(Proper Orthogonal Decomposition, POD) POD POD Galerkin Projection PIV. Proper Orthogonal Decomposition in Fluid Flow Analysis: 1.
|
|
- Λωΐς Ζωγράφος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 115 連載 固有直交分解による流体解析 : 1. ( ) (Proper Orthogonal Decomposition, POD) POD POD Galerkin Projection PI Proper Orthogonal Decomposition in Fluid Flow Analysis: 1. Introduction Kunihiko TAIRA, Fundamental Technology Research Center, Honda R&D Co., Ltd. (Received 14 January, 2011; in revised form 4 March, 2011) With increasing capabilities of capturing the vector flow field from simulations and experiments, a systematic approach to extract physically important flow structures (modes) from the data is required. In addition, describing complex flow physics with a reduced-order model also calls for a low-dimensional basis that captures the flow field in a constructive manner. In this paper, we revisit the use of Proper Orthogonal Decomposition (POD), a technique that optimally extracts spatial modes from flow data. As Part 1 of a two-part series, the fundamentals of POD are summarized with emphasis for use in fluid mechanics. Reduced-order models based on Galerkin projection with POD modes are also discussed. In Part 2, applications of POD in fluid mechanics, aeroacoustics, flow control, PI, and aerodynamic design are reviewed. Finally, other methods related to POD are mentioned. (KEY WORDS): proper orthogonal decomposition (POD), principal component analysis (PCA), reduced order model, Galerkin projection, fluid mechanics 1 Particle Image elocimetry (PI) kunihiko taira@n.f.rd.honda.co.jp
2 116 (Proper Orthogonal Decomposition, POD) POD (Principal Component Analysis, PCA) Karhunen- Loève Compressive Sampling POD POD Jolliffe 1) Chatterjee 2) Lumley 3) 1967 POD POD POD Berkooz 4) Holmes 5) 90 POD POD POD 6) POD POD Snapshot POD Gappy POD POD POD POD PI POD Balanced POD 2 (POD, ) 2.1 POD (POD, ) POD 1 n r (r n) 1 1 1POD ( 1 ) POD 1 POD 2 x(t) R n, t min < t < t max. (1) x(t) r n (arg min) 3 {ϕ k } r k=1 P = r k=1 ϕ kϕ T k (arg max) tmax {ϕ k } r k=1 = arg min { ϕ k } r k=1 t min = arg max { ϕ k } r k=1 R = tmax tmax t min x(t) P x(t) P x(t) 2 dt 2 dt where P = ϕ k ϕ T k k=1 (2) t min x(t)x T (t)dt R n n (3) (ϕ k ) (λ k ) 5) Rϕ k = λ k ϕ k, λ 1... λ n 0. (4) 2 x(t) Holmes 5) x(t) 3 arg min f(x) {x y : f(x) f(y)} arg min (cos(x)) = x x (2n + 1)π, n Z
3 117 R ϕi, ϕ j = δij, i, j = 1,..., n. (5) 1 r tmax t min P x(t) 2 dt = λ k (6) k=1 / n λ k λ k 1 (7) k=1 k=1 r r POD POD R R R ˆR ˆR = P RP T = Λ. (8) P R (p k = ϕ k ) Λ R (4) POD 2.2 Snapshot POD POD n n n(e.g. CFD ) n = O(10 7 ) Snapshot POD 7) POD Snapshot POD t min = t 1,..., t m = t max (Snapshot) x(t j ) m m POD m R = ω j x(t j )x T (t j ) (9) j=1 ω j (e.g. ) X = [ ω 1 x(t 1 )... ω m x(t m )] R n m (10) R = XX T (11) (W ) R = XX T W. (12) (e.g. ) POD XX T R n n X T X R m m X T Xu k = λ k u k, u k R m, m n (13) ( X T W Xu k = λ k u k ) POD Snapshot POD r POD / ϕ k = Xu k λk (14) Φ = XUΛ 1/2 (15) ϕ k u k Φ = [ϕ 1... ϕ m ] R n m (16) U = [u 1... u m ] R m m (17) Λ R m m λ k POD Snapshot POD 1 ( ) Snapshot POD
4 Gappy POD Gappy POD 8) X 0 if x ij is missing or incorrect n ij = (18) 1 if x ij is known. POD POD POD POD POD Bui-Thanh 9) Snapshot POD Immersed Boundary Projection 10, 11) Taira & Colonius 12) α = 30 Re = (Re = 100) (Re = 300, AR = 2) x = (u, v) T POD POD ( ) u-,v- curl x = (u, v, w) T POD x = Q (Q-Criterion, 2 ) POD 4 POD POD u-velocity v-velocity vorticity mode 5 mode 3 mode 2 mode 1 mean 2 α = 30 2 POD 1-5
5 POD POD % 6 100% 3.1 λ i POD ϕ i X L 2 13) r r k=1 λ k r ( ) (2) ( ) x (u 1, u 2, u 3 ) T x 2 ( = u u u 2 ) 3 d (19) x 2 = ( ω ω2 2 + ω3 2 ) d (20) POD ρ e [ x 2 = ρe + 1 ] 2 ρ(u2 1 + u u 2 3) d (21) x = ( ρe, ρu1, ρu 2, ρu 3 ) T Rowley 13) x 2 = [ ] 2a 2 γ 1 + (u2 1 + u u 2 3) d. (22) a γ α x 2 ( = α1 u α 2 u α 3 u α 4 a 2 + α 5 p 2) d (23) 14) 4 6) λ ( 3 ) 3.2 ( u = 0) (u D = 0) 2 POD 3.3 POD π/ Gappy POD n α
6 120 15) POD POD Fourier 7) 3.4 POD POD POD POD POD POD 4 POD 2 POD 2 POD 1 2 POD POD 4 POD (Reduced-Order Model, ROM) Navier Stokes POD POD Navier Stokes n 5 POD r Galerkin Projection 4.1 POD u(x, t) = a j (t)ϕ j (x) (24) j=0 a 0 = 1 ϕ 0 (x) = ū(x) Navier Stokes POD i POD ( f ϕ i ) f, ϕ i f ϕ i d (25) Navier Stokes n (i.e., x(t) R n ) 1 n = 2n x n y n r (r n) Navier Skotes u t + (u )u = p + 1 Re 2 u (26) (24) ϕ i j=0 da j dt ϕi, ϕ j + j=0 k=0 = ϕ i, p + 1 Re a j a k ϕi, (ϕ j )ϕ k a j ϕi, 2 ϕ j, j=0 i = 1, 2,..., r (27) POD p, ϕ i = [ (pϕ i ) p ϕ i ] d (28) = pϕ i ˆndS = 0 S ( ϕ i = 0) S(ˆn S ) ū Noack 16) POD 6 ϕi, ϕ j = δij (27) da i dt = j=0 k=0 F ijk a j a k + G ij a j, (29) j=0 F ijk = ϕ i, ϕ j ϕ k, (30) G ij = 1 ϕi, 2 ϕ Re j, i = 1,..., r. (31) Navier Stokes POD 17) POD a i (t 0 ) = u(x, t 0 ) ū(x), ϕ i (x), i = 1,..., r. (32) (24) POD n r a i F ijk G ij 6 i, j = 1, 2,..., r ϕ 0 = ū POD
7 121 u-velocity v-velocity w-velocity Q-criterion mode 2 mode 1 4 α = 30 (AR = 2) 3 POD POD (u,v,w-elocity) POD (Q-Criterion) q = [ρ, u 1, u 2, u 3, T ] T Navier Stokes 13) ρ t = (ρu j ) x j (33) ρ u i t = ρu u i j p + τ ij x j x i x j (34) ρ T t = ρu T j ρ(γ 1)T u k x j x k + γ Re Φ + γ 2 T ReP r x k x k (35) p = γ 1 ρt γ (36) τ ij = 1 ( 2S ij 2 ) u k Re 3 x k (37) Φ = 2S ij S ij 2 ( ) 2 uk 3 x k (38) S ij = 1 ( ui + u ) j. 2 x j x i (39) (A 0 + A 1 ) q = b 1 + b 2 + b 3 (40) A 0 = diag(1, 0, 0, 0, 0) (41) A 1 = diag(0, ρ, ρ, ρ, ρ) (42) b 1 (q) b 2 (q, q) b 3 (q, q, q) q b 1, b 2, b 3 q POD Navier Stokes Galerkin Projection q q(x, t) = a j (t)ϕ j (x) (43) j=0 (40) ϕ i M ij (a) a j = H i (a) (44) where M ij (a) = ϕ i, A 0 ϕ j + a k ϕi, A 1 (ϕ k )ϕ j (45) H i (a) = + + k=0 a k ϕi, b 1 (ϕ k ) k=0 k=0 m=0 a k a m ϕi, b 2 (ϕ k, ϕ m ) k=0 m=0 n=0 a k a m a n ϕi, b 3 (ϕ k, ϕ m, ϕ n ) (46) ϕ i, b 3 (ϕ k, ϕ m, ϕ n ) 4 Rowley 13) T 0 4 q = (u 1, u 2, u 3, a) T 3 (a ) Rowley 13) Navier Stokes Galerkin Projection q 5 CFD PI (POD)
8 122 POD POD (POD) POD Snapshot POD Gappy POD POD Navier Stokes 6) POD PI POD 1 POD X Snapshot POD POD u = (u, v) (x p, y q ), p = 1,..., n x, q = 1,..., n y (47) u pq = (u pq, v pq) = (u(x p, y q), v(x p, y q)) (48) ( 5 ) Snapshot POD t j stack 2 u u 3 n x u 1n y... u n xny v v n x v 1ny... v nxny t=t j stack unstack u 11 C. A u 1ny. 0 1 u n x1 C. A x(t j) u n 0 xny 1 v 11 R n C. A v 1ny. 0 1 v nx1 6 B C 7. A 5 v n xny t=t j (49) n (i.e., n = 2n xn y) x q = n y q = 2 q = 1 p = 1 p = 2 5 X v pq (x p, y q ) u pq p = n x X = [ ω 1 x(t 1 )... ω m x(t m )] R n m. (50) ω j (12) 2.2 Snapshot POD X T Xu k = λ k u k, u k R m, m n (51) ( )r (r m) POD ϕ k = Xu k.p λk R n, k = 1,..., r (52) (49) unstack ϕ k ( 2 4 ) 1) Jolliffe, I.T.: Principal Component Analysis, Springer Series in Statistics, 2nd ed, Springer (2002). 2) Chatterjee, A.: An introduction to the proper orthogonal decomposition, Current Science 78(7) (2000) ) Lumley, J. L.: The structure of inhomogeneous turbulent flows, In Atmospheric turbulence and wave propagation, eds. Yaglom, A. M. & Tatarski,. I., Moscow, Nauka (1967) ) Berkooz, G., Holmes, P. & Lumley, J. L.: The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech. 25 (1993) ) Holmes, P., Lumley, J. L & Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Univ. Press (1996). 6) : : 2., 30(3) (2011) in press. 7) Sirovich, L.: Turbulence and the dynamics of coherent structures, Parts I III. Q. Appl. Math. XL (1987)
9 123 8) Everson, R. & Sirovich, L.: The Karhunen-Loève procedure for gappy data, J. Opt. Soc. Am. A 12(8) (1995) ) Bui-Thanh, T., Damodaran, M & Wilcox, K.: Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition, AIAA J. 42(8) (2004) ) Taira, K. & Colonius, T.: The immersed boundary method: A projection approach, J. Comp. Phys. 225 (2007) ) Colonius, T. & Taira, K.: A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions, Comput. Methods Appl. Mech. Engrg. 197 (2008) ) Taira, K. & Colonius, T.: Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers, J. Fluid Mech. 623 (2009) ) Rowley, C. W., Colonius, T. & Murray, R. M.: Model reduction for compressible flows using POD and Galerkin projection, Physica D 189 (2004) ) Freund, J. B. & Colonius, T.: Turbulence and soundfield POD analysis of a turbulent jet, Int l J. Aeroacoustics 8(7) (2009) ) Tadmor, G., Bissex, D., Noack, B. R., Morzyński, M., Colonius, T. & Taira, K.: Temporal-harmonic specific POD mode extraction, 4th Flow Control Conference, Paper , AIAA (2008). 16) Noack, B. R., Papas, P. & Monkewitz, P.: The need for pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid Mech. 523 (2005) ) Aubry, N., Holmes, P., Lumley, J. L. & Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech. 192 (1988) (also see: Corrigendum 324 (1996) ).
10
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΜΑΪΟΣ - ΙΟΥΝΙΟΣ 2006 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Διευθυντής ΝΙΚΟΛΑΟΣ ΒΛΑΧΟΣ, Καθηγητής Μέλη ΕΡΡΙΚΟΣ ΣΤΑΠΟΥΝΤΖΗΣ,
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,
MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5, 3 14 -, :., 83, 66404 e-mail: chupinvr@istu.irk.ru...,,., -,.,. :,,,,,, -, - [1].,.., [2, 3].,.,,,.,,, [4, 5].,..1.
Computing the Gradient
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Error Evaluation and Monotonic Convergence in Numerical Simulation of Flow
2122 6 15. CFD Error Evaluation and Monotonic Convergence in Numerical Simulation of Flow Toshiyuki HAYASE 1 3 CFD 1 5 CFD 6 98-8577 2-1-1 E-mail: hayase@ifs.tohoku.ac.jp Richardson Extrapolation Grid
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
«ΘΕΜΑΤΑ ΑΣΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ» ΔΙΔΑΣΚΟΥΣΕΣ: ΒΑΪΟΥ Ντ., ΜΑΝΤΟΥΒΑΛΟΥ Μ., ΜΑΥΡΙΔΟΥ Μ. «Gentrification Friendly» γειτονιές στο κέντρο της Αθήνας(;)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ Δ. Π. Μ. Σ.: ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΣΧΕΔΙΑΣΜΟΣ ΤΟΥ ΧΩΡΟΥ ΚΑΤΕΥΘΥΝΣΗ Β : ΠΟΛΕΟΔΟΜΙΑ - ΧΩΡΟΤΑΞΙΑ «ΘΕΜΑΤΑ ΑΣΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ» ΔΙΔΑΣΚΟΥΣΕΣ: ΒΑΪΟΥ Ντ., ΜΑΝΤΟΥΒΑΛΟΥ
Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines
Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines Tetsuharu MATSUO Yukio SAWADA Yukio TOMIITA This report describes the technology of Fuel Injectors a critical part of the Electronic
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα
Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα Γιώργος Γιαννής, Παναγιώτης Παπαντωνίου, Ελεονώρα Παπαδημητρίου, Αθηνά Τσολάκη Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής,
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα
38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4
Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις επίσημες θέσεις των εξεταστών. i ΠΡΟΛΟΓΟΣ ΕΥΧΑΡΙΣΤΙΕΣ Η παρούσα
Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling
1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices
Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΦΛΟΓΩΝ ΠΡΟΠΑΝΙΟΥ ΣΤΑΘΕΡΟΠΟΙΗΜΕΝΩΝ ΣΕ ΕΠΙΠΕΔΟ ΣΩΜΑ ΜΕ ΔΙΑΣΤΡΩΜΑΤΩΜΕΝΗ ΕΙΣΑΓΩΓΗ ΜΙΓΜΑΤΟΣ
ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΦΛΟΓΩΝ ΠΡΟΠΑΝΙΟΥ ΣΤΑΘΕΡΟΠΟΙΗΜΕΝΩΝ ΣΕ ΕΠΙΠΕΔΟ ΣΩΜΑ ΜΕ ΔΙΑΣΤΡΩΜΑΤΩΜΕΝΗ ΕΙΣΑΓΩΓΗ ΜΙΓΜΑΤΟΣ Ειδική Ερευνητική Εργασία Υποβληθείσα στο Τμήμα Φυσικής του Πανεπιστημίου Πατρών Υπό ΤΣΙΡΩΝΗ ΓΕΩΡΓΙΟ
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Poroelastic modelling of the coupled mechanical moisture behaviour of wood
Ma terias Sci ence & Technoog y Poroeastic modeing of the couped mechanica moisture behaviour of wood M. Dresser, D. Derome, R. Guyer and J. Carmeiet poroeastic modeing of wood - COST meeting October 00.
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ TΩΝ ΚΑΘΟ ΙΚΩΝ ΑΛΕΞΙΚΕΡΑΥΝΩΝ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ Χρήστος
A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3
大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΙΕΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ
3-dimensional motion simulation of a ship in waves using composite grid method
1 E14-1 3-dimensional motion simulation of a ship in waves using composite grid method matsuo@triton.naoe.t.u-tokyo.ac.jp, park@triton.naoe.t.u-tokyo.ac.jp, sato@triton.naoe.t.u-tokyo.ac.jp, miyata@triton.naoe.t.u-tokyo.ac.jp,
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Μελέτη των υλικών των προετοιμασιών σε υφασμάτινο υπόστρωμα, φορητών έργων τέχνης (17ος-20ος αιώνας). Διερεύνηση της χρήσης της τεχνικής της Ηλεκτρονικής Μικροσκοπίας
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΙ ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΑΔΑΜΑΚΟΠΟΥΛΟΥ ΑΝΔΡΙΑΝΗ ΔΗΜΗΤΡΟΥΛΑΚΗ ΑΡΙΣΤΕΑ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΗΡΑΚΛΕΙΟ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΙ ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΑΔΑΜΑΚΟΠΟΥΛΟΥ ΑΝΔΡΙΑΝΗ ΔΗΜΗΤΡΟΥΛΑΚΗ ΑΡΙΣΤΕΑ ΗΡΑΚΛΕΙΟ 2013 ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΥΠΟΛΟΓΙΣΤΙΚΗ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗ ΜΕΛΕΤΗ ΤΟΥ ΣΗΜΕΙΟΥ ΠΡΟΣΒΑΣΗΣ ΑΡΤΗΡΙΟΦΛΕΒΙΚΟΥ ΜΟΣΧΕΥΜΑΤΟΣ ΣΕ ΑΙΜΟΚΑΘΑΙΡΟΜΕΝΟΥΣ ΑΣΘΕΝΕΙΣ Παντελάκης
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,