέντρου. Μην χρησιµοποιήσετε κοµµάτια κώδικα για να απαντήσετε. Περιγράψτε απλά ποια είναι τα βήµατα που µπορεί να προκαλέσουν την αύξηση αυτή, και τι συνεπάγεται αυτό για το ύψος του τελικού δέντρου κόκκινου-µαύρου στη χειρότερη περίπτωση. 6

7 Απ: Στη χειρότερη περίπτωση το ύψος του δέντρου διπλασιάζεται. Η αύξηση του ύψους προκαλείται από τη µετατροπή των 3-κόµβων και 4-κόµβων σε απλούς κόµβους. Συγκεκριµένα, έχουµε δει ότι η µετατροπή από σε κόκκινο-µαύρο έχει ως αποτέλεσµα την αντικατάσταση ενός 3-κόµβου ή 4-κόµβου από υποδέντρα µε 2 επίπεδα. Συνεπώς το ύψος µπορεί να αυξηθεί κατά 1 για κάθε 3-κόµβο ή 4-κόµβο. Στη χειρότερη περιπτωση λοιπόν, αν έχουµε 3-κόµβους ή 4- κόµβους σε κάθε επίπεδο του δέντρου, το ύψος µπορεί µέχρι και να διπλασιαστεί. (β) [8 µονάδες] Διατάξτε τις ακόλουθες συναρτήσεις µε βάση τον αυξητικό τους χαρακτήρα, δηλαδή βρείτε µια διάταξη f 1,, f 8 των οκτώ συναρτήσεων παρακάτω, η οποία να ικανοποιεί τις σχέσεις f 1 = O(f 2 ), f 2 = O(f 3 ),, κ.ο.κ. (η λύση µπορεί να µην είναι µοναδική, εσείς απλά γράψτε µία διάταξη που να ικανοποιεί τις σχέσεις αυτές). Σε όσους λογαρίθµους παρακάτω δεν εµφανίζεται η βάση τους, θεωρήστε πως είναι ίση µε 2. n 3 n 1/4 log(n 4 ) n 3 logn n n log 4 (n 4 ) 4 nlogn n 2 sqrt(n) Απ: 1. log(n 4 ) ή log 4 (n 4 ) 2. log 4 (n 4 ) ή log(n 4 ) 3. n 1/4 4. n 2 sqrt(n) 5. n 3 6. n 3 logn 7. n n 8. 4 nlogn 7

8 (γ) [4 µονάδες] Γιατί στα Β-δέντρα χρησιµοποιούµε κόµβους που περιέχουν σχετικά µεγάλο αριθµό κλειδιών; Απ: Γιατί τα Β-δεντρα τα χρησιµοποιούµε συνήθως για εξωτερική αναζήτηση, όπου το κύριο κόστος είναι το πόσες φορές διαβάζουµε/γράφουµε στο σκληρό δίσκο ή στη βάση δεδοµένων. Προσπαθούµε λοιπόν κάθε κόµβος να περιέχει περίπου όσα κλειδιά χωράνε σε µια σελίδα/µπλοκ του δίσκου, (η ανάγνωση από το δίσκο ούτως ή άλλως ένα µπλοκ θα επιστρέψει και όχι µεµονωµένα κλειδιά) και να ελαχιστοποιούµε έτσι το πόσες φορές θα διαβάσουµε από το δίσκο. 8

9 ΘΕΜΑ 6 (12 µονάδες) Έστω το εξής δέντρο 2-3-4: (α) Σχεδιάστε ένα ισοδύναµο δέντρο κόκκινου-µαύρου. (β) Να εισάγετε µε ανοδική εισαγωγή το κλειδί 45. Σχεδιάστε το νέο δέντρο που θα προκύψει καθώς και το ισοδύναµο δέντρο κόκκινου-µαύρου. 9

10 (γ) Στο δέντρο που προέκυψε από το ερώτηµα (β) κάντε ανοδική εισαγωγή του κλειδιού 11. Ξανασχεδιάστε το νέο δέντρο και το ισοδύναµο κόκκινου-µαύρου. 10

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ

ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

Συλλογές, Στοίβες και Ουρές

Συλλογές, Στοίβες και Ουρές Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240 - Παναγιώτα Φατούρου 2 ΕΝΟΤΗΤΑ ΥΛΟΠΟΙΗΣΗ ΛΕΞΙΚΩΝ ΜΕ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΗΥ24 - Παναγιώτα Φατούρου 1 Ισοζυγισµένα ένδρα Χρονική Πολυπλοκότητα αναζήτησης σε δοµές που έχουν ήδη διδάχθει: Στατική Μη-Ταξινοµηµένη Λίστα -> Ο(n), όπου

Διαβάστε περισσότερα

Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός)

Άσκηση 1 (15 μονάδες) (Επεκτατός Κατακερματισμός) ΗΥ460 Τελική Εξέηαζη 29 Ιανουαπίου 2013 Σελίδα 1 από 8 Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-460 Συστήματα Διαχείρισης Βάσεων Δεδομένων Δημήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Επαναληπτική

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Βασικά Στοιχεία Το αλφάβητο της C Οι βασικοί τύποι της C Δηλώσεις μεταβλητών Είσοδος/Έξοδος Βασικές εντολές της C Αλφάβητο

Διαβάστε περισσότερα

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα)

Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 14: Δομές Δεδομένων ΙΙI (Λίστες και Παραδείγματα) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 14-1 Περιεχόμενο

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Στοίβες με Δυναμική Δέσμευση Μνήμης

Στοίβες με Δυναμική Δέσμευση Μνήμης ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ 10/02/10 Παύλος Αντωνίου Στοίβες με Δυναμική Δέσμευση Μνήμης Στοίβα: Στοίβα είναι μια λίστα που έχει ένα επιπλέον περιορισμό. Ο περιορισμός είναι ότι οι εισαγωγές

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)

Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων.

ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ. Επίπεδα Αφαίρεσης Σ Β. Αποθήκευση Εγγραφών - Ευρετήρια. ρ. Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, Επίπεδο Όψεων. ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ Χειµερινό Εξάµηνο 2002 Αποθήκευση Εγγραφών - Ευρετήρια ρ Βαγγελιώ Καβακλή ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ, ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Επίπεδα Αφαίρεσης Σ Β Επίπεδο Όψεων Όψη Όψη

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού

Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού Μια συνάρτηση κατακερματισμού (hash function) h απεικονίζει κλειδιά ενός δοσμένου τύπου σεακεραίουςενόςσταθερούδιαστήματος [0,N 1]όπουΝτομέγεθοςτουπίνακα. Πχ: Συναρτήσεις Κατακερματισμού και Πίνακες Κατακερματισμού

Διαβάστε περισσότερα

2 Ορισμός Κλάσεων. Παράδειγμα: Μηχανή για Εισιτήρια. Δομή μιας Κλάσης. Ο Σκελετός της Κλάσης για τη Μηχανή. Ορισμός Πεδίων 4/3/2008

2 Ορισμός Κλάσεων. Παράδειγμα: Μηχανή για Εισιτήρια. Δομή μιας Κλάσης. Ο Σκελετός της Κλάσης για τη Μηχανή. Ορισμός Πεδίων 4/3/2008 Παράδειγμα: Μηχανή για Εισιτήρια 2 Ορισμός Κλάσεων Σύνταξη κλάσης: πεδία, κατασκευαστές, μέθοδοι Ένας αυτόματος εκδότης εισιτηρίων είναι μια μηχανή που δέχεται χρήματα και εκδίδει ένα εισιτήριο. Εκδίδει

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

Πληροφορική & Τηλεπικοινωνίες K18 - Υλοποίηση Συστηµάτων Βάσεων εδοµένων Εαρινό Εξάµηνο 2009 2010

Πληροφορική & Τηλεπικοινωνίες K18 - Υλοποίηση Συστηµάτων Βάσεων εδοµένων Εαρινό Εξάµηνο 2009 2010 Πληροφορική & Τηλεπικοινωνίες K18 - Υλοποίηση Συστηµάτων Βάσεων εδοµένων Εαρινό Εξάµηνο 2009 2010 Καθηγητής. Γουνόπουλος Άσκηση 1 Σκοπός της εργασίας αυτής είναι η κατανόηση της εσωτερικής λειτουργίας

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Ψηφιακή Εκπαιδευτική Πλατφόρμα, Διαδραστικά Βιβλία και Αποθετήριο Μαθησιακών Αντικειμένων

Ψηφιακή Εκπαιδευτική Πλατφόρμα, Διαδραστικά Βιβλία και Αποθετήριο Μαθησιακών Αντικειμένων Ψηφιακή Εκπαιδευτική Πλατφόρμα, Διαδραστικά Βιβλία και Αποθετήριο Μαθησιακών Αντικειμένων ΑΝΑΖΗΤΗΣΗ ΣΤΟ ΦΩΤΟΔΕΝΤΡΟ Για να αναζητήσετε Μαθησιακά Αντικείμενα στο Φωτόδεντρο χρησιμοποιείστε το πεδίο εισαγωγής

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επιμέλεια: Σ. Ασημέλλης 1. Σε ένα ποδοσφαιρικό πρωτάθλημα μετέχουν 16 ομάδες. Κάθε ομάδα παίζει με όλες τις υπόλοιπες ως γηπεδούχος και ως φιλοξενούμενη. Νίκη μιας ομάδας

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία:

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1. Structural Programming

ΑΣΚΗΣΗ 1. Structural Programming ΑΣΚΗΣΗ 1 Structural Programming Στην άσκηση αυτή θα υλοποιήσετε σε C ένα απλό πρόγραµµα Βάσης εδοµένων το οποίο θα µπορούσε να χρησιµοποιηθεί από την γραµµατεία ενός πανεπιστηµίου για την αποθήκευση και

Διαβάστε περισσότερα

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 8.6. Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 8.6 Πίνακες ΙI ( ιάλεξη 16) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 16-1 Πίνακες - Επανάληψη Στην προηγούµενη διάλεξη κάναµε µια εισαγωγή στην δοµή δεδοµένων Πίνακας Σε ένα πίνακα ένα σύνολο αντικειµένων

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΠΕΜΠΤΟ Triggers, Stored procedures Γιώργος Μαρκοµανώλης Περιεχόµενα Triggers-Ενηµέρωση δεδοµένων άλλων πινάκων... 1 Ασφάλεια...

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions)

Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions) Αποθηκευμένες Διαδικασίες Stored Routines (Procedures & Functions) Αυγερινός Αραμπατζής avi@ee.duth.gr www.aviarampatzis.com Βάσεις Δεδομένων Stored Procedures 1 Stored Routines (1/2) Τμήματα κώδικα τα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Βάλβης Δημήτριος Μηχανικός Πληροφορικής ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΛΥΚΕΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 10 /6 / 2015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

Διαβάστε περισσότερα

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Nα κατασκευάσουν πίνακες από δεδομένα. Να κατασκευάσουν συναρτήσεις με πίνακες. Να κάνουν χρήση

Διαβάστε περισσότερα

Κεφάλαιο 13. Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός. ιαφάνεια 13-1

Κεφάλαιο 13. Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός. ιαφάνεια 13-1 ιαφάνεια 13-1 Κεφάλαιο 13 Αποθήκευση σε ίσκους, Βασικές οµέςαρχείων, και Κατακερµατισµός ίαβλος, Επιµ.Μ.Χατζόπουλος 1 Γιατί θα µιλήσουµε Μονάδες Αποθήκευσης ίσκων Αρχεία Εγγραφών Πράξεις σε αρχεία Αρχεία

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΑΠΑΝΤΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α1. 1. Λάθος 2. Λάθος 3. Σωστό 4. Λάθος 5. Σωστό Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 19 Απριλίου

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

Πρόλογος. if (παράσταση) εντολή1 else εντολή2. Από εδώ και πέρα θα αναφέρεται ως K&R.

Πρόλογος. if (παράσταση) εντολή1 else εντολή2. Από εδώ και πέρα θα αναφέρεται ως K&R. Περιεχόμενα Πρόλογος v ΚΕΦΑΛΑΙΟ 1 Προπαρασκευαστική εισαγωγή 1 ΚΕΦΑΛΑΙΟ 2 Τύποι, τελεστές, και παραστάσεις 43 ΚΕΦΑΛΑΙΟ 3 Η ροή του ελέγχου 59 ΚΕΦΑΛΑΙΟ 4 Συναρτήσεις και δομή του προγράμματος 69 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Οδηγίες για άνοιγµα καρτέλας υποψηφίου στο ηλεκτρονικό σύστηµα της Infotest και της Certiport

Οδηγίες για άνοιγµα καρτέλας υποψηφίου στο ηλεκτρονικό σύστηµα της Infotest και της Certiport Οδηγίες για άνοιγµα καρτέλας υποψηφίου στο ηλεκτρονικό σύστηµα της Infotest και της Certiport 1. Γενικά...1 2. Άνοιγµα καρτέλας στο σύστηµα της Infotest...2 3. Άνοιγµα καρτέλας στο σύστηµα της Certiport...5

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 14 Δυναμική διαχείριση μνήμης Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Στατική δέσμευση μνήμης Με τη δήλωση απλών μεταβλητών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο. Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο. Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 7 Ο Αριθμητικές πράξεις Τυχαίοι αριθμοί Εφαρμογές σε προβλήματα ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Οι αριθμητικές πράξεις που εκτελούνται στον υπολογιστή αποτελούν το

Διαβάστε περισσότερα

Προγραµµατιστική Εργασία 1 ο Μέρος

Προγραµµατιστική Εργασία 1 ο Μέρος Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών 4 Νοεµβρίου 2011 ΗΥ240: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκό Έτος 2011-12 ιδάσκουσα: Παναγιώτα Φατούρου Προγραµµατιστική Εργασία 1 ο Μέρος Ηµεροµηνία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΤΕΤΑΡΤΟ Insert, Update, Delete, Ένωση πινάκων Γιώργος Μαρκοµανώλης Περιεχόµενα Group By... 1 Having...1 Οrder By... 2 Εντολή Insert...

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II

Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 20: Χαμηλού Επιπέδου Προγραμματισμός II (Κεφάλαια 25.2, KNK-2ED) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις

Διαβάστε περισσότερα

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εργαστήριο 9η εβδομάδα. Κοζάνη, 2 Δεκεμβρίου 2008. Δίνονται παραδείγματα που αποσαφηνίζουν και συμπληρώνουν όσα αναφέρθηκαν στο μάθημα σχετικά με τις δομές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2012-2013 27 Μαρτίου 2013 Περίληψη Σκοπός της παρούσας εργασίας είναι η εξοικείωσή σας με τις θεμελιώδεις θεωρητικές και πρακτικές πτυχές

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών. ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης

Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών. ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-460 Συστήµατα ιαχείρισης Βάσεων εδοµένων ηµήτρης Πλεξουσάκης Βασίλης Χριστοφίδης Ονοµατεπώνυµο: Αριθµός Μητρώου: Τελική Εξέταση (3 ώρες) Ηµεροµηνία: 7

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθμοι 5.1 Η έννοια του αλγορίθμου 5.2 Αναπαράσταση αλγορίθμων 5.3 Επινόηση αλγορίθμων 5.4 Δομές επανάληψης 5.5 Αναδρομικές δομές 5.6 Απόδοση και ορθότητα Οι διαφάνειες βασίζονται σε μεγάλο

Διαβάστε περισσότερα

Οδηγίες για άνοιγµα καρτέλας υποψηφίου στο ηλεκτρονικό σύστηµα της Infotest και της Certiport

Οδηγίες για άνοιγµα καρτέλας υποψηφίου στο ηλεκτρονικό σύστηµα της Infotest και της Certiport Οδηγίες για άνοιγµα καρτέλας υποψηφίου στο ηλεκτρονικό σύστηµα της Infotest και της Certiport 1. Γενικά...1 2. Άνοιγµα καρτέλας στο σύστηµα της Infotest...1 3. Άνοιγµα καρτέλας στο σύστηµα της Certiport...4

Διαβάστε περισσότερα

C: Από τη Θεωρία στην Εφαρμογή

C: Από τη Θεωρία στην Εφαρμογή Δρ. Γ. Σ. Τσελίκης Δρ. Ν. Δ. Τσελίκας C: Από τη Θεωρία στην Εφαρμογή Ενδεικτικές Ασκήσεις από το Βιβλίο C: Από τη Θεωρία στην Εφαρμογή (Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας) Ενδεικτικές Ασκήσεις του Βιβλίου Ε.Α.1

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 13 Αρχεία Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αρχεία Συλλογές δεδομένων Αποθηκεύονται στην περιφερειακή μνήμη π.χ. σκληρός

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

Κεφάλαιο 13. Αποθήκευση σε Δίσκους, Βασικές Δομές Αρχείων, και Κατακερματισμός

Κεφάλαιο 13. Αποθήκευση σε Δίσκους, Βασικές Δομές Αρχείων, και Κατακερματισμός Κεφάλαιο 13 Αποθήκευση σε Δίσκους, Βασικές Δομές Αρχείων, και Κατακερματισμός Δίαβλος, Επιμ.Μ.Χατζόπουλος Γιατί θα μιλήσουμε Μονάδες Αποθήκευσης Δίσκων Αρχεία Εγγραφών Πράξεις σε αρχεία Αρχεία Σωρού Ταξινομημένα

Διαβάστε περισσότερα

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D

Insert (P) : Προσθέτει ένα νέο πρότυπο P στο λεξικό D. Delete (P) : Διαγράφει το πρότυπο P από το λεξικό D Dynamic dictionary matching problem Έχουμε ένα σύνολο πρότυπων D = { P1, P2,..., Pk } oπου D το λεξικό και ένα αυθαίρετο κειμενο T [1,n] To σύνολο των πρότυπων αλλάζει με το χρόνο (ρεαλιστική συνθήκη).

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ Τμήμα Εφαρμοσμένης Πληροφορικής ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εξάμηνο Α' Φύλλο Ασκήσεων 3 ΔΟΜΕΣ ΕΠAΝΑΛΗΨΗΣ Διδάσκοντες: Μάγια Σατρατζέμη, Αλέξανδρος Χατζηγεωργίου, Ηλίας Σακελλαρίου, Στέλιος Ξυνόγαλος

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ Διάλεξη 2 Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 2 Internal

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

FROM TESTOTA.REGISTRY

FROM TESTOTA.REGISTRY ΟΤΑ Επιχειρησιακή Νοηµοσύνη Ενότητα: Βc1.1.3 Επιχειρησιακή Νοηµοσύνη και Τεχνολογίες της Πληροφορικής και των Επικοινωνιών (BI & IT) Πρακτική Άσκηση (επίπεδο 1): Στόχος της άσκησης είναι η εµβάθυνση στην

Διαβάστε περισσότερα

Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΛΥΚΕΙΟΥ - 02/05/2014 ΘΕΜΑ Α Α1. Έστω ο παρακάτω αλγόριθμος ταξινόμησης: Για κ από.. μέχρι 19 Για λ από 19 μέχρι κ με_βήμα -1

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. 1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία οποιαδήποτε επεξεργασία.

ΑΠΑΝΤΗΣΕΙΣ. 1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει µε επιτυχία οποιαδήποτε επεξεργασία. 1 Γ' ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1: Α. ΑΠΑΝΤΗΣΕΙΣ 1. Να αναφέρετε ονοµαστικά τις λειτουργίες µε τις οποίες ο υπολογιστής µπορεί να επιτελέσει

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας MY. Μέρος Α. Υλικό.

Ερωτήσεις θεωρίας MY. Μέρος Α. Υλικό. Ερωτήσεις θεωρίας MY Μέρος Α. Υλικό. 1. Η μνήμη ROM είναι συνδυαστικό ή ακολουθιακό κύκλωμα; 2. α) Να σχεδιαστεί μία μνήμη ROM που να δίνει στις εξόδους της το πλήθος των ημερών του μήνα, ο αριθμός του

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΚΠΑΙΔΕΥΤΙΚΉ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε

Διαβάστε περισσότερα