Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα"

Transcript

1 Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου Διαγραφή Μικρότερου και Τυχαίου στοιχείου Σύγκριση 2 ΔΔΑ, Διάσχιση ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1

2 Δυαδικά Δένδρα Ένα δένδρο είναι δυαδικό αν όλοι οι κόμβοι του έχουν βαθμό 2. Ορισμός: Δυαδικό δένδρο λέγεται ένα δένδρο το οποίο : είτε είναι κενό, ή αποτελείται από μια ρίζα και δύο δυαδικά υπόδενδρα. Αναφερόμαστε στα δύο υποδένδρα ως το αριστερό και το δεξιό υπόδενδρο. Το ύψος ενός δυαδικού δένδρου με n κόμβους μπορεί να είναι το πολύ : n 1(συνδεδεμένη λίστα) και το λιγότερο lg n. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2

3 Δυαδικά Δένδρα (συν.) Ένα δυαδικό δένδρο είναι γεμάτο (full), αν κάθε εσωτερικός του κόμβος έχει δύο απογόνους FULL Ένα δυαδικό δένδρο είναι τέλειο (perfect), αν είναι γεμάτο και όλα τα φύλλα έχουν το ίδιο βάθος PERFECT ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 3

4 Δυαδικά Δένδρα (συν.) Ένα δυαδικό δένδρο είναι πλήρες (complete) αν Αναδρομικός Ορισμός 1. έχει ύψος 0 και ένα κόμβο, 2. έχει ύψος 1 και η ρίζα του έχει είτε δύο παιδιά είτε ένα αριστερό παιδί. 3. έχει ύψος h και η ρίζα του έχει ένα τέλειο αριστερό υπόδενδρο ύψους h 1 και ένα πλήρες δεξιό υπόδενδρο ύψους h 1, ή ένα πλήρες αριστερό υπόδενδρο ύψους h 1 και ένα τέλειο δεξιό υπόδενδρο ύψους h 2. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4

5 Παραδείγματα Δυαδικά Δένδρα ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5

6 Θεώρημα 1. Ένα γεμάτο δυαδικό (μη άδειο) δένδρο με n εσωτερικούς κόμβους, έχει n+1 φύλλα. 2. Κάθε δυαδικό δένδρο με n κόμβους έχει n+1 null δείκτες Απόδειξη (2) με τη μέθοδο της μαθηματικής επαγωγής: Βάση της επαγωγής: n = 0 To δένδρο αποτελείται από ένα NULL δείκτη και το ζητούμενο έπεται. Υπόθεση της επαγωγής: Έστω ότι κάθε δυαδικό δένδρο με k κόμβους, k < m, έχει k+1 NULL δείκτες. Βήμα της επαγωγής: Έστω δυαδικό δένδρο με m κόμβους. Θέλουμε να δείξουμε πως περιέχει m+1 NULL δείκτες. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 6

7 Θεώρημα Ένα οποιοδήποτε δυαδικό δένδρο έχει την πιο κάτω μορφή: m 1 + m = m m 1 κόμβοι m 2 κόμβοι Ο αριθμός NULL δεικτών του δένδρου είναι = ο αριθμός NULL δεικτών του αριστερού υποδένδρου + ο αριθμός NULL δεικτών του δεξιού υποδένδρου = {από την υπόθεση της επαγωγής και αφού m 1, m 2 < m (m 1 +1) + (m 2 + 1) = (m 1 + m 2 +1 ) + 1 = m + 1 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 7

8 Αναπαράσταση Δένδρων στη Μνήμη Αφού κάθε κόμβος σε ένα δυαδικό δένδρο έχει το πολύ δύο παιδιά, μπορούμε να κρατούμε δείκτες στο καθένα από αυτά. Δηλαδή, ένας κόμβος μπορεί να υλοποιηθεί ως μια εγγραφή TreeNode με τρία πεδία (παρόμοια με κόμβο διπλά συνδεδεμένης λίστας). 1. key, όπου αποθηκεύουμε τo κλειδί του κόμβου, 2. left, τύπου pointer, ο οποίος δείχνει το αριστερό, υπόδενδρο που ριζώνει στον συγκεκριμένο κόμβο, και 3. right, τύπου pointer, ο οποίος δείχνει το δεξιό υπόδενδρο που ριζώνει στον συγκεκριμένο κόμβο διάφορα άλλα χρήσιμα στοιχεία private class TreeNode<E> { E key; BinaryTreeNode<E> left; BinaryTreeNode<E> right; //other useful fields boolean isleaf, isinternal, isroot; Object data; // data BinaryTreeNode(E key){ this.key = key; this.left = null; this.right = null; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 8

9 Αναπαράσταση Δένδρων στη Μνήμη (συν.) Έτσι, ένα δυαδικό δένδρο υλοποιείται ως ένα δείκτης προς τη ρίζα του δένδρου, δηλαδή μία αναφορά σε εγγραφή τύπου TreeNode. Επίσης μπορεί να υλοποιηθεί σαν μία ξεχωριστή δομή Tree η οποία να περιλαμβάνει και πληροφορίες όπως μέγεθος, ύψος, κ.τ.λ. Παρόμοια με Λίστες, Στοίβες, Ουρές, κτλ. public class Tree<E extends Comparable>{ private class TreeNode<E> {... private BinaryTreeNode<E> head; private int size; private int height; public void makeempty() { this.head=null; this.size=0; public boolean isempty() { return this.size==0; public int size() { return this.size; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 9

10 Δυαδικά Δένδρα Αναζήτησης ΔΔΑ (Binary Search Trees) Το πιο σημαντικό πλεονέκτημα της χρήσης δυαδικών δένδρων η αποδοτική αναζήτηση σε ένα σύνολο στοιχείων Υποθέτουμε την ύπαρξη μιας σχέσης στο σύνολο των στοιχείων που επεξεργαζόμαστε, έστω τη σχέση < πάνω στο σύνολο των ακεραίων. Ένα δυαδικό δένδρο αναζήτησης (ΔΔΑ) είναι ένα δυαδικό δένδρο κάθε κόμβος u του οποίου ικανοποιεί τα εξής: 1. τα κλειδιά του αριστερού υποδένδρου του u είναι μικρότερα από το κλειδί του u 2. τα κλειδιά του δεξιού υποδένδρου του u είναι μεγαλύτερα (ή ίσο) από το κλειδί του u. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 10

11 Παράδειγμα Κτισίματος ενός ΔΔΑ ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 11

12 Είναι αυτά ΔΔΑ; (μόνο τα κλειδιά εμφανίζονται) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 12

13 Κτίζοντας ένα ΔΔΑ Δένδρο με τα ίδια στοιχεία τοποθετημένα με διαφορετική σειρά: 60, 42, 6, 24 37, Ποιο είναι το χειρότερο σενάριο? Οι τιμές εισόδου φθάνουν με την ακόλουθη σειρά 60,42,40,37,24,6 (φθίνουσα σειρά) ή 6,24,37,40,42,60 (αύξουσα σειρά) Αυτές οι δυο τιμές εισόδου παράγουν μια συνδεμένη λίστα 40 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 13

14 Διαδικασία Εύρεσης Τυχαίου Στοιχείου Απλή αναδρομική στρατηγική: συγκρίνουμε το στοιχείο που μας ενδιαφέρει α με το στοιχείο της ρίζας του δένδρου β (αν υπάρχει) και 1.αν α=β, σταματούμε, 2.αν α<β, προχωρούμε στο αριστερό υπόδενδρο, 3.αν α>β προχωρούμε στο δεξιό υπόδενδρο. Χρόνος Εκτέλεσης; Χείριστη Περίπτωση: Ο(h) όπου h το ύψος του δέντρου, O(n) αν το δέντρο είναι λίστα Μέση Περίπτωση: Θ(log 2 n) αν το δέντρο είναι ισοζυγισμένο ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 14

15 Διαδικασία Εύρεσης Τυχαίου Στοιχείου: Υλοποίηση public BinaryTreeNode<E> find(e key) { return this.find(key, this.head); private BinaryTreeNode<E> find(e key, BinaryTreeNode<E> node) { if(node==null){ return null; else if (key.compareto(node.key) == 0) { return node; else if (key.compareto(node.key) < 0) { return find(key, node.left); else { return find(key, node.right); ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 15

16 Διαδικασία Εύρεσης Ελαχίστου/Μεγίστου στοιχείου Στόχος: να επιστραφεί ο κόμβος που περιέχει το μικρότερο (μεγαλύτερο) κλειδί στο δένδρο. Αλγόριθμος: Ξεκινάμε από τη ρίζα και πηγαίνουμε αριστερά (δεξιά) όσο υπάρχει ένα αριστερό (δεξιό) παιδί. Το σημείο που σταματάμε είναι το μικρότερο (μεγαλύτερο) στοιχείο. Χρόνος Εκτέλεσης; Παρόμοια με find ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 16

17 Διαδικασία Εύρεσης Ελαχ./Μεγίστ.: Υλοποίηση public E findmin(){ BinaryTreeNode<E> tmp = this.findmin(this.head); if(tmp!=null) return tmp.key; return null; public BinaryTreeNode<E> findmin(binarytreenode<e> node){ if(node!=null) while(node.left!=null) node = node.left; return node; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 17

18 Διαδικασία Εισαγωγής Σημαντικό: παίζει ρόλο η σειρά εισαγωγής Παραδείγματα Α. Εισαγωγή 37, 24, 42, 6, 40, 60 Β. Εισαγωγή 60, 42, 6, 24, 37, ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 18

19 Διαδικασία Εισαγωγής Κόμβου Διασχίζουμε το δέντρο, όπως θα κάναμε με τη find Εάν το X βρεθεί, δεν κάνουμε καμία ενέργεια Διαφορετικά, εισάγουμε το X στο τελευταίο σημείο του μονοπατιού που διασχίστηκε Χρονική πολυπλοκότητα= O(h ύψος του δένδρου) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 19

20 Διαδικασία Εισαγωγής Κόμβου: Υλοποίηση public void insert(e key) { this.head = this.insert(key, this.head); this.size++; private BinaryTreeNode<E> insert(e key,binarytreenode<e> node) { if(node==null){ node = new BinaryTreeNode<E>(key); else if (key.compareto(node.key) < 0) { node.left = insert(key, node.left); else if (key.compareto(node.key) > 0) { node.right = insert(key, node.right); return node; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 20

21 Εξαγωγή του μικρότερου κόμβου DeleteMin() 1. Ακολουθούμε τους αριστερούς δείκτες όσο μπορούμε, φθάνοντας στον κόμβο με το μικρότερο στοιχείο, u. 2. Βρίσκουμε τον πατέρα v του u και αλλάζουμε τον αριστερό δείκτη του v ώστε να δείχνει στο δεξιό παιδί του u. v u ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 21

22 Διαδικασία Διαγραφής Στοιχείου Για να αφαιρέσουμε ένα κλειδί i από ένα ΔΔΑ: 1. Βρίσκουμε τον κόμβο u που περιέχει το i. Ας υποθέσουμε πως v είναι ο πατέρας του u. 2. Αν u είναι φύλλο, τότε αλλάζουμε τον δείκτη του v που δείχνει στο u, ώστε να γίνει null. 3. Αν ο u έχει ένα παιδί, τότε αλλάζουμε τον δείκτη του v που δείχνει τον u, ώστε να δείχνει στο παιδί του u. 4. Αν ο u έχει δύο παιδιά, αλλάζουμε το κλειδί του u ώστε να γίνει το μικρότερο από τα κλειδιά όλων των απογόνων του που έχουν κλειδιά μεγαλύτερα του i. καλούμε τη μέθοδο deletemin στο αριστερό παιδί του u. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 22

23 Παραδείγματα Διαγραφής Στοιχείου v 2 Διαγραφή του 1 u Βρίσκουμε τον κόμβο u που περιέχει το i. Ας υποθέσουμε πως v είναι ο πατέρας του u. 2: μετακίνηση αριστερά 1: τέλος αναζήτησης 2. Αν u είναι φύλλο, τότε αλλάζουμε τον δείκτη του v που δείχνει στο u, ώστε να γίνει null. v.left= null ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 23

24 Παραδείγματα Διαγραφής Στοιχείου 2 Διαγραφή του 3 1 u 3 4 v 5 1. Βρίσκουμε τον κόμβο u που περιέχει το i. Ας υποθέσουμε πως v είναι ο πατέρας του u. 2: μετακίνηση δεξιά 4: μετακίνηση αριστερά 3: τέλος αναζήτησης 2 2. Αν u είναι φύλλο, τότε αλλάζουμε τον δείκτη του v που δείχνει στο u, ώστε να γίνει null. v.left= null ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 24

25 Παραδείγματα Διαγραφής Στοιχείου 2 v 1 4 u Διαγραφή του 4 1. Βρίσκουμε τον κόμβο u που περιέχει το i. Ας υποθέσουμε πως v είναι ο πατέρας του u. 2: μετακίνηση δεξιά 4: τέλος αναζήτησης Αν u είναι φύλλο, τότε αλλάζουμε τον δείκτη του v που δείχνει στο u, ώστε να γίνει null. 3. Αν ο u έχει ένα παιδί, τότε αλλάζουμε τον δείκτη του v που δείχνει τον u, ώστε να δείχνει στο παιδί του u. v.right= u.left; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 25

26 Παραδείγματα Διαγραφής Στοιχείου 1 1 u 2 min 3 3 v Διαγραφή του 2 1. Βρίσκουμε τον κόμβο u που περιέχει το i. Ας υποθέσουμε πως v είναι ο πατέρας του u. 2: τέλος αναζήτησης 2. Αν u είναι φύλλο, 3. Αν ο u έχει ένα παιδί, 4. Αν ο u έχει δύο παιδιά, αλλάζουμε το κλειδί του u ώστε να γίνει το μικρότερο από τα κλειδιά όλων των απογόνων του που έχουν κλειδιά μεγαλύτερα του i. καλούμε τη μέθοδο deletemin στο δεξιό παιδί του u. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 26

27 Διαγραφή στοιχείου με δύο απογόνους Βρίσκουμε το μικρότερο στοιχείο (min) στο δεξιό υπόδεντρο του κόμβου που θέλουμε να διαγράψουμε Αντικαθιστούμε το στοιχείο που θέλουμε να διαγράψουμε με το min και τώρα έχουμε το ίδιο στοιχείο 2 φορές στο δέντρο μας Εφαρμόζουμε την deletemin στο δεξιό υπόδεντρο ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 27

28 Διαγραφή στοιχείου με δύο απογόνους Θέλουμε να διαγράψουμε το 12 από το δέντρο. Έχει 2 απογόνους. Βρίσκουμε το μικρότερο στοιχείο στο δεξιό υπόδεντρο του κόμβου που θέλουμε να διαγράψουμε. Στην περίπτωση αυτή είναι το 19 ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 28

29 Διαγραφή στοιχείου με δύο απογόνους Αντικαθιστούμε το 19 στη θέση που είναι το 12. Δεν αντικαθιστούμε τους κόμβους αλλά το περιεχόμενο. Τώρα είμαστε στη κατάσταση που έχουμε 2 κόμβους με το ίδιο στοιχείο. Εδώ καλούμε την deletemin για να διαγράψουμε το 19. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 29

30 Διαγραφή στοιχείου με δύο απογόνους Μια διαφορετική προσέγγιση είναι να επιλέξουμε το μεγαλύτερο στοιχείο στο αριστερό υπόδεντρο. Στην πιο πάνω περίπτωση θέλουμε να διαγράψουμε το στοιχείο 8. Επιλέγουμε να κατευθυνθούμε αριστερά και να επιλέξουμε το μεγαλύτερο στοιχείο στο αριστερό υπόδεντρο του κόμβου που θέλουμε να διαγράψουμε. Επιλέγουμε το στοιχείο 5. Αντιγράφουμε το στοιχείο αυτό στον κόμβο που θέλουμε να διαγράψουμε, και διαγράφουμε τον κόμβο που περιέχει το μεγαλύτερο στοιχείο στο αριστερό υπόδεντρο. ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 30

31 Άσκηση Υλοποιήστε τον κώδικα διαγραφής στοιχείου σε δυαδικά δέντρα αναζήτησης ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 31

32 Σύγκριση Δυαδικών Δένδρων Η σύγκριση 2 ΔΔΑ επιτυγχάνεται μην διάσχιση του κάθε κόμβου αναδρομικά. Αν όλοι οι κόμβοι έχουν το ίδιο κλειδί τότε επιστρέφει true και false στην αντίθετη περίπτωση public boolean sametree(binarytree<e> t) { return this.sametree(this.head, t.head); private boolean sametree(binarytreenode<e> a, BinaryTreeNode<E> b) { // και τα δυο δένδρα είναι κενά => άρα επιστρέφουμε true if (a == null && b == null) return true; // και τα δυο δένδρα δεν είναι κενά συγκρίνουμε τις ρίζες τους else if (a!= null && b!= null) return ((a.key.compareto(b.key) == 0) && sametree(a.left, b.left) && sametree(a.right, b.right)); // το ένα εκ των δυο υπό δένδρων είναι κενό => επιστρέφουμε false else return false; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 32

33 Διάσχιση ΔΔΑ Αν θέλουμε να επισκεφθούμε όλους τους κόμβους ενός δένδρου, μπορούμε να χρησιμοποιήσουμε ένα από τους πιο κάτω τρόπους, οι οποίοι διαφέρουν στη σειρά με την οποία εξετάζουν τους κόμβους. 1. Προθεματική Διάσχιση: (Preorder Traversal) επισκεπτόμαστε (εκτυπώνουμε) πρώτα κάποιο κόμβο και μετά τα παιδιά του. 2. Μεταθεματική Διάσχιση: (Postorder Traversal) επισκεπτόμαστε (εκτυπώνουμε) πρώτα τα παιδιά και ύστερα τον κόμβο. 3. Ενδοθεματική Διάσχιση: (Inorder Traversal) επισκεπτόμαστε (εκτυπώνουμε) πρώτα τα αριστερά παιδιά, μετά τον κόμβο και μετά τα δεξιά παιδιά. PreOrder: PostOrder: InOrder: ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 33

34 Διάσχιση ΔΔΑ: Υλοποίηση public void preorder() { this.preorder(this.head); private void preorder(binarytreenode<e> node) { if (node!= null) { System.out.print(node.key + " "); preorder(node.left); preorder(node.right); public void postorder() { this.postorder(this.head); private void postorder(binarytreenode<e> node) { if (node!= null) { postorder(node.left); postorder(node.right); System.out.print(node.key + " "); public void inorder() { this.inorder(this.head); private void inorder(binarytreenode<e> node) { if (node!= null) { inorder(node.left); System.out.print(node.key + " "); inorder(node.right); ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 34

35 Δυαδικά Δέντρα και ΔΔΑ: Ασκήσεις Πιο θα είναι το αποτέλεσμα της προθεματικής διάσχισης? ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 35

36 Δυαδικά Δέντρα και ΔΔΑ: Ασκήσεις Πιο θα είναι το αποτέλεσμα της μεταθεματικής διάσχισης? ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 36

37 Δυαδικά Δέντρα και ΔΔΑ: Ασκήσεις Ποιο είναι το ύψος ενός δυαδικού δέντρου όταν εισάξουμε τα στοιχεία 1,2,3,4,5,6,7 με αυτή τη σειρά; Ποιος θα είναι ο χρόνος αναζήτησης χείριστης περίπτωσης στο πιο πάνω δέντρο σε σχέση με το n; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 37

38 Δυαδικά Δέντρα και ΔΔΑ: Ασκήσεις Με ποια σειρά πρέπει να εισάξουμε τα στοιχεία 1,2,3,4,5,6,7 ώστε να πάρουμε το πιο κάτω δέντρο; Τι είναι το πιο πάνω δέντρο; ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 38

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Δέντρα Δυαδικά Δέντρα Δυαδικά Δέντρα Αναζήτησης (inary Search Trees) http://aetos.it.teithe.gr/~demos/teaching_r.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής

Διαβάστε περισσότερα

Μάθημα 22: Δυαδικά δέντρα (Binary Trees)

Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Trees Page 1 Μάθημα 22: Δυαδικά δέντρα (Binary Trees) Ένα δένδρο είναι δυαδικό αν όλοι οι κόμβοι του έχουν βαθμό (degree)

Διαβάστε περισσότερα

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα

Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Διάλεξη 13: Δέντρα ΙΙΙ Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ισοζυγισμένα Δέντρα Υλοποίηση AVL δέντρων Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι - Δυαδικά Δένδρα (binary trees) - Δυαδικά Δένδρα Αναζήτησης (binary search trees) 1 Δυαδικά Δένδρα Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Εφαρμογές 2 Ορισμοί (αναδρομικός ορισμός) Ένα δένδρο t είναι ένα πεπερασμένο

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research ΑΛΓΟΡΙΘΜΟΙ ΜΕ C ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής CMOR Lab Computational Methodologies and Operations Research Δέντρα (5) Τ ένα δέντρο i ένας κόμβος στο επίπεδο k j ένας κόμβος στο επίπεδο k+1 } :

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων

Διαβάστε περισσότερα

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 23: Ισοζυγισμένα Δέντρα, AVL Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ισοζυγισμένα Δέντρα - Υλοποίηση AVL-δέντρων - Εισαγωγή Κόμβων και Περιστροφές σε AVL δέντρα Διδάσκων:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 15: Αναδρομή (Recursion) Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η έννοια της αναδρομής Μη αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων Παραδείγματα Ανάδρομης Αφαίρεση της Αναδρομής

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 5

Δομές Δεδομένων Ενότητα 5 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Δυαδικά Δένδρα Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών

Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)

Διαβάστε περισσότερα

ΔυαδικάΔΕΝΔΡΑΑναζήτησης

ΔυαδικάΔΕΝΔΡΑΑναζήτησης ΔυαδικάΔΕΝΔΡΑΑναζήτησης Ρίζα (κόμβος που δεν έχει γονέα) πρόγονοι απόγονοι γονέας παιδιά έντρο είναι µία συλλογή από στοιχεία, που ονοµάζονται κόµβοι και συνδέονται µεταξύ τους µε τη βοήθεια ακµών αδέλφια

Διαβάστε περισσότερα

5 ΔΕΝΤΡΑ (Trees) Σχήµα 5.1 : ενδροειδής αναπαράσταση αρχείων στα Windows. έντρα. \ {root directory} Accessories. Program Files.

5 ΔΕΝΤΡΑ (Trees) Σχήµα 5.1 : ενδροειδής αναπαράσταση αρχείων στα Windows. έντρα. \ {root directory} Accessories. Program Files. 5 ΔΕΝΤΡΑ (Trees) Oι περισσότερες δοµές δεδοµένων που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµµικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο αυτή θα ασχοληθούµε µε τις µή-γραµµικές

Διαβάστε περισσότερα

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα

Διαβάστε περισσότερα

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:

Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί

Διαβάστε περισσότερα

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:

ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες: Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι

Διαβάστε περισσότερα

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις

Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #10 (β)

ιαφάνειες παρουσίασης #10 (β) ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Δένδρα (Trees) Βασικές Έννοιες. Δυαδικά Δένδρα. Δυαδικά Δένδρα Αναζήτησης. AVL Δένδρα. Δένδρα: Βασικές Έννοιες Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Δένδρο: μοντέλο ιεραρχικής

Διαβάστε περισσότερα

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 3: Δένδρα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Συγκρίσιμα Αντικείμενα (comparable)

Συγκρίσιμα Αντικείμενα (comparable) Συγκρίσιμα Αντικείμενα (comparable) public class Student implements Comparable{ public String lastname; public String firstname; public int am; public int compareto(object s) throws ClassCastException{

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 10: Πλήρη Δυαδικά Δέντρα, Μέγιστα/Ελάχιστα Δέντρα & Εισαγωγή στο Σωρό- Ο ΑΤΔ Μέγιστος Σωρός Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε

Διαβάστε περισσότερα

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1 B-Δένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 Δένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1 2-3 Δένδρα Γενίκευση των δυαδικών δένδρων αναζήτησης.

Διαβάστε περισσότερα

Εργασία 3 Σκελετοί Λύσεων

Εργασία 3 Σκελετοί Λύσεων Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τη δομή typedef struct TNode{ int key; struct TNode *left; struct TNode *right; tnode; και υποθέτουμε πως ένα δυαδικό δένδρο είναι υλοποιημένο ως δείκτης

Διαβάστε περισσότερα

AVL-trees C++ implementation

AVL-trees C++ implementation Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ AVL-trees C++ implementation Δομές Δεδομένων Μάριος Κενδέα 31 Μαρτίου 2015 kendea@ceid.upatras.gr Εισαγωγή (1/3) Δυαδικά Δένδρα Αναζήτησης:

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω

Διαβάστε περισσότερα

Συλλογές, Στοίβες και Ουρές

Συλλογές, Στοίβες και Ουρές Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι

Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι Φροντιστήριο: Επανάληψη για την ενδιάμεση εξέταση Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Μαθηματική Επαγωγή Να αποδείξετε ότι 1 3 5... (2 1) 2 για >0. Απόδειξη: Επαληθεύουμε

Διαβάστε περισσότερα

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά EPL231: Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά Αναδρομή Η αναδρομή εμφανίζεται όταν μία διεργασία καλεί τον εαυτό της Υπάρχουν

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, B- ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 ένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 8-1 2-3 ένδρα Γενίκευση των δυαδικών

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #11

ιαφάνειες παρουσίασης #11 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ

ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι

Διαβάστε περισσότερα

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:

Διαβάστε περισσότερα

Διάλεξη 15: Αναδρομή (Recursion)

Διάλεξη 15: Αναδρομή (Recursion) ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 15: Αναδρομή (Recursion) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η έννοια της αναδρομής - Μη-αναδρομικός / Αναδρομικός Ορισμός Συναρτήσεων

Διαβάστε περισσότερα

Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort

Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-1 Ουρά προτεραιότητας

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, AVL- ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Υλοποίηση ΑVL-δένδρων Εισαγωγή κόµβων και περιστροφές ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 7-1 AVL ένδρα Είναι δυνατό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 3 Δέντρα ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 3 Δέντρα Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 19/03/2013 Ημερομηνία Παράδοσης:

Διαβάστε περισσότερα

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Κεφάλαιο 10 Ψηφιακά Λεξικά

Κεφάλαιο 10 Ψηφιακά Λεξικά Κεφάλαιο 10 Ψηφιακά Λεξικά Περιεχόμενα 10.1 Εισαγωγή... 213 10.2 Ψηφιακά Δένδρα... 214 10.3 Υλοποίηση σε Java... 222 10.4 Συμπιεσμένα και τριαδικά ψηφιακά δένδρα... 223 Ασκήσεις... 225 Βιβλιογραφία...

Διαβάστε περισσότερα

Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων

Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά ΕΠΛ231 Δομές Δεδομένων

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman. Καθηγήτρια Μαρία Σατρατζέμη

Δομές Δεδομένων. Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman. Καθηγήτρια Μαρία Σατρατζέμη Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διάλεξη 24: B-Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 24: B-Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 24: B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή & Ισοζυγισμένα Δένδρα - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις -Β-δένδρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης Δοµές Δεδοµένων 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης Ε. Μαρκάκης Περίληψη Δέντρα Δυαδικής Αναζήτησης Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων ΔΔΑ Εισαγωγή στη ρίζα ΔΔΑ Υλοποιήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1 Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Λίστες Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εύρεση, εισαγωγή, διαγραφή) - Σύγκριση Συνδεδεμένων Λιστών με Πίνακες

Διαβάστε περισσότερα

Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα

Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Εργαστήριο 4: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Ταξινομημένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Λίστες -Υλοποίηση ταξινομημένης λίστας με δυναμική δέσμευση μνήμης ΕΠΛ035

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου 2 Ουρές

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Οντοκεντρικός Προγραμματισμός

Οντοκεντρικός Προγραμματισμός Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές

Διαβάστε περισσότερα

Σημειώσεις ένατης εβδομάδας

Σημειώσεις ένατης εβδομάδας Σημειώσεις ένατης εβδομάδας Η δομή της ουράς (queue), είναι και αυτή γραμμική δομή, όπως η λίστα και η στοίβα. Το βασικό χαρακτηριστικό της είναι ότι, όπως και στις φυσικές ουρές, εξυπηρετείται πρώτος,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου

Διαβάστε περισσότερα

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (path) o Πρόγονος απόγονος (ancestor, descendant)

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type).

Διαβάστε περισσότερα

Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι

Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι Μεταγλωττιστές Εργαστήριο 2 Δυναμικές Δομές Δεδομένων Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2015-1016 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες ιδιότητες

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων ΕΠΛ 3 Δομές Δεδομένων και Αλγόριθμοι Νοέμβριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Έστω ο αριθμός φύλλων που βρίσκονται στο επίπεδο ενός δυαδικού δένδρου. Θέλουμε να αποδείξουμε την πρόταση: Η

Διαβάστε περισσότερα

Κεφάλαιο 11 Ένωση Ξένων Συνόλων

Κεφάλαιο 11 Ένωση Ξένων Συνόλων Κεφάλαιο 11 Ένωση Ξένων Συνόλων Περιεχόμενα 11.1 Εισαγωγή... 227 11.2 Εφαρμογή στο Πρόβλημα της Συνεκτικότητας... 228 11.3 Δομή Ξένων Συνόλων με Συνδεδεμένες Λίστες... 229 11.4 Δομή Ξένων Συνόλων με Ανοδικά

Διαβάστε περισσότερα

Ισοζυγισμένα υαδικά έντρα Αναζήτησης

Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα υαδικά έντρα Αναζήτησης ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα Α είναι

Διαβάστε περισσότερα

Insert(K,I,S) Delete(K,S)

Insert(K,I,S) Delete(K,S) ΕΝΟΤΗΤΑ 5 ΣΥΝΟΛΑ & ΛΕΞΙΚΑ Φατούρου Παναγιώτα 1 Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενα από έναν αριθµό και

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης

Δοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης Δοµές Δεδοµένων 18η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Επανάληψη των Τυχαιοποιηµένων ΔΔΑ, Στρεβλών ΔΔΑ, Δέντρων 2-3-4 Δέντρα κόκκινου-µαύρου Λίστες Παράλειψης Χαρακτηριστικά επιδόσεων - συµπεράσµατα

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

4. Συνδεδεμένες Λίστες

4. Συνδεδεμένες Λίστες Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 4. Συνδεδεμένες Λίστες 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 10/11/2016 Εισαγωγή

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες

Διάλεξη 08: Λίστες ΙΙ Κυκλικές Λίστες ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 0: Λίστες ΙΙ Κυκλικές Λίστες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Κυκλικές Απλά Συνδεδεμένες Λίστες - Κυκλικές Διπλά Συνδεδεμένες

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.

Διαβάστε περισσότερα

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα