PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδηµαϊκό Έτος:

2 ΠΡΟΒΛΗΜΑ 1 Έχουµε στην διάθεσή µας δύο δοχεία, που κάθε ένα έχει χωρητικότητα 3 και 4 λίτρα, και µία βρύση µε νερό.. Πρέπει να βρούµε έναν τρόπο ώστε να υπολογίσουµε ακριβώς 2 λίτρα. (α) ΤΥΧΑΙΑ ΚΑΤΑΣΤΑΣΗ: Ο τρόπος αναπαράστασης θα είναι το ζεύγος (x,y) ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ: Και τα δυο δοχεία είναι γεµάτα άρα (3,4) ΤΕΛΙΚΗ ΚΑΤΑΣΤΑΣΗ: ένα δοχείο έχει 2 λίτρα νερό (2,y) ή (x,2) όπου x,y οποιαδήποτε τιµή στο επιτρεπτό εύρος τιµών (β) ΤΕΛΕΣΤΕΣ ΜΕΤΑΒΑΣΗΣ: µπορούµε να εκτελέσουµε 6 ενέργειες - Πλήρες γέµισµα του δοχείου Α - Πλήρες γέµισµα του δοχείου Β - Πλήρες άδειασµα του δοχείου Α στο έδαφος - Πλήρες άδειασµα του δοχείου Β στο έδαφος - Άδειασµα νερού από το Α στο Β - Άδειασµα νερού από το Β στο Α Τελεστές Περιγραφή ενέργειας Προϋποθέσεις Αποτελέσματα Τ1 Γέμισμα του Α x<3 (3,y) Τ2 Γέμισμα του Β y<4 (x,4) Τ3 Άδειασμα του Α x>0 (0,y) Τ4 Άδειασμα του Β y>0 (x,0) Τ5 Άδειασμα του Α στο Β x>0,y<4 (x-(4-y),4) αν x 4-y (0,y+x) αν x<4-y Τ6 Άδειασμα του Β στο Α y>0,x<3 (3,y-(3-x)) αν y 3-x (y+x,0) αν y<3-x

3 (γ) Γράφος καταστάσεων: εν αναφέρονται οι τελεστές µετάβασης λόγω πολυπλοκότητας του γράφου. Όπως είναι φανερό από τον γράφο καταστάσεων στις καταστάσεις (1, 1),(1,2),(1,3), (2,1), (2,2), (2,3), δεν υπάρχουν εισερχόµενες ακµές. Άρα οι (1, 1),(1,2),(1,3), (2,1), (2,2), (2,3) είναι ανέφικτες καταστάσεις(σηµειωµένες µε κόκκινο χρώµα στο σχήµα). (δ) Χώρος καταστάσεων είναι το σύνολο S όλων των έγκυρων καταστάσεων ενός προβλήματος και οι δυνατές μεταβάσεις μεταξύ τους. Παριστάνεται σαν ένας γράφος. S={ (x,y): x Є {0,1,2,3}, y Є {0,1,2,3,4} } Χώρος αναζήτησης είναι το υποσύνολο SP του χώρου καταστάσεων S που είναι προσβάσιμες από την αρχική SP S. SP=S- { (1, 1),(1,2),(1,3) (2,1), (2,2), (2,3)} Ο χώρος καταστάσεων για το πρόβληµα 1, όταν αρχικά τα δοχεία έχουν περιεκτικότητα ίση µε 2 και 1 λίτρο για το πρώτο και το δεύτερο δοχείο αντίστοιχα δηλαδή (2,1) δεν αλλάζει, αφού η αρχική µας κατάσταση είναι εφικτή. Το µόνο που αλλάζει είναι ο χώρος αναζήτησης.

4 (ε) Πλήρες δέντρο αναζήτησης: Οι καταστάσεις που είναι κόκκινες είναι καταστάσεις που έχουν ήδη επεκταθεί σε προηγούµενο επίπεδο του δέντρου (εναλλακτικά που ήδη έχουν εµφανιστεί προηγουµένως στην ίδια διαδροµή). Αυτές οι καταστάσεις δεν αναπτύσσονται, διότι ουσιαστικά επαναλαµβάνουν το προηγούµενο υποδέντρο. Οι καταστάσεις µε γαλάζιο χρώµα είναι ίδιες καταστάσεις στο ίδιο επίπεδο. Οι παραπάνω είναι συµβάσεις που κάνουµε απλά και µόνο για τον πιο αποδοτικό σχεδιασµό του δέντρου. Οι καταστάσεις µε πράσινο χρώµα αντιπροσωπεύουν τον στόχο(λύση) στον οποίο θέλουµε να φτάσουµε. (στ)λύσεις µε βάση το δέντρο αναζήτησης Οι δυο λύσεις που προκύπτουν µε βάση το δέντρο αναζήτησης απεικονίζονται µε µωβ και κίτρινο χρώµα αντίστοιχα. Οι λύσεις είναι αυτοτελή µονοπάτια, δηλαδή ο κοντινότερος κοινός γονέας των κόµβων λύσεων είναι η ρίζα.

5 ΠΡΟΒΛΗΜΑ 2 Αντιµετωπίζουµε το ακόλουθο πρόβληµα εύρεσης µονοπατιού. Κάποιος µπορεί να κινηθεί από ένα µικρό τρίγωνο σε ένα άλλο εάν αυτά µοιράζονται από κοινού έναν κόµβο (π.χ., ο A µπορεί να πάει στον Β ή στον C). Όµως, ο στόχος G µπορεί να προσπελαστεί µόνο από τον F. (α) ΤΥΧΑΙΑ ΚΑΤΑΣΤΑΣΗ: Ο τρόπος αναπαράστασης θα είναι το ζεύγος (x,y) ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ: Ξεκινάµε από τον κόµβο Α που βρίσκεται στο επίπεδο 0.(Α,0) ΤΕΛΙΚΗ ΚΑΤΑΣΤΑΣΗ: Φτάνουµε στον κόµβο G που βρίσκεται στο επίπεδο 1 (G,1)

6 (β) Τελεστές Περιγραφή ενέργειας(κινήσεις) Προϋποθέσεις Αποτελέσματα Τ1 1 επίπεδο κάτω και 1 γράμμα μπροστά y<3 (x+1,y+1) Τ2 1 επίπεδο κάτω και 2 γράμματα μπροστά y<3 (x+2,y+1) Τ3 1 επίπεδο κάτω και 3 γράμματα μπροστά y<3 (x+3,y+1) Τ4 1 επίπεδο κάτω και 4 γράμματα μπροστά y<3 (x+4,y+1) Τ5 παράλληλα και 1 γράμμα μπροστά y=1 ή y=2 (x+1,y) Τ6 παράλληλα και 2 γράμματα μπροστά y=1 ή y=2 (x+2,y) T7 παράλληλα και 3 γράμματα μπροστά y=1 ή y=2 (x-1,y) T8 παράλληλα και 4 γράμματα μπροστά y=1 ή y=2 (x-2,y) T9 1 επίπεδο πάνω και 1 γράμμα μπροστά y>0 (x-1,y-1) T10 1 επίπεδο πάνω και 2 γράμματα μπροστά y>0 (x-2,y-1) T11 1 επίπεδο πάνω και 3 γράμματα μπροστά y>0 (x-3,y-1) T12 1 επίπεδο πάνω και 4 γράμματα μπροστά y>0 (x-4,y-1) T13 1 επίπεδο πάνω και 1 γράμμα μπροστά y>0, x=f (x+1,y-1) Με την έννοια «1 γράµµα µπροστά» εννοούµε ένα γράµµα µε αλφαβητική σειρά µπροστά. ηλαδή από το Α Β κτλ. Με τον τρόπο αυτό ξέρουµε πάντα σε ποιο τρίγωνο θα προχωρήσουµε (αν επιτρέπεται) και ορίζουµε καλύτερα την έννοια του κόµβου µεταξύ των τριγώνων. Η θεώρηση που έχει γίνει για τα επίπεδα απεικονίζεται στο αρχικό σχήµα.

7 (γ) Γράφος καταστάσεων: Όπως είναι φανερό από τον γράφο καταστάσεων ότι δεν υπάρχουν ανέφικτες καταστάσεις, αφού σε όλες τις καταστάσεις υπάρχουν εισερχόµενες ακµές. (δ) Χώρος καταστάσεων S={ (x,y): x Є {A,B,C,D,E,F,G,H}, y Є {0,1,2,3} } Χώρος αναζήτησης SP = S = (x,y): x Є {A,B,C,D,E,F,G,H}, y Є {0,1,2,3} }

8 (ε) Πλήρες δέντρο αναζήτησης: Οι καταστάσεις που είναι κόκκινες είναι καταστάσεις που έχουν ήδη επεκταθεί σε προηγούµενο επίπεδο του δέντρου (εναλλακτικά που ήδη έχουν εµφανιστεί προηγουµένως στην ίδια διαδροµή). Αυτές οι καταστάσεις δεν αναπτύσσονται, διότι ουσιαστικά επαναλαµβάνουν το προηγούµενο υποδέντρο. Οι καταστάσεις µε γαλάζιο χρώµα είναι ίδιες καταστάσεις στο ίδιο επίπεδο. εν σηµειώσαµε την (F,2) µε γαλάζιο στο 2 ο επίπεδο γιατί σε παρακάτω ερώτηµα ζητείται να βρεθούν δυο λύσεις και έτσι την αναπτύσσουµε και από τα δεξιά.οι παραπάνω είναι συµβάσεις που κάνουµε απλά και µόνο για τον πιο αποδοτικό σχεδιασµό του δέντρου. Οι καταστάσεις µε πράσινο χρώµα αντιπροσωπεύουν τον στόχο(λύση) στον οποίο θέλουµε να φτάσουµε. (στ)λύσεις µε βάση το δέντρο αναζήτησης Οι δυο λύσεις που προκύπτουν µε βάση το δέντρο αναζήτησης απεικονίζονται µε µωβ και κίτρινο χρώµα αντίστοιχα. Οι λύσεις είναι αυτοτελή µονοπάτια, δηλαδή ο κοντινότερος κοινός γονέας των κόµβων λύσεων είναι η ρίζα. Το πραγµατικό κόστος των λύσεων A-B-F-G και A-C-F-G είναι 1+1+3=5(σύµφωνα µε το κόστος των κινήσεων που έχει οριστεί για το πρόβληµα)

9 ΠΡΟΒΛΗΜΑ 3 Θεωρούµε το ακόλουθο παιχνίδι όπου ο παίκτης Α κινείται πρώτος. Οι δύο παίκτες παίζουν εναλλάξ. Κάθε παίκτης πρέπει να κινηθεί σε ένα ανοικτό γειτονικό χώρο. Εάν ο αντίπαλος απασχολεί ένα γειτονικό χώρο, τότε ο παίκτης πρέπει να «πηδήξει» πάνω από τον αντίπαλο στο επόµενο ανοικτό χώρο, εάν υπάρχει (για παράδειγµα, εάν ο Α βρίσκεται στο 1 και ο Β στο 2, τότε ο Α πρέπει να πηδήξει στο 3). Το παιχνίδι τερµατίζεται όταν ο Α φτάσει στο 4, ή ο Β φτάσει στο 1. (α) ΤΥΧΑΙΑ ΚΑΤΑΣΤΑΣΗ: Ο τρόπος αναπαράστασης θα είναι το ζεύγος (x,y) ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ: παίζει ο παίκτης Α, δηλαδή (1,4) ΤΕΛΙΚΗ ΚΑΤΑΣΤΑΣΗ: ο Α φτάνει στο 4 ή ο Β φτάνει στο 1, δηλαδή (4,y) ή ( x,1) (β) Τελεστές Περιγραφή ενέργειας Προϋποθέσεις Αποτελέσματα Τ1 Μετακίνηση Α 1 θέση δεξιά x<4, y x+1 (x+1,y) Τ2 Μετακίνηση Α 2 θέσεις δεξιά y<3, y = x+1 (x+2,y) Τ3 Μετακίνηση Α 1 θέση αριστερά x>1, y x-1 (x-1,y) Τ4 Μετακίνηση Α 2 θέσεις αριστερά x>2, y = x-1 (x-2,y) Τ5 Μετακίνηση Β 1 θέση δεξιά y<4,x y+1 (x,y+1) Τ6 Μετακίνηση Β 2 θέσεις δεξιά y<3, x = y+1 (x,y+2) T7 Μετακίνηση Β 1 θέση αριστερά y>1, x y-1 (x,y-1) T8 Μετακίνηση Β 2 θέσεις αριστερά y>2, x = y-1 (x,y-2)

10 (γ) Γράφος καταστάσεων: Όπως είναι φανερό από τον γράφο καταστάσεων ότι δεν υπάρχουν ανέφικτες καταστάσεις, αφού σε όλες τις καταστάσεις υπάρχουν εισερχόµενες ακµές. (δ) Χώρος καταστάσεων S={ (x,y): x Є {1,2,3,4}, y Є {1,2,3,4} } Χώρος αναζήτησης SP = S ={ (x,y): x Є {1,2,3,4}, y Є {1,2,3,4} }

11 (ε) Πλήρες δέντρο αναζήτησης: Θεωρούµε ότι παίζει πρώτος ο παίκτης Α. Οι καταστάσεις που είναι κόκκινες είναι καταστάσεις που έχουν ήδη επεκταθεί σε προηγούµενο επίπεδο του δέντρου.οι καταστάσεις µε πράσινο χρώµα αντιπροσωπεύουν τον στόχο(λύση) στον οποίο θέλουµε να φτάσουµε. (στ)λύσεις µε βάση το δέντρο αναζήτησης Οι δυο λύσεις που προκύπτουν µε βάση το δέντρο αναζήτησης απεικονίζονται µε µωβ και κίτρινο χρώµα αντίστοιχα. Οι λύσεις είναι αυτοτελή µονοπάτια, δηλαδή ο κοντινότερος κοινός γονέας των κόµβων λύσεων είναι η ρίζα.

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΕΥΤΕΡΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 4 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 4 4 η Άσκηση... 5 5 η Άσκηση... 6 6 η Άσκηση... 7 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο)

Για παράδειγμα η αρχική και η τελική κατάσταση αναπαριστώνται ως εξής: (ένα λίτρο) 8 1 η ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Απάντηση 1ης άσκησης Κατάσταση (κόμβοι): Αναπαριστούμε μια κατάσταση του προβλήματος με ένα διατεταγμένο ζεύγος (X,Y) όπου X είναι τα λίτρα στο βάζο Α (χωρητικότητα

Διαβάστε περισσότερα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα? Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΤΡΙΤΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος: 2011-2012

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

9. Κόκκινα-Μαύρα Δέντρα

9. Κόκκινα-Μαύρα Δέντρα Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 9. Κόκκινα-Μαύρα Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 9/12/2016 Δέντρα,

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης. Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΦΘΙΝΟΠΩΡΟ 2005 Λύση ΑΣΚΗΣΗΣ #2 Τ. Σελλής

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1.1 Αναζήτηση και Στρατηγικές Αναζήτησης Ένας τρόπος επίλυσης προβληµάτων µε µεθόδους Τεχνητής Νοηµοσύνης (ΤΝ) είναι η αναζήτηση λύσης (search). Σύµφωνα µ αυτήν, ένα πρόβληµα παριστάνεται

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΣΕΝΑΡΙΟ ΠΑΙΧΝΙ ΙΟΥ Το παιχνίδι θα αποτελείται από δυο παίκτες, οι οποίοι θα βρίσκονται αντικριστά στις άκρες ενός γηπέδου δεξιά και αριστερά, και µια µπάλα.

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5 ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017

Διαβάστε περισσότερα

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

* τη µήτρα. Κεφάλαιο 1o

* τη µήτρα. Κεφάλαιο 1o Κεφάλαιο 1o Θεωρία Παιγνίων Η θεωρία παιγνίων εξετάζει καταστάσεις στις οποίες υπάρχει αλληλεπίδραση µεταξύ ενός µικρού αριθµού ατόµων. Άρα σε οποιαδήποτε περίπτωση, αν ο αριθµός των ατόµων που συµµετέχουν

Διαβάστε περισσότερα

> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό

> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό 5 ο Εργαστήριο Λογικοί Τελεστές, Δομές Ελέγχου Λογικοί Τελεστές > μεγαλύτερο = μεγαλύτερο ή ίσο!= διαφορετικό Οι λογικοί τελεστές χρησιμοποιούνται για να ελέγξουμε

Διαβάστε περισσότερα

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Βασικές Προτάσεις. έντρα. υαδικά έντρα Αναζήτησης ( Α) Ισοζυγισµένα έντρα και Υψος. Κάθε δέντρο µε n κόµβους έχει n 1 ακµές.

Βασικές Προτάσεις. έντρα. υαδικά έντρα Αναζήτησης ( Α) Ισοζυγισµένα έντρα και Υψος. Κάθε δέντρο µε n κόµβους έχει n 1 ακµές. Βασικές Προτάσεις έντρα Ορέστης Τελέλης Κάθε δέντρο µε n κόµβους έχει n ακµές. ικαιολόγηση: Με επαγωγή στο πλήθος των κόµβων, n. έντρο µε k εσωτερικούς κόµβους και l ϕύλλα έχει n = k + l κόµβους. tllis@unipi.r

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ

ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Quiz Γενετικών Αλγορίθµων 1 ΕΡΩΤΗΜΑΤΑ σε ΓΕΝΕΤΙΚΟΥΣ ΚΩ ΙΚΟΠΟΙΗΣΗ ΕΡΩΤΗΜΑ 1.1 Ο φαινότυπος ενός ατόµου α.αναπαριστά ένα άτοµο στο χώρο λύσεων του προβλήµατος β.κωδικοποιεί

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.

Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Πρώτο Σύνολο Ασκήσεων 2014-2015 Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Ερώτημα 1 Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Ο αλγόριθμος εύρεσης

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Έστω το σύνολο ατομικών προτάσεων ΑΡ = {red, yellow, green}. Με βάση τις ατομικές προτάσεις ΑΡ διατυπώστε τις πιο κάτω προτάσεις που αφορούν την κατάσταση των φώτων της

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΣΥΝΑΝΤΗΣΕΩΝ

Επιπλέον Ασκήσεις ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΣΥΝΑΝΤΗΣΕΩΝ Επιπλέον Ασκήσεις ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΣΥΝΑΝΤΗΣΕΩΝ Έστω ότι έχουµε δοχεία αριθµηµένα από το ως και σφαίρες αριθµηµένες από ως. Οι σφαίρες τοποθετούνται τυχαία στα δοχεία ανά µία. Εάν µία σφαίρα και το δοχείο

Διαβάστε περισσότερα

Αλγόριθµοι Γραφηµάτων

Αλγόριθµοι Γραφηµάτων Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης

Δοµές Δεδοµένων. 18η Διάλεξη Ισορροπηµένα δέντρα. Ε. Μαρκάκης Δοµές Δεδοµένων 18η Διάλεξη Ισορροπηµένα δέντρα Ε. Μαρκάκης Περίληψη Επανάληψη των Τυχαιοποιηµένων ΔΔΑ, Στρεβλών ΔΔΑ, Δέντρων 2-3-4 Δέντρα κόκκινου-µαύρου Λίστες Παράλειψης Χαρακτηριστικά επιδόσεων - συµπεράσµατα

Διαβάστε περισσότερα

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές:

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές: 2 Αποδείξεις Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές: Εκδοση 2005/03/22 Εξαντλητική µέθοδος ή µέθοδος επισκόπησης. Οταν το πρόβληµα έχει πεπερασµένες αριθµό περιπτώσεων τις εξετάζουµε

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης Δοµές Δεδοµένων 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης Ε. Μαρκάκης Περίληψη Δέντρα Δυαδικής Αναζήτησης Υλοποιήσεις εισαγωγής και αναζήτησης Χαρακτηριστικά επιδόσεων ΔΔΑ Εισαγωγή στη ρίζα ΔΔΑ Υλοποιήσεις

Διαβάστε περισσότερα

Περιεχόμενα του Παιχνιδιού

Περιεχόμενα του Παιχνιδιού Ε υρώπη, 1347. Μεγάλη καταστροφή πρόκειται να χτυπήσει. Ο Μαύρος Θάνατος πλησιάζει την Ευρώπη και μέσα στα επόμενα 4-5 χρόνια ο πληθυσμός της θα μείνει μισός. Οι παίκτες αποικούν στις διάφορες περιοχές

Διαβάστε περισσότερα

Chess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης

Chess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Παρατήρηση: Μόνο σε αυτό το μάθημα όταν λέμε κομμάτι εννοούμε κομμάτι ή πιόνι και όταν λέμε κομμάτια εννοούμε κομμάτια

Διαβάστε περισσότερα

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια.

Kεφάλαιο 10. Πόσα υποπαίγνια υπάρχουν εδώ πέρα; 2 υποπαίγνια. Kεφάλαιο 10 Θα δούµε ένα δύο παραδείγµατα να ορίσουµε/ µετρήσουµε τα υποπαίγνια και µετά θα λύσουµε και να βρούµε αυτό που λέγεται τέλεια κατά Nash ισορροπία. Εδώ θα δούµε ένα παίγνιο όπου έχουµε µια επιχείρηση

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

επανάληψης» υπάρχουν;

επανάληψης» υπάρχουν; ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 2 Η «Επανάληψη» στο Scratch Σ αυτήν τη δραστηριότητα θα απαντήσουµε στα ερωτήµατα: Πώς µπορώ να χρησιµοποιήσω την επανάληψη στους κόσµους που φτιάχνω στο Scratch; Υπάρχουν πολλές µορφές

Διαβάστε περισσότερα

3. Παίγνια Αλληλουχίας

3. Παίγνια Αλληλουχίας 3. Παίγνια Αλληλουχίας Τα παίγνια αλληλουχίας πραγµατεύονται περιπτώσεις όπου οι κινήσεις των παικτών διαδέχονται η µια την άλλη, σε αντίθεση µε τα παίγνια όπου οι αποφάσεις των παικτών γίνονται ταυτόχρονα

Διαβάστε περισσότερα

ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ

ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Η ταχύτητα συνήθως δεν παραµένει σταθερή Ας υποθέσουµε ότι ένα αυτοκίνητο κινείται σε ευθύγραµµο δρόµο µε ταχύτητα k 36. Ο δρόµος είναι ανοιχτός και ο οδηγός αποφασίζει

Διαβάστε περισσότερα

Γυµ.Ν.Λαµψάκου Α Γυµνασίου Γεωµ.Β2.6 γωνίες από 2 παράλληλες + τέµνουσα 19/3/10 Φύλλο εργασίας

Γυµ.Ν.Λαµψάκου Α Γυµνασίου Γεωµ.Β2.6 γωνίες από 2 παράλληλες + τέµνουσα 19/3/10 Φύλλο εργασίας Φύλλο εργασίας Mπορείτε να βρείτε τη γωνία κάβων; ραστηριότητα Ένα δεξαµενόπλοιο που στο σχήµα είναι στο σηµείο Β, πλέει προς την είσοδο µιας διώρυγας µε την βοήθεια δύο ρυµουλκών που απεικονίζονται µε

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων ΓΡΑΦΙΚΑ (6151) ΕΝΔΕΙΚΤΙΚΕΣ ΠΡΟΑΙΡΕΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Τμήμα Μηχανικών Σχεδίασης Προϊόντων & Συστημάτων ΓΡΑΦΙΚΑ (6151) ΕΝΔΕΙΚΤΙΚΕΣ ΠΡΟΑΙΡΕΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΡΑΦΙΚΑ (6151) ΕΝΔΕΙΚΤΙΚΕΣ ΠΡΟΑΙΡΕΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Άσκηση 1 (Βαρύτητα 30%. Ομάδες: μέχρι 2 ατόμων): Ανάπτυξη 2Δ παιχνιδιού τύπου «ποδοσφαιράκι» το οποίο θα έχει τις παρακάτω λειτουργίες/δυνατότητες: Μπάλα:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Συνδυαστικής

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

οµή δικτύου ΣΧΗΜΑ 8.1

οµή δικτύου ΣΧΗΜΑ 8.1 8. ίκτυα Kohonen Το µοντέλο αυτό των δικτύων προτάθηκε το 1984 από τον Kοhonen, και αφορά διαδικασία εκµάθησης χωρίς επίβλεψη, δηλαδή δεν δίδεται καµία εξωτερική επέµβαση σχετικά µε τους στόχους που πρέπει

Διαβάστε περισσότερα

Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω.

Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω. Το Jungle Speed είναι ένα παιχνίδι για 2 έως 10 παίκτες (ή και ακόμη περισσότερους!) ηλικίας 7 και άνω. Σκοπός σας είναι να είστε ο πρώτος παίκτης που θα ξεφωρτωθεί όλες του τις κάρτες. Το τοτέμ τοποθετείται

Διαβάστε περισσότερα

Θέμα 1: Robbie και Αναζήτηση

Θέμα 1: Robbie και Αναζήτηση Θέμα : Robbie και Αναζήτηση Ο Robbie, το ρομπότ του παρακάτω σχήματος-χάρτη, κατά τη διάρκεια των εργασιών που κάνει διαπιστώνει ότι πρέπει να γυρίσει όσο το δυνατόν πιο γρήγορα, από την τρέχουσα θέση,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΟΜΕΣ Ε ΟΜΕΝΩΝ T. Σελλής ΑΝΟΙΞΗ 2003 ΑΣΚΗΣΗ #3 Ηµερ. Παράδοσης: 09/05/03

Διαβάστε περισσότερα

Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ

Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Π Ρ Ο Σ Ε Γ Γ Ι Σ Η Μ Ι Α Σ Ι Α Φ Ο Ρ Ε Τ Ι Κ Η Σ Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Εκτός της Ευκλείδειας γεωµετρίας υπάρχουν και άλλες γεωµετρίες µη Ευκλείδιες.Οι γεω- µετρίες αυτές διαφοροποιούνται σε ένα ή περισσότερα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 01 ιδάσκων : Π Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /10/01 Ηµεροµηνία Παράδοσης : /11/01

Διαβάστε περισσότερα