PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ""

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

2 ΠΡΟΒΛΗΜΑ 1 Έχετε στην διάθεσή σας δύο δοχεία, που κάθε ένα έχει χωρητικότητα 3 και 4 λίτρα, και μία βρύση με νερό. Μπορείτε να γεμίσετε τα δοχεία από την βρύση, να αδειάσετε το περιεχόμενό τους στο έδαφος ή να αδειάσετε νερό από το ένα στο άλλο. Πρέπει να βρείτε έναν τρόπο ώστε να υπολογίσετε ακριβώς 2 λίτρα. ΠΡΟΒΛΗΜΑ 2 Θεωρείστε το ακόλουθο πρόβλημα εύρεσης μονοπατιού. Κάποιος μπορεί να κινηθεί από ένα μικρό τρίγωνο σε ένα άλλο εάν αυτά μοιράζονται από κοινού έναν κόμβο (π.χ., ο A μπορεί να πάει στον Β ή στον C). Παρόλαυτα, ο στόχος G μπορεί να προσπελαστεί μόνο από τον F. Ο αριθμός δίπλα στο γράμμα είναι η τιμή της εκτιμώμενης απόστασης (κόστους) της συγκεκριμένης κατάστασης από την τερματική κατάσταση. Το πραγματικό κόστος κάθε κίνησης είναι: Κίνηση ένα επίπεδο κάτω (π.χ. Α -> C ή B -> E) κοστίζει 1 Kίνηση παράλληλα στο ίδιο επίπεδο (π.χ. C -> B ή E -> F) κοστίζει 2 Κίνηση ένα επίπεδο πάνω (π.χ. Β -> Α ή C -> A) κοστίζει 3 ΠΡΟΒΛΗΜΑ 3 Θεωρείστε το ακόλουθο παιχνίδι όπου ο παίκτης Α κινείται πρώτος. Οι δύο παίκτες παίζουν εναλλάξ. Κάθε παίκτης πρέπει να κινηθεί σε ένα ανοικτό γειτονικό χώρο. Εάν ο αντίπαλος απασχολεί ένα γειτονικό χώρο, τότε ο παίκτης πρέπει να «πηδήξει» πάνω από τον αντίπαλο στο επόμενο ανοικτό χώρο, εάν υπάρχει (για παράδειγμα, εάν ο Α βρίσκεται στο 1 και ο Β στο 2, τότε ο Α πρέπει να πηδήξει στο 3). Το παιχνίδι τερματίζεται όταν ο Α φτάσει στο 4, ή ο Β φτάσει στο 1.

3 Na απαντήσετε στις ακόλουθες ερωτήσεις: 1. [3%] 1.1 Να ορίσετε ένα αποδεκτό ευρετικό για το Πρόβλημα 1 (το Πρόβλημα με τα δοχεία), καθώς και ένα αποδεκτό ευρετικό για το Πρόβλημα 3 (παιχνίδι με δύο παίκτες). Για το πρόβλημα 1, να θεωρήσετε σαν κόστος κάθε τελεστή το ποσό των λίτρων νερού που (1) μετακινείται μεταξύ δοχείων, ή (2) αδειάζεται από ένα δοχείο ή (3) γεμίζει ένα δοχείο. Για το πρόβλημα 3, να θεωρήσετε σαν κόστος κάθε τελεστή τον αριθμό από θέσεις που μετακινείται ο παίκτης που παίζει, δηλαδή η απλή μετακίνηση δεξιά ή αριστερά θα έχει κόστος 1, ενώ το πήδημα κόστος 2 (σαν μετακίνηση δύο θέσεων δεξιά ή αριστερά). 1.2 Είναι το ευρετικό που είναι σημειωμένο στα τρίγωνα του Προβλήματος 2 ένα αποδεκτό ευρετικό; 1.3 Θεωρείστε τώρα (για το Πρόβλημα 2) πως για κάθε κατάσταση ορίζουμε σαν ευρετικό την απόσταση του συγκεκριμένου γράμματος της κατάστασης από το γράμμα της τελικής κατάστασης (που είναι η G). Δηλαδή η κατάσταση Α θα έχει ευρετικό ίσο με 6 εφόσον το Α απέχει από το G, έξι θέσεις στο αλφάβητο. Είναι το συγκεκριμένο ευρετικό αποδεκτό? 2. [3%] 2.1 Θεωρείστε ένα πρόβλημα όπου κάθε κατάσταση συμβολίζεται με ένα γράμμα από το αγγλικό αλφάβητο. Ως Αρχική Κατάσταση ορίζουμε την Α. Κάθε κατάσταση θεωρούμε πως παράγει δύο επόμενες καταστάσεις, οι οποίες θα είναι το επόμενο σύμφωνο και το επόμενο φωνήεν μετά το τρέχον γράμμα (κατάσταση) στο αγγλικό αλφάβητο. Στόχος είναι η κατάσταση P. Μία κατάσταση ενδέχεται να μπορεί να δημιουργήσει μία ή και καμία επόμενη κατάσταση (πχ. η κατάσταση Ζ). Δημιουργήστε το δέντρο αναζήτησης που προκύπτει από τόν αλγόριθμο αναζήτηση κατά βάθος καθώς και το δέντρο αναζήτησης που προκύπτει από τον αλγόριθμο αναζήτηση κατά πλάτος στον συγκεκριμένο πρόβλημα 1. Δώστε επίσης την σειρά των καταστάσεων από τις οποίες πέρασε ο κάθε αλγόριθμος. Υποθέστε σαν σύμβαση ότι ο τελεστής παραγωγής του συμφώνου έχει μεγαλύτερη προτεραιότητα από τον τελεστή παραγωγής του φωνήεντος. 2.2 Ποιος από τους δύο αλγορίθμους βρήκε γρηγορότερα (σε λιγότερα βήματα) την λύση; 3. [3%] 3.1 Εφαρμόστε τον αλγόριθμο αναρρίχησης λόφων (Hill Climbing) στο Πρόβλημα 2 2. Δημιουργήστε το δέντρο αναζήτησης που προκύπτει από την εφαρμογή του αλγορίθμου και εξηγήστε αναλυτικά κάθε βήμα του. 3.2 Εφαρμόστε τους αλγορίθμους: Best-First και A star στο Πρόβλημα 2. Να δημιουργήσετε έναν κατάλληλο πίνακα ο οποίος θα περιέχει το μέτωπο αναζήτησης καταστάσεων, το κλειστό σύνολο καταστάσεων, την τρέχουσα κατάσταση και τα παιδιά της τρέχουσας κατάστασης για κάθε βήμα του αλγορίθμου. Όταν δύο καταστάσεις έχουν το ίδιο ευρετικό (με βάση τον αλγόριθμο Α star) να επιλέξετε την κατάσταση με την μικρότερη εκτίμηση από την τελική λύση (όπως δίνονται στο σχήμα).

4 4. [3%] 4.1 Να εφαρμοστούν οι αλγόριθμοι αναζήτηση κατά βάθος και αναζήτηση κατά πλάτος στο Πρόβλημα 3 και να αναφερθεί η λύση που δίνει ο καθένας. Ποιος παίκτης νίκησε σε κάθε περίπτωση; Να σχεδιαστούν επιπλέον και τα δέντρα αναζήτησης που προκύπτουν από την αναζήτηση που εφαρμόζει ο κάθε αλγόριθμος. Υποθέστε σαν σύμβαση ότι οι τελεστές μετακίνησης προς τα αριστερά έχουν μεγαλύτερη προτεραιότητα από τους τελεστές μετακίνησης προς τα δεξιά. 5. [3%] 5.1 Να εφαρμόσετε στο Πρόβλημα 1 τον αλγόριθμο κατά βάθος, τον αλγόριθμο κατα πλάτος και τον αλγόριθμο αναρρίχησης λόφων (hill climbing) 2. Σχεδιάστε τα δέντρα αναζήτησης που προκύπτουν από την εφαρμογή των τριών αλγορίθμων. Θα πρέπει να οριστεί μια προτεραιότητα των τελεστών για την επέκταση των καταστάσεων. Σαν ευρετικό να χρησιμοποιήσετε αυτό που ορίσατε στο ερώτημα (α) και σαν αρχική κατάσταση, την περίπτωση που και τα δύο δοχεία είναι γεμάτα. Θα πρέπει να εξηγήσετε αναλυτικά κάθε επιλογή του αλγορίθμου. ΣΗΜΕΙΩΣΕΙΣ: 1. Το δέντρο αναζήτησης που προκύπτει από την εφαρμογή ενός αλγορίθμου είναι διαφορετικό από το πλήρες δέντρο αναζήτησης που είδαμε στο Πρώτο μέρος της άσκησης. Το δέντρο αναζήτησης για έναν αλγόριθμο σχεδιάζεται ως εξής: - Κάθε κόμβος του δέντρου, επεκτείνεται ως προς όλες τις δυνατές επόμενες μεταβάσεις. Από αυτές επιλέγεται μία, εκείνη που θα επιλέξει ο αλγόριθμος. Οι υπόλοιπες δεν επεκτείνονται. Δηλαδή σε κάθε κόμβο του δέντρου δείχνουμε μεν ποιες είναι όλες οι επόμενες καταστάσεις, αλλά επιλέγουμε να συνεχίσουμε με μία από αυτές. Έτσι απεικονίζεται μόνο η διαδρομή που ακολουθεί ο αλγόριθμος πάνω στο δέντρο μέχρι να βρει μια λύση, και δεν αναλύεται το πλήρες δέντρο αναζήτησης. 2. Για τον αλγόριθμο αναρρίχησης λόφων (hill climbing), συμβουλευτείτε την διαδικασία που περιγράφεται στην σελίδα 156 των σημειώσεων του μαθήματος. Να υποθέσετε ότι για να μεταβεί ο αλγόριθμος σε μία επόμενη κατάσταση θα πρέπει το ευρετικό της επόμενης κατάστασης να είναι "καλύτερο" (και όχι το ίδιο καλό) με το ευρετικό της τρέχουσας κατάστασης. ΠΑΡΑΤΗΡΗΣΕΙΣ: 1. Οι απαντήσεις σας πρέπει να σταλούν ηλεκτρονικά (.doc ή.pdf και το όνομα του αρχείου θα έχει τη μορφή: ΧΨ_ΕΕΜ_2 ο, όπου Χ = επώνυμο και Ψ= αρχικό ονόματος) στο: μέχρι τις 30/04/2012 στις 23.59'. 2. Στην αρχή πρέπει να έχετε τα πλήρη στοιχεία σας (ονομ/μο, ΑΜ., Εξάμηνο) και θα πρέπει να έχετε αριθμήσει κατάλληλα τις απαντήσεις σας (π.χ. Π.1.α. Π.3.γ, κλπ.).

5 3. Για απορίες θα απευθύνεστε στον κο Δημητρακόπουλο ή την κα Κορφιάτη, Τετάρτη ώρα 13:00-15:00 και Πέμπτη ώρα 11:00-15:00 ή στο forum της σχολής στο αντίστοιχο θέμα.

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΕΥΤΕΡΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 4 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 4 4 η Άσκηση... 5 5 η Άσκηση... 6 6 η Άσκηση... 7 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ132 Άσκηση 4 - Αρχές Προγραμματισμού ΙΙ Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου Ι. Στόχοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 132 Αρχές Προγραμματισμού ΙΙ Άσκηση 4 Αυτόματη Επίλυση του Παιχνιδιού

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΝΠΙΣΤΗΜΙΟ ΘΣΣΛΙΣ ΣΧΟΛΗ ΘΤΙΚΩΝ ΠΙΣΤΗΜΩΝ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΠΤΥΞΗ ΚΙ ΣΧΔΙΣΗ ΛΟΓΙΣΜΙΚΟΥ Η γλώσσα προγραμματισμού C ΡΓΣΤΗΡΙΟ 4.4: λφαριθμητικά, αρχεία, πίνακες, δομές, συναρτήσεις+ 2 Ιουνίου 2016 Η παρακάτω

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος Αυτόνομοι Πράκτορες Εργασία εξαμήνου Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος 2010030090 Περιγραφή του παιχνιδιού Το British square είναι ένα επιτραπέζιο

Διαβάστε περισσότερα

Εργασία για το Facility Game Μάθημα: Δομές Δεδομένων 2013-2014. Σωτήρης Γυφτόπουλος

Εργασία για το Facility Game Μάθημα: Δομές Δεδομένων 2013-2014. Σωτήρης Γυφτόπουλος Εργασία για το Facility Game Μάθημα: Δομές Δεδομένων 2013-2014 Σωτήρης Γυφτόπουλος Κανόνες του Facility Game (1/4) Στο Facility Game υπάρχει ένα σύνολο κόμβων που συνδέονται «σειριακά» και κάθε κόμβος

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91 Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ

1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ 1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 «Μαθαίνω στη γάτα να σχεδιάζει» Δραστηριότητα 1 Παρατηρήστε τις εντολές στους παρακάτω πίνακες,

Διαβάστε περισσότερα

Αντικείμενα 6 ου εργαστηρίου

Αντικείμενα 6 ου εργαστηρίου 1.1 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α 6 ο Φυλλάδιο Ασκήσεων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤOΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤOΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΙΣΑΓΩΓΗ ΣΤOΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Στόχοι του μαθήματος Μετά το τέλος του μαθήματος οι μαθητές πρέπει να είναι σε θέση: Να περιγράφουν τι είναι πρόγραμμα Να εξηγούν την αναγκαιότητα για τη δημιουργία γλωσσών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΛΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Red- black δέντρα Εκτενείς Δομές Δεδομένων (Κεφ. 5)

Red- black δέντρα Εκτενείς Δομές Δεδομένων (Κεφ. 5) ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Red- black δέντρα Εκτενείς Δομές Δεδομένων (Κεφ. ) Δομές Δεδομένων Μπαλτάς Αλέξανδρος 4 Μαρτίου 0 ampaltas@ceid.upatras.gr Περιεχόμενα. Εισαγωγή. Ορισμός red- black

Διαβάστε περισσότερα

Το Κ2 είναι ένα παιχνίδι για 1 έως 5 παίκτες, ηλικίας 8 ετών και άνω, με διάρκεια περίπου 60 λεπτά.

Το Κ2 είναι ένα παιχνίδι για 1 έως 5 παίκτες, ηλικίας 8 ετών και άνω, με διάρκεια περίπου 60 λεπτά. ΟΔΗΓΙΕΣ Το Κ2 είναι το δεύτερο ψηλότερο βουνό στον κόσμο (μετά το Έβερεστ) με ύψος 8.611 μέτρα από τη στάθμη της θάλασσας. Θεωρείται, επίσης, ένα από τα δυσκολότερα βουνά άνω των 8.000 μέτρων. Το Κ2 ποτέ

Διαβάστε περισσότερα

Δημιουργώντας ένα παιχνίδι λαβυρίνθου(maze game) με εμπόδια

Δημιουργώντας ένα παιχνίδι λαβυρίνθου(maze game) με εμπόδια Φύλλο Εργασίας Δημιουργώντας ένα παιχνίδι λαβυρίνθου(maze game) με εμπόδια Δραστηριότητα 1η Σε αυτό το φύλλο εργασίας θα δημιουργήσουμε βήμα βήμα ένα παιχνίδι με λαβύρινθο (maze game) με εμπόδια. Το παιχνίδι

Διαβάστε περισσότερα

6. Αφού δημιουργήσετε ένα πίνακα 50 θέσεων με ονόματα μαθητών να τον ταξινομήσετε αλφαβητικά με την μέθοδο της φυσαλίδας

6. Αφού δημιουργήσετε ένα πίνακα 50 θέσεων με ονόματα μαθητών να τον ταξινομήσετε αλφαβητικά με την μέθοδο της φυσαλίδας Ανάπτυξη εφαρμογών Γ' Λυκείου Τεχνολογικής κατεύθυνσης ΑΣΚΗΣΕΙΣ ΜΕ ΜΟΝΟΔΙΑΣΤΑΤΟΥΣ ΠΙΝΑΚΕΣ ΒΑΣΙΚΕΣ 1. Να γράψετε πρόγραμμα το οποίο:3. Να γράψετε αλγόριθμο ή πρόγραμμα το οποίο: α. Θα δημιουργεί ένα πίνακα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)

Διαβάστε περισσότερα

Εγκατάσταση του AutoCAD

Εγκατάσταση του AutoCAD Σχεδίαση Εγκαταστάσεων στον Η/Υ ΠΕΡΙΕΧΟΜΕΝΑ: Πώς να κατεβάσετε το AutoCAD. Εισαγωγή στο AutoCAD. Σχεδίαση στο AutoCAD. Εγκατάσταση του AutoCAD Γιατί το AutoCAD? Το AutoCAD είναι το πιο γνωστό σχεδιαστικό

Διαβάστε περισσότερα

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Πρώτο Σύνολο Ασκήσεων 2014-2015 Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Ερώτημα 1 Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Ο αλγόριθμος εύρεσης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ 10 ζάρια με 6 σύμβολα το κάθε ένα. 1 διπλής όψεως κεντρικό ταμπλό με 3 ή 4 φορτηγά. 1 μολύβι

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ 10 ζάρια με 6 σύμβολα το κάθε ένα. 1 διπλής όψεως κεντρικό ταμπλό με 3 ή 4 φορτηγά. 1 μολύβι Ένα παιχνίδι για 2-4 διευθυντές ζωολογικών κήπων, ηλικίας 13 και άνω. ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ 10 ζάρια με 6 σύμβολα το κάθε ένα Κροκόδειλος Στρουθοκάμηλος Μαϊμού Ελέφαντας Λιοντάρι Νόμισμα 1 διπλής

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Οδηγίες για την Ηλεκτρονική Υποβολή των Δηλώσεων Φορολογικής

Οδηγίες για την Ηλεκτρονική Υποβολή των Δηλώσεων Φορολογικής Οδηγίες για την Ηλεκτρονική Υποβολή των Δηλώσεων Φορολογικής Απαλλαγής Γενικά Οι Δηλώσεις Φορολογικής Απαλλαγής του Ν.3299/2004 συμπληρώνονται Ηλεκτρονικά στο Πληροφοριακό Σύστημα Διαχείρισης Κρατικών

Διαβάστε περισσότερα

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1.1 Αναζήτηση και Στρατηγικές Αναζήτησης Ένας τρόπος επίλυσης προβληµάτων µε µεθόδους Τεχνητής Νοηµοσύνης (ΤΝ) είναι η αναζήτηση λύσης (search). Σύµφωνα µ αυτήν, ένα πρόβληµα παριστάνεται

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5 ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο

Διαβάστε περισσότερα

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά

Τυπικά θέματα εξετάσεων. ΠΡΟΣΟΧΗ: Οι ερωτήσεις που παρατίθενται ΔΕΝ καλύπτουν την πλήρη ύλη του μαθήματος και παρέχονται απλά ενδεικτικά ΤΕΙ Κεντρικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταπτυχιακό Πρόγραμμα Τηλεπικοινωνιών & Πληροφορικής Μάθημα : 204a Υπολογιστική Ευφυία Μηχανική Μάθηση Καθηγητής : Σπύρος Καζαρλής Ενότηα : Εξελικτική

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ. Κάθε ΟΡΘΗ απάντηση βαθμολογείται με 5 μονάδες, κάθε ΛΑΝΘΑΣΜΕΝΗ με -1, ενώ αν δεν απαντήσετε σε κάποια ερώτηση αυτή αγνοείται

ΟΔΗΓΙΕΣ. Κάθε ΟΡΘΗ απάντηση βαθμολογείται με 5 μονάδες, κάθε ΛΑΝΘΑΣΜΕΝΗ με -1, ενώ αν δεν απαντήσετε σε κάποια ερώτηση αυτή αγνοείται Όνομα: Αρ. Ταυτότητας: Σχολείο: Επαρχία: Επώνυμο: Τηλ.: Τάξη: Διάρκεια: 90 λεπτά ΟΔΗΓΙΕΣ Κάθε ΟΡΘΗ απάντηση βαθμολογείται με 5 μονάδες, κάθε ΛΑΝΘΑΣΜΕΝΗ με -1, ενώ αν δεν απαντήσετε σε κάποια ερώτηση αυτή

Διαβάστε περισσότερα

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Κατηγορίες προβλημάτων - Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Κατηγορίες προβλημάτων - Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Κατηγορίες προβλημάτων - Ρεαλιστικά Μαθηματικά Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Δάσους Δάσους Συστατικών Διαδρομής Σπιτιού Ξορκιών Δάσους Διαδρομής Δάσους πλευρά Δάσους ανοιχτή Διαδρομής Σπιτιού

Δάσους Δάσους Συστατικών Διαδρομής Σπιτιού Ξορκιών Δάσους Διαδρομής Δάσους πλευρά Δάσους ανοιχτή Διαδρομής Σπιτιού Ξεφεύγοντας από τα γαμψά νύχια της Μπάμπα Γιάγκα, καταφέρνετε να αποδράσετε από το σπίτι του. Τότε η μάγισσα ξεκινάει να σας κυνηγάει πάνω στο ιπτάμενο καζάνι της! Για να αποδράσετε, πρέπει να κάνετε τρία

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις

Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη

Διαβάστε περισσότερα

Εργαστηριακός Οδηγός. Βάσεις Δεδομένων της Γ' Τάξης ΕΠΑΛ

Εργαστηριακός Οδηγός. Βάσεις Δεδομένων της Γ' Τάξης ΕΠΑΛ Άδεια Χρήσης Creative Commons, Αναφορά Προέλευσης 3.0 Ελλάδα 2009-200, Βουρλάκος Μιχαήλ Εργαστηριακός Οδηγός για το μάθημα Βάσεις Δεδομένων της Γ' Τάξης ΕΠΑΛ σε περιβάλλον Microsoft Access Υπεύθυνος Καθηγητής:

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ. Οδηγός χρήσης του συστήματος αξιολόγησης μαθημάτων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ. Οδηγός χρήσης του συστήματος αξιολόγησης μαθημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Οδηγός χρήσης του συστήματος αξιολόγησης μαθημάτων Τρίπολη, Μάιος 2014 Περιεχόμενα Περιεχόμενα i Ευρετήριο σχημάτων ii Συντελεστές iii 1 Εισαγωγή 1 2 Για καθηγητές διδάσκοντες:

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Οι παίκτες παίρνουν το ρόλο των χειρότερων πειρατών στο πλήρωμα ενός πλοίου. Ο καπετάνιος σας έχει στη μπούκα, επειδή είστε πολύ τεμπέληδες και

Οι παίκτες παίρνουν το ρόλο των χειρότερων πειρατών στο πλήρωμα ενός πλοίου. Ο καπετάνιος σας έχει στη μπούκα, επειδή είστε πολύ τεμπέληδες και Οι παίκτες παίρνουν το ρόλο των χειρότερων πειρατών στο πλήρωμα ενός πλοίου. Ο καπετάνιος σας έχει στη μπούκα, επειδή είστε πολύ τεμπέληδες και βλάκες για να αξίζετε μερίδιο στο ρούμι και τα λάφυρα. Επειδή

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου

Διαβάστε περισσότερα

Τα Φύλλα Εργασίας αφορά την εκμάθηση της εκτέλεσης της δομής επιλογής μέσα από το περιβάλλον του SCRATCH.

Τα Φύλλα Εργασίας αφορά την εκμάθηση της εκτέλεσης της δομής επιλογής μέσα από το περιβάλλον του SCRATCH. 15. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ Τα Φύλλα Εργασίας αφορά την εκμάθηση της εκτέλεσης της δομής επιλογής μέσα από το περιβάλλον του SCRATCH. 16. ΑΞΙΟΛΟΓΗΣΗ Οι βασικές διαδικασίες αξιολόγησης προέρχονται

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου ΗΜΥ 331 Ηλεκτρομαγνητικά Πεδία Ενδιάμεση Εξέταση 7 Νοεμβρίου 2011 10.30-11.45 π.μ. ΗΜΥ 331: Ηλεκτρομαγνητικά

Διαβάστε περισσότερα

ΚΑΡΤΕΛΑ ΕΡΕΥΝΗΤΗ ΕΠΙΤΡΟΠΗ ΕΡΕΥΝΩΝ ΑΠΘ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ

ΚΑΡΤΕΛΑ ΕΡΕΥΝΗΤΗ ΕΠΙΤΡΟΠΗ ΕΡΕΥΝΩΝ ΑΠΘ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ 2011 ΕΠΙΤΡΟΠΗ ΕΡΕΥΝΩΝ ΑΠΘ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΡΤΕΛΑ ΕΡΕΥΝΗΤΗ Στο παρόν έγγραφο μπορείτε να βρείτε αναλυτικές πληροφορίες για τις υπηρεσίες που παρέχονται στην Καρτέλα Ερευνητή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Ακαδημαϊκό έτος 2014-2015 B εξάμηνο (εαρινό)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Ακαδημαϊκό έτος 2014-2015 B εξάμηνο (εαρινό) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ Ακαδημαϊκό έτος 2014-2015 B εξάμηνο (εαρινό) ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ Β ΕΞΑΜΗΝΟΥ ΓΙΑ ΤΗΝ 1 η ΚΑΤΕΥΘΥΝΣΗ «ΤΕΧΝΟΛΟΓΙΕΣ

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Το παιχνίδι όπου έχει σημασία να είστε κοντά

Το παιχνίδι όπου έχει σημασία να είστε κοντά Το παιχνίδι όπου έχει σημασία να είστε κοντά Τι μήκος έχει η γέφυρα Golden Gate; Που έχουν βρεθεί «αποδείξεις» της ύπαρξης του Γέτι; Πόσα αγάλματα υπάρχουν στο Νησί του Πάσχα; Πολύ πιθανό να μην γνωρίζετε

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα

ΛΥΣΗ ΤΗΣ ΔΕΥΤΕΡΗΣ ΑΣΚΗΣΗΣ Όλγα Γκουντούνα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΑΔ. ΕΤΟΣ 2011-12 ΔΙΔΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής Τιμολέων Σελλής Καθηγητής Άσκηση 1

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Βάσεις δεδομένων (Access)

Βάσεις δεδομένων (Access) Βάσεις δεδομένων (Access) Όταν εκκινούμε την Access εμφανίζεται το παρακάτω παράθυρο: Για να φτιάξουμε μια νέα ΒΔ κάνουμε κλικ στην επιλογή «Κενή βάση δεδομένων» στο Παράθυρο Εργασιών. Θα εμφανιστεί το

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

Οδηγός χρήσης του συστήματος ηλεκτρονικής αξιολόγησης μαθημάτων

Οδηγός χρήσης του συστήματος ηλεκτρονικής αξιολόγησης μαθημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Οδηγός χρήσης του συστήματος ηλεκτρονικής αξιολόγησης μαθημάτων Ομάδα έργου Πληροφοριακού Συστήματος ΜΟ.ΔΙ.Π. Πανεπιστημίου Πελοποννήσου Τρίπολη, Οκτώβριος 2015 Περιεχόμενα Περιεχόμενα

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Παραβιάζει τα κριτήρια της καθοριστικότητας και της περατότητας β. Αιτιολόγηση: ο αλγόριθμος παραβιάζει το κριτήριο

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων Ενότητα 13: B-Δέντρα/AVL-Δέντρα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ

ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ ΕΙΣΑΓΩΓΗ Εξερευνήστε τη μυστηριώδη νήσο La Isla, και κυνηγήστε ζώα που μέχρι πρότινος θεωρούνταν εξαφανισμένα. Το ευγενές Ντόντο, το προσεκτικό Γιγάντιο Φόσα, τον άπιαστο

Διαβάστε περισσότερα

Η Ιστορία. Προετοιμασία του παιχνιδιού. Μια περιπετειώδης αποστολή στον παράδεισο.

Η Ιστορία. Προετοιμασία του παιχνιδιού. Μια περιπετειώδης αποστολή στον παράδεισο. Η Ιστορία Μια περιπετειώδης αποστολή στον παράδεισο. Ένα στρατηγικό τυροπαιχνίδι με ζάρια για 2-4 παιδία ηλικίας 4 ετών και άνω. Είδος Παιχνιδιού: Οικογενειακό Παίκτες: 2-4 παίκτες 4 ετών και άνω Περιεχόμενα:

Διαβάστε περισσότερα

Τροποποίηση συνδυασμών κίνησης

Τροποποίηση συνδυασμών κίνησης Τροποποίηση συνδυασμών κίνησης Σε αυτήν την πρακτική εξάσκηση, θα τροποποιήσετε τους συνδυασμούς που έχουν εφαρμοστεί στην παρουσίαση της εταιρείας σας. Βήμα 1: Αλλαγή του εφέ για το κείμενο του τίτλου

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ : Η/Υ I (ενότητα WINDOWS) ΥΠΕΥΘΥΝΟΣ : ΑΝΑΣΤΑΣΙΟΣ ΟΙΚΟΝΟΜΙΔΗΣ, Καθηγητής ΕΡΓΑΣΤΗΡΙΑ : ΘΕΑΝΩ ΧΑΤΖΙΔΑΚΗ, Εργαστηριακό

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες

ΟΝΟΜΑΤΕΠΩΝΥΜΟ : Αντικείμενα: περιγραφική στατιστική, γραφήματα, συναρτήσεις βάσεων δεδομένων, συγκεντρωτικοί πίνακες Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική ΙI (εργαστήριο) Ακαδημαϊκό έτος 2013-2014 εαρινό εξάμηνο ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΑΡΙΘΜΟΣ

Διαβάστε περισσότερα

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ ΓΡΑΦΙΚΑ Γέμισμα ΑΛΓΟΡΙΘΜΟΙ ΓΕΜΙΣΜΑΤΟΣ Για τις πλεγματικές οθόνες υπάρχουν: Αλγόριθμοι γεμίσματος:, που στηρίζονται στη συνάφεια των pixels του εσωτερικού ενός πολυγώνου Αλγόριθμοι σάρωσης: που στηρίζονται

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Πληροφορική. Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 5 η : Μαθηματικοί Τύποι Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Βάσεις δεδομένων (Access)

Βάσεις δεδομένων (Access) Βάσεις δεδομένων (Access) Όταν εκκινούμε την Access εμφανίζεται το παρακάτω παράθυρο: Κουμπί Κενή βάση δεδομένων Κουμπί του Office Για να φτιάξουμε μια νέα ΒΔ κάνουμε κλικ στο κουμπί «Κενή βάση δεδομένων»

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η <Αλγόριθµοι, Θεωρία Γραφηµάτων>

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η <Αλγόριθµοι, Θεωρία Γραφηµάτων> ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Θεωρίας Γραφηµάτων

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI

Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Σχεδιασμός Ψηφιακών Εκπαιδευτικών Εφαρμογών ΙI Εργασία 1 ΣΤΟΙΧΕΙΑ ΦΟΙΤΗΤΡΙΑΣ: Τσελίγκα Αρετή, 1312009161, Στ εξάμηνο, κατεύθυνση: Εκπαιδευτική Τεχνολογία και Διαπολιτισμική Επικοινωνία Το γνωστικό αντικείμενο

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Τέχνη και Μαθηματικά για όλους Μπορεί ο Η/Υ να σχεδιάσει ένα έργο του V.Vasarely;

Τέχνη και Μαθηματικά για όλους Μπορεί ο Η/Υ να σχεδιάσει ένα έργο του V.Vasarely; Ημερίδα«Η διδασκαλία της Πληροφορικής στην Α/θμια και Β/θμια εκπαίδευση» Ομάδα Ηλεκτρονικής Μάθησης Τμήμα Κοινωνικής και Εκπαιδευτικής Πολιτικής, Πανεπιστήμιο Πελοποννήσου ΣχέδιοεργασίαςγιατηνΒ ήγ Γυμνασίου

Διαβάστε περισσότερα

Σενάριο Χρήσης myschool

Σενάριο Χρήσης myschool Σενάριο Χρήσης ΦΟΡΕΙΣ Επιβεβαίωση των Στοιχείων του Φορέα Αρχικά, θα κληθείτε να ελέγξετε την ορθότητα των στοιχείων του Φορέα σας. Επιλέγοντας την καρτέλα «Φορείς», από το μενού που βρίσκεται στο πάνω

Διαβάστε περισσότερα

0 1 0 0 0 1 p q 0 P =

0 1 0 0 0 1 p q 0 P = Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

3 ο Εργαστήριο Μεταβλητές, Τελεστές

3 ο Εργαστήριο Μεταβλητές, Τελεστές 3 ο Εργαστήριο Μεταβλητές, Τελεστές Μια μεταβλητή έχει ένα όνομα και ουσιαστικά είναι ένας δείκτης σε μια συγκεκριμένη θέση στη μνήμη του υπολογιστή. Στη θέση μνήμης στην οποία δείχνει μια μεταβλητή αποθηκεύονται

Διαβάστε περισσότερα