Προσδιορισµός συντελεστή γραµµικής διαστολής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Προσδιορισµός συντελεστή γραµµικής διαστολής"

Transcript

1 Θ1 Προσδιορισµός συντελεστή γραµµικής διαστολής 1. Σκοπός Στην άσκηση αυτή θα µελετηθεί το φαινόµενο της γραµµικής διαστολής και θα προσδιοριστεί ο συντελεστής γραµµικής διαστολής ορείχαλκου ή χαλκού.. Θεωρία Από την εµπειρία µας γνωρίζουµε ότι η αλλαγή της θερµοκρασίας επιφέρει αλλαγή των διαστάσεων ενός στερεού σώµατος.η αύξηση της θερµοκρασίας συνήθως επι- φέρει αύξηση των διαστάσεων ενός στερεού σώµατος. Για αυτό τον λόγο στα διάφορα τεχνικά έργα αφήνονται αρµοί διαστολής µε σκοπό την µη καταστροφή τους, π.χ. στις σιδηροδροµικές γραµµές αφήνεται ένα κενό ε- κεί που τελειώνει η µία ράγια και αρχίζει η άλλη για να µην υπάρξει παραµόρφωση από την διαστολή. Η θερµική διαστολή οφείλεται µε απλά λόγια στην αλλαγή της µέσης απόστασης µεταξύ των µορίων η ατόµων από τα οποία αποτελείται ένα στερεό. Ένα στερεό σώµα αποτελείται από άτοµα που συγκρατούνται σε συγκε- Σχήµα 1 κριµένες θέσεις εξαιτίας των ηλεκτρικών δυνάµεων (ας τις θεωρήσουµε ελκτικές) µεταξύ τους. Τα άτοµα εκτελούν ηλεκτρικές ταλαντώσεις γύρω από την θέση ισορροπίας τους. Αν και δεν είναι απόλυτα σωστό µπορούµε σε πρώτη προσέγγιση να θεωρήσουµε τις ηλεκτρικές δυνάµεις σαν δυνάµεις ελατηρίων όπως φαίνεται στο Σχήµα 1. Η µέση ενδοατοµική απόσταση µεταξύ των µορίων σ ένα στερεό είναι της τάξης των 1 1 m περίπου. Οι ταλαντώσεις που πραγµατοποιεί έχουν πλάτος της τάξης των 1 11 m περίπου. Αυξανοµένης όµως της θερµοκρασίας αυξάνεται το πλάτος ταλάαλλά και η απόσταση µεταξύ των ατόµων. Έτσι αυξάνεται το στερεό συνολι- ντωσης κά. Σε πρώτη φάση θα µελετήσουµε την διαστολή ενός σώµατος σε µία (οποιαδήποτε ) διάσταση. Ας θεωρήσουµε λοιπόν µία ράβδο µε µήκος σε απόλυτη θερµοκρασία T. Αυξάνοντας την θερµοκρασία κατά dt έχουµε µεταβολή του µήκους κατά d. Από πειραµατικές παρατηρήσεις γνωρίζουµ ε ότι αυτά τα δύο µεγέθη συνδέονται µ ε- ταξύ τους µε την σχέση: Μάρκου Μ. Μπάρτζης Β. 1

2 d = αdt (1) ό που το α ονοµάζεται συντελεστής γραµµικής διαστολής και σε µία πρώτη προσέγ- γιση θεωρούµε ότι εξαρτάται µόνο από το υλικό από το οποίο είναι κατασκευασµένη η ράβδος( τον θεωρούµε δηλαδή ανεξάρτητο της θερµοκρασίας ). Από τη σχέση 1 προκύπτει και ο ορισµός του συντελεστή γραµµικής διαστολής 1 d α = () dt Μ ονάδα του α στο S.I. είναι το 1grad 1 Στον παρακάτω πίνακα παρατίθενται οι συντελεστές γραµµικής διαστολής µερικών χαρακτηριστικών στερεών υλικών σε θερµοκρασία δωµατίου Υλικό α ( 1 grad ) Υλικό α ( 1 grad ) Ορείχαλκος 19 Invar(κράµα Fe-Ni).9 Χάλυβας 11 Ψευδάργυρος 6 Μόλυβδος 9 Μπετόν 1 Γυαλί κοινό 9 Σίδηρος 1 Γυαλί Pyrex 3. Σκυρόδεµ α 1 Χαλαζίας Πρακτικά µ ηδέν Χαλκός 17 Ισότροπα ονοµάζονται τα υλικά που έχουν τον ίδιο συντελεστή γραµµικής διαστο- λής και στις τρεις διαστάσεις (δηλαδή διαστέλλονται το ίδιο και στις τρεις διαστάσεις). εν είναι όλα τα υλικά ισότροπα. Ακραίο παράδειγµα ανισότροπου υλικού εί- Από τον παραπάνω πίνακα παρατηρούµε ότι ο σίδηρος και το µπετόν έχουν την ίδια τιµή συντελεστή γραµµικής διαστολής που σηµαίνει ότι διαστέλλονται το ίδιο για ί- δια µεταβολή της θερµοκρασίας Αυτό επιτρέπει στο σκυρόδεµα το οποίο είναι κατασκευασµένο από αυτά τα δύο υλικά να συµπεριφέρεται στις αλλαγές θερµοκρασίας ως συµπαγές σύνολο έχοντας τον ίδιο συντελεστή γραµµικής διαστολής. Για τα περισσότερα υλικά ο συντελεστής γραµµικής διαστολής είναι θετικός που σηµαίνει ότι µε την αύξηση της θερµοκρασίας αυτά τα υλικά διαστέλλονται. Υπάρχουν όµως και µερικά υλικά που έχουν αρνητικό συντελεστή γραµµικής διαστολής δηλαδή µε την αύξηση της θερµοκρασίας συστέλλονται, όπως π.χ. το καουτσούκ. Αυτό οφείλεται στην τεθλασµένη αλυσίδα την οποία σχηµατίζουν τα µόρια του καουτσούκ και που µε την αύξηση της θερµοκρασίας η γωνία µεταξύ των γραµµών της τεθλασµένης αλυσίδας µειώνεται. Υπάρχουν ορισµένα υλικά που οι διαστάσεις παραµένου ν πρακτικά αµετάβλητες µε την αύξηση της θερµοκρασίας ( ο συντελεστής γραµµικής διαστολής είναι πολύ µικρός). Τέτοια είναι το Invar και ο χαλαζίας. Μάρκου Μ. Μπάρτζης Β.

3 ναι ο ασβεστίτης C CO a 3 ο οποίος µε την αύξηση της θερµοκρασίας διαστέλλεται κατά την µία διάσταση (θετικό α )ενώ συστέλλεται κατά την άλλη (αρνητικό α ). Σχέση του µήκους της ράβδου και της θερµοκρασίας Για να βρούµε την σχέση του µήκους του δοκιµίου µε την θερµοκρασία θα ολοκληρώσουµε την σχέση 1. Θα πρέπει όµως να θεωρήσουµε γνωστό το µήκος της ράβδου σε µία θερµοκρασία αναφοράς την οποία εµείς θα επιλέξουµε να είναι οι θ = C ( T = 73K ). Θα πρέπει επίσης να αναφέρουµε πως στην παρακάτω ανάλυση θεωρούµε το α σταθερό (ανεξάρτητο της θερµοκρασίας) T d d = αdt = αdt ln = α(t T ) T ln ln = α(t T ) ln = α(t T ) [ ] α(t T ) = e (3) Επειδή η µεταβολή της θερµοκρασίας σε βαθµούς Κελσίου και σε βαθµούς Κelvin είναι ίδια, η σχέση 3 µπορεί να λάβει και την µορφή: αθ = e (4) όπου το µήκος της ράβδου στους θ = C Μπορούµε στην συνέχεια να αντικαταστήσουµε την έκφραση αθ α θ e = (1 + αθ ) οπότε η σχέση 4 λαµβάνει την µορφή: αθ e µε την σειρά = α θ (1 + αθ ) Επειδή όµως ο συντελεστής γραµµικής διαστολής α είναι της τάξης του 1 5 οι υψωµένοι σε δύναµη όροι της παραπάνω εξίσωσης µπορούν να θεωρηθούν αµελητέοι. Έτσι η προσεγγιστική έκφραση για το µήκος του δοκιµίου σε σχέση µε την θερµοκρασία είναι: Σχήµα = (1 + αθ) (5) Η γραφική παράσταση της παραπάνω σχέσης δίνεται στο Σχήµα. Μάρκου Μ. Μπάρτζης Β. 3

4 Εξάρτηση του συντελεστή γραµµικής διαστολής α από την θερµοκρασία Όπως έχουµε ήδη αναφέρει, στην προηγούµενη ανάλυση θεωρήσαµε ότι ο συντελεστής γραµµικής διαστολής είναι ανεξάρτητος της θερµοκρασίας. Γι αυτό άλλωστε η γραφική παράσταση = f ( θ) είναι ευθεία γραµµή. Η πειραµατικά προκύπτουσα γραφική παράσταση όµως είναι καµπύλη πράγµα που υποδηλώνει εξάρτηση του συντελεστή γραµ- µικής διαστολής από την θερµοκρασία (Σχήµα 3). Κοντά στο απόλυτο µηδέν ( θ = 73 C). ο συντελ εστής γραµ µικής διαστολής πρακτικά µηδενίζεται γι αυτό και σε αυτό το σηµείο η γραφική παράσταση δεν έχει κλίση. Σταθερό χωρίς µεγάλο Σχήµα 3 σφάλµα µπορούµε να θεωρήσουµε τον συντελεστή γραµµικής διαστολής στην περιοχή θερµοκρασιών από 5 C έως 1 C η οποία συνήθως και µας ενδιαφέρει. Κυβική διαστολή στερεών Α ς θεωρήσουµε ένα ισότροπο στερεό υλικό σε σχήµα κύβου µε ακµή σε θερµοθα µεταβλη- κρασία C. Αν αυξήσουµε την θερµοκρασία το µήκος της κάθε ακµής θεί σύµφωνα µε τη σχέση 4 αθ = e και ο όγκος θα δίνεται από την σχέση 3 3 3αθ γθ V = = e = V e (6) V όπου γ = 3α ο συντελεστής κυβικής διαστολής Ακολουθώντας την ίδια διαδικασία µε αυτόν της γραµµικής διαστολής έχουµε V = V (1 + γθ) (7) 3. Πειραµατική διαδικασία Η πειραµατική διάταξη για την εκτέλεση της άσκησης εµφανίζεται στην Εικόνα 1 και αποτελείται από τα παρακάτω στοιχεία: Σωληνωτή ράβδο Τροφοδοτικό 5V Θερµοζεύγος Μετρητική διάταξη µε σταθερά κλίµακας.1 mm Βάση στήριξης Η θέρµανση της ράβδου πραγµατοποιείται µέσω ειδικού σύρµατος που είναι τοποθετηµένο στο εσωτερικό της και τροφοδοτείται µε τάση, ενώ η θερµοκρασία απεικονί- Μάρκου Μ. Μπάρτζης Β. 4

5 ζεται σε ψηφιακό θερµόµετρο, µέσω αισθητήρα που τοποθετείται στο σώµα της Εικόνα 1 ράβδου. Η µεταβολή του µήκους της ανιχνεύεται από το µετρητικό όργανο που είναι δοµηµένο στη βάση στήριξης, εφάπτεται µε τη ράβδο στο ένα άκρο της και φέρει σταθερά κλίµακας.1mm. Να σηµειωθεί ότι η κλίµακα του οργάνου θα πρέπει να µηδενιστεί πριν ξεκινήσουµε τη διαδικασία θέρµανσης της ράβδου. 4. Εργασίες 1. Αναγνωρίζουµε την πειραµατική διάταξη µε την βοήθεια του υπεύθυνου καθηγητή. Μετρούµ ε τη θερµοκρασία του περιβάλλοντος και µηδενίζουµε την κλίµακα του µετρητικού οργάνου θ =... C 3. Για τις τιµές l της επιµήκυνσης που καταγράφονται στον παρακάτω πίνακα σηµειώνουµε τις αντίστοιχες τιµές της θερµοκρασίας θ l (mm) l/l θ ( C) θ ( o C) o 4. εδοµένου του αρχικού µήκους της ράβδου l =... mm χαράσσουµε την καµπύλη l/ l = f ( θ) Μάρκου Μ. Μπάρτζης Β. 5

6 5. Από την κλίση της ευθείας υπολογίζουµε τον συντελεστή γραµµικής διαστολής της ράβδου και αναγνωρίζουµε το υλικό από το σχετικό πίνακα 1 α =...grad 5. Σχετικές ερωτήσεις στη θεωρία 1. Ορισµός του συντελεστή γραµµικής διαστολής. Αποδείξτε την σχέση που συνδέει το µήκος µιας ράβδου µε την θερµοκρασία 3. Ποια είναι η φυσική σηµασία του αρνητικού συντελεστή γραµµικής διαστολής (καουτσούκ). Εξηγείστε που οφείλεται αυτό 4. Γράψτε ότι γνωρίζετε για την εξάρτηση του συντελεστή γραµµικής διαστολής από την θερµοκρασία 5. Αποδείξτε την σχέση που συνδέει τον όγκο ενός αντικειµένου µε την θερµοκρασία (θεωρώντας γνωστή την εξάρτηση του µήκους από την θερµοκρασία) 6. Αποδείξτε ότι ο συντελεστής κυβικής διαστολής είναι τριπλάσιος από τον συντελεστή γραµµικής διαστολής ( γ = 3α ) 7. Εξηγείστε γιατί το αµάλγαµα που χρησιµοποιούν οι οδοντίατροι για τα σφραγίσµατα στα δόντια πρέπει να έχε ι τον ίδιο συντελεστή γραµµικής διαστολής µε τα δόντια. 8. Μεταλλικό σφαιρίδιο περνάει µέσα από δακτύλιο όταν και τα δύο βρίσκονται σε θερµοκρασία περιβάλλοντος. Εξηγείστε γιατί δεν περνάει όταν θερµάνουµε το σφαιρίδιο 9. Έστω διµεταλλικό έλασµα (αποτελείται από δύο συγκολληµένα κατά µήκος µεταξύ τους µέρη από διαφορετικά µέταλλα) σε θερµοκρασία δωµατίου. Εξηγείστε γιατί µε την αύξηση της θερµοκρασίας το έλασµα στραβώνει Μάρκου Μ. Μπάρτζης Β. 6

16ο Μάθημα ΔΙΑΣΤΟΛΗ ΚΑΙ ΣΥΣΤΟΛΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ. Μια ιδιότητα με σημαντικές συνέπειες και τεχνικές εφαρμογές

16ο Μάθημα ΔΙΑΣΤΟΛΗ ΚΑΙ ΣΥΣΤΟΛΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ. Μια ιδιότητα με σημαντικές συνέπειες και τεχνικές εφαρμογές 16ο Μάθημα ΔΙΑΣΤΟΛΗ ΚΑΙ ΣΥΣΤΟΛΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Μια ιδιότητα με σημαντικές συνέπειες και τεχνικές εφαρμογές Θα έχεις ίσως προσέξει ότι στους δρόμους και στα δάπεδα, όταν τα στρώνουν με τσιμέντο, αφήνουν

Διαβάστε περισσότερα

5. Θερμικές τάσεις και παραμορφώσεις

5. Θερμικές τάσεις και παραμορφώσεις 5. Θερμικές τάσεις και παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 5. Θερμικές Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 1 Περιεχόμενα ενότητας Επίδραση ορθών τάσεων στη μεταβολή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH 8.1 Γραµµική διαστολή των στερεών Ένα στερεό σώµα θεωρείται µονοδιάστατο, όταν οι δύο διαστάσεις του είναι αµελητέες σε σχέση µε την τρίτη, το µήκος, όπως συµβαίνει στην

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

Κεφάλαιο 5: Συντελεστής γραμμικής θερμικής διαστολής

Κεφάλαιο 5: Συντελεστής γραμμικής θερμικής διαστολής Κεφάλαιο 5: Συντελεστής γραμμικής θερμικής διαστολής Σύνοψη Προσδιορισμός του συντελεστή θερμικής γραμμικής διαστολής δύο ράβδων από διαφορετικά υλικά. Προαπαιτούμενη γνώση Κεφάλαιο 1. 5.1 Βασικές έννοιες

Διαβάστε περισσότερα

Κεφάλαιο 20. Θερμότητα

Κεφάλαιο 20. Θερμότητα Κεφάλαιο 20 Θερμότητα Εισαγωγή Για να περιγράψουμε τα θερμικά φαινόμενα, πρέπει να ορίσουμε με προσοχή τις εξής έννοιες: Θερμοκρασία Θερμότητα Θερμοκρασία Συχνά συνδέουμε την έννοια της θερμοκρασίας με

Διαβάστε περισσότερα

ƷƶƴƫƬƩ ƥưƺƴƶƫƭʊ ƣưƶƫƭƨƫʈƨưʊ ƷƶƴƫƬƺƯ ƬƣƵƩƥƱƳƫƣ ƲE04 ƵƱƮƱƴ ƤƘ

ƷƶƴƫƬƩ ƥưƺƴƶƫƭʊ ƣưƶƫƭƨƫʈƨưʊ ƷƶƴƫƬƺƯ ƬƣƵƩƥƱƳƫƣ ƲE04 ƵƱƮƱƴ ƤƘ . E04 & Y 2008 - 04. - ( Meissner - London - - I II - BCS - Cooper - - Josephson (dc) (ac). ( - - ). - - - S,, C, T, P (Parity).. v 9. 9.1 1 9.2 1 9.3 7 9.4 13 9.5 14 9.6 STEFAN-BOLTZMAN 18 9.7 21

Διαβάστε περισσότερα

2.5 θερμική διαστολή και συστολή

2.5 θερμική διαστολή και συστολή 2.5 θερμική διαστολή και συστολή 1. Όταν ένα σώμα θερμαίνεται, ο όγκος του μεγαλώνει. Το φαινόμενο αυτό ονομάζεται διαστολή. 2. Όταν ένα σώμα ψύχεται, ο όγκος του ελαττώνεται. Το φαινόμενο αυτό ονομάζεται

Διαβάστε περισσότερα

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Σύνοψη Αυτή είναι μια από τις πρώτες ασκήσεις που κάνεις στο εργαστήριο Φυσικής Ι, γι αυτό καλό είναι να μάθεις ότι

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις -4 να βρείτε τη σωστή απάντηση. Α. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6-1 6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6.1. ΙΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Πολλές βιοµηχανικές εφαρµογές των πολυµερών αφορούν τη διάδοση της θερµότητας µέσα από αυτά ή γύρω από αυτά. Πολλά πολυµερή χρησιµοποιούνται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται 1 2 Θερµότητα χρόνος θέρµανσης Εξάρτηση από είδος (c) του σώµατος Αν ένα σώµα θερµαίνεται από µια θερµική πηγή (γκαζάκι, ηλεκτρικό µάτι), τότε η θερµότητα (Q) που απορροφάται από το σώµα είναι ανάλογη

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 2006 Ώρα: 10:30 13.00 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. α) Η πυκνότητα του υλικού υπολογίζεται από τη m m m σχέση d

Διαβάστε περισσότερα

ΒΓ/Μ ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ. Τεύχος 6ο: ΘΕΡΜΟΤΗΤΑ

ΒΓ/Μ ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ. Τεύχος 6ο: ΘΕΡΜΟΤΗΤΑ ΒΓ/Μ6 05-06 ΣΥΣΤΗΜΑ ΠΑΙΔΕΙΑΣ ΟΡΟΣΗΜΟ Τεύχος 6ο: ΘΕΡΜΟΤΗΤΑ ΕΚΔΟΤΙΚΕΣ ΤΟΜΕΣ ΟΡΟΣΗΜΟ ΠΕΡΙΟΔΙΚΗ ΕΚΔΟΣΗ ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ ΚΑΙ ΤΟ ΛΥΚΕΙΟ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Φυσική για την B' Τάξη του Γυμνασίου 1. Θερμοκρασία

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

Άσκηση 5 Υπολογισμός της σταθεράς ελατηρίου

Άσκηση 5 Υπολογισμός της σταθεράς ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς ελατηρίου Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: από την κλίση της (πειραματικής) ευθείας

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση

1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση Ονοµατεπώνυµο: µήµα: Επιµέλεια: Παναγιώτης Παζούλης Φυσική Γ Λυκείου θετικής εχνολογικής Κατεύθυνσης 1 η Εργαστηριακή Άσκηση: Απλή Αρµονική αλάντωση Α) Εισαγωγικές έννοιες. Περιοδική κίνηση ονοµάζεται

Διαβάστε περισσότερα

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Πρακτική µε στοιχεία στατιστικής ανάλυσης Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2013

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2013 ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 8/0/0 ΘΕΜΑ ο ( μονάδες) H διάταξη του παρακάτω σχήματος χρησιμοποιείται για τη μέτρηση της θερμοκρασίας σε ηλεκτρικό φούρνο και περιλαμβάνει

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών.

Εργαστηριακή Άσκηση 30 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 944 Εργαστηριακή Άσκηση 3 Μέτρηση του συντελεστή θερμικής αγωγιμότητας υλικών. Συνεργάτες:

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 0 ΦΥΣΙΚΗ 0 - Δεκεμβρίου - 0 η ραστηριότητα Μέτρηση της πυκνότητας στερεού σώµατος Σκοπός της άσκησης Ο σκοπός στη άσκηση αυτή είναι η πειραµατική εύρεση της πυκνότητας ενός µεταλλικού

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 1 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Απριλίου, 2005 Ώρα: 10:00-12:30 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. (α) Από το δεύτερο σχήµα, επειδή ο ζυγός ισορροπεί, προκύπτει

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το φυσικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την ταλάντωση

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 10 Βαθµονόµηση θερµοµέτρου

Εργαστηριακή άσκηση 10 Βαθµονόµηση θερµοµέτρου Μιχαήλ Μιχαήλ, Φυσικός 1 Εργαστηριακή άσκηση 10 Βαθµονόµηση θερµοµέτρου ΣΤΟΧΟΙ Οι στόχοι αυτής της εργαστηριακής άσκησης είναι: - Να κατασκευάζεις µια κλίµακα θερµοκρασίας Κελσίου. - Να µπορείς να χρησιµοποιείς

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

Παρεµβολή και Προσέγγιση Συναρτήσεων

Παρεµβολή και Προσέγγιση Συναρτήσεων Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε

Διαβάστε περισσότερα

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης.

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. 1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. Το φύλλο εργασίας στηρίζεται στο αντίστοιχο του Παιδαγωγικού Ινστιτούτου που

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 11 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 08/12/2012

Διαβάστε περισσότερα

ΣΔΕ ΑΓΡΙΝΙΟΥ Σχ. έτος ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΟΣ ΓΡΑΜΜΑΤΙΣΜΟΣ Α. ΠΛΑΤΑΝΙΑ. Οι εκπαιδευτικοί στόχοι του συγκεκριμένου θέματος είναι:

ΣΔΕ ΑΓΡΙΝΙΟΥ Σχ. έτος ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΟΣ ΓΡΑΜΜΑΤΙΣΜΟΣ Α. ΠΛΑΤΑΝΙΑ. Οι εκπαιδευτικοί στόχοι του συγκεκριμένου θέματος είναι: ΣΔΕ ΑΓΡΙΝΙΟΥ Σχ. έτος 2006-2007 ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΟΣ ΓΡΑΜΜΑΤΙΣΜΟΣ Α. ΠΛΑΤΑΝΙΑ Από τη θεματική ενότητα: ΘΕΡΜΟΤΗΤΑ Οι εκπαιδευτικοί στόχοι του συγκεκριμένου θέματος είναι: Να αντιληφθούν τη διαφορά

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:.

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:. ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 Τάξη: B Βαθμός: Μάθημα: Φυσικά (Φυσική και Χημεία) Ολογράφως:.. Ημερομηνία: 04/06/2013 Διάρκεια: 2 Ώρες Υπογραφή:

Διαβάστε περισσότερα

Κεφάλαιο 7. Θερμοκρασία

Κεφάλαιο 7. Θερμοκρασία Κεφάλαιο 7 Θερμοκρασία Θερμοδυναμική Η θερμοδυναμική περιλαμβάνει περιπτώσεις όπου η θερμοκρασία ή η κατάσταση ενός συστήματος μεταβάλλονται λόγω μεταφοράς ενέργειας. Η θερμοδυναμική ερμηνεύει με επιτυχία

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. . γ) Μετατόπιση δεξιά, συνολικά µείωση της ποσότητας του Cl. . στ) Καµία µεταβολή.

ΑΠΑΝΤΗΣΕΙΣ. . γ) Μετατόπιση δεξιά, συνολικά µείωση της ποσότητας του Cl. . στ) Καµία µεταβολή. ΘΕΜΑ ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ α γ γ 4 β 5 α) Σ β) Λ γ) Σ δ) Λ ε) Λ ΘΕΜΑ ο α) Μετατόπιση αριστερά, µείωση της ποσότητας του Cl β) Μετατόπιση δεξιά, αύξηση της ποσότητας του Cl γ)

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:.

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Ονοματεπώνυμο:. ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 Τάξη: B Βαθμός: Μάθημα: Φυσικά (Φυσική και Χημεία) Ημερομηνία: 10/06/2014 Διάρκεια: 2 Ώρες Ολογράφως:.. Υπογραφή:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ.

ΦΥΣΙΚΗ Ο.Π Γ ΛΥΚΕΙΟΥ 22 / 04 / ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ. Γ ΛΥΚΕΙΟΥ 22 / 04 / 2018 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Α1. α, Α2. α, Α3. β, Α4. γ, Α5. α. Σ, β. Σ, γ. Λ, δ. Σ, ε. Λ. ΘΕΜΑ Β Β1. Σωστή απάντηση είναι η γ. Ο αριθμός των υπερβολών ενισχυτικής συμβολής που τέμνουν την

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Προτεινόμενες Λύσεις θεμα - 1 (5 μον.) Στον πίνακα υπάρχουν δύο στήλες με ασυμπλήρωτες προτάσεις. Στο τετράδιο των απαντήσεών

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Δεύτερη Φάση) Κυριακή, 08 Απριλίου, 2012 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από τέσσερις (6) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε

Διαβάστε περισσότερα

Η ΦΥΣΙΚΗ ΜΕ ΠΕΙΡΑΜΑΤΑ

Η ΦΥΣΙΚΗ ΜΕ ΠΕΙΡΑΜΑΤΑ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ Η ΦΥΣΙΚΗ ΜΕ ΠΕΙΡΑΜΑΤΑ ΣΥΜΠΕΡΑΣΜΑΤΑ ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΞΑΝΘΟΣ ΧΡΗΣΤΟΣ ΦΥΣΙΚΟΣ ΠΕ0401 0 1 o κεφάλαιο Συμπεράσματα 1. Για τη μέτρηση του μήκους με μετροταινία θα πρέπει

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική Σχολείο: Ονόµατα των µαθητών της οµάδας 1) 2) 3) Επισηµάνσεις από τη θεωρία Παθητικό ηλεκτρικό δίπολο

Διαβάστε περισσότερα

C=dQ/dT~ 6.4 cal/mole.grad

C=dQ/dT~ 6.4 cal/mole.grad ΘΕΡΜΟΤΗΤΑ Ηεσωτερικήενέργειαενόςσώµατος, είναι το σύνολο των οποιονδήποτε ενεργειών των ατόµων και των µορίων του Η θερµοκρασία είναι µέτρο της µέσης κινητικής ενέργειας των ατόµων και των µορίων Ε=3ΚΤ/2

Διαβάστε περισσότερα

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας ΚΕΦΑΛΑΙΟ 6 ο ΘΕΡΜΟΤΗΤΑ 6.1 Θερμόμετρα και μέτρηση θερμοκρασίας 1. Τι ονομάζεται θερμοκρασία; Το φυσικό μέγεθος που εκφράζει πόσο ζεστό ή κρύο είναι ένα σώμα ονομάζεται θερμοκρασία. 2. Πως μετράμε τη θερμοκρασία;

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα,

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12

Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Εισαγωγή στην Επιστήμη των Υλικών Θερμικές Ιδιότητες Callister Κεφάλαιο 20, Ashby Κεφάλαιο 12 Πως αντιδρά ένα υλικό στην θερμότητα. Πως ορίζουμε και μετράμε τα ακόλουθα μεγέθη: Θερμοχωρητικότητα Συντελεστή

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ Ζήτηµα ο Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος κανόνας

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 26 Ώρα : 1:3-13: Οδηγίες: 1)Το δοκίµιο αποτελείται από τρία (3) µέρη. Και στα τρία µέρη υπάρχουν συνολικά δώδεκα (12)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

ΕΚΦΕ ΣΥΡΟΥ - Τοπικός διαγωνισμός για Euso Σάββατο 17/12/2016

ΕΚΦΕ ΣΥΡΟΥ - Τοπικός διαγωνισμός για Euso Σάββατο 17/12/2016 ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΦΕ ΣΥΡΟΥ για EUSO 2017 ΑΞΙΟΛΟΓΗΣΗ ΜΑΘΗΤΩΝ - ΦΥΣΙΚΗ 1. 2. 3. Μαθητές: Σχολείο 1. ΜΕΤΡΗΣΗ ΘΕΡΜΙΚΟΥ ΣΥΝΤΕΛΕΣΤΗ ΑΝΤΙΣΤΑΤΗ ΒΟΛΦΡΑΜΙΟΥ - ΗΛΕΚΤΡΙΚΟΥ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ 2. ΜΕΤΑΒΟΛΗ ΑΝΤΙΣΤΑΣΗΣ

Διαβάστε περισσότερα

Ασκήσεις στις συναρτήσεις, όρια και παράγωγο

Ασκήσεις στις συναρτήσεις, όρια και παράγωγο Ασκήσεις στις συναρτήσεις, όρια και παράγωγο Σπύρος Γλένης, Μαθηματικός Εάν α) 0,, β) να βρείτε τα παρακάτω: t,,, Να βρείτε το ( h) ( ) για τις παρακάτω συναρτήσεις: h i) ii) iii), ρητός 0, άρρητος Δίνονται

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΕ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΤΑΛΑΝΤΩΣΗ + ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ) Όνομα:...

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΕ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΤΑΛΑΝΤΩΣΗ + ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ) Όνομα:... A A N A B P Y T A 9 5 0 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΕ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΤΑΛΑΝΤΩΣΗ + ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ) Όνομα: Μέρος ο Στο διπλανό σχήμα βλέπετε ένα σύστημα

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: ) Είναι πολύ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. . γ) Μετατόπιση δεξιά, συνολικά µείωση της ποσότητας του Cl. . στ) Καµία µεταβολή.

ΑΠΑΝΤΗΣΕΙΣ. . γ) Μετατόπιση δεξιά, συνολικά µείωση της ποσότητας του Cl. . στ) Καµία µεταβολή. Επαναληπτικά Θέµατα ΟΕΦΕ 0 ΘΕΜΑ ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ α γ γ 4 β 5 α) Σ β) Λ γ) Σ δ) Λ ε) Λ ΘΕΜΑ ο α) Μετατόπιση αριστερά, µείωση της ποσότητας του Cl β) Μετατόπιση δεξιά, αύξηση

Διαβάστε περισσότερα

5. Θ Ε Ρ Μ Ο Τ Η Τ Α

5. Θ Ε Ρ Μ Ο Τ Η Τ Α Ανακεφαλαίωση Το φυσικό µέγεθος µε το οποίο περιγράφουµε αντικειµενικά πόσο ζεστό ή κρύο είναι ένα σώµα ονοµάζεται θερµοκρασία. Τη θερµοκρασία τη µετράµε µε τα θερµόµετρα. Η θερµοκρασία ενός σώµατος αποτελεί

Διαβάστε περισσότερα

OI ENNOIEΣ THΣ ΦYΣIKHΣ ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ

OI ENNOIEΣ THΣ ΦYΣIKHΣ ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ Θερμόμετρα Ερώτημα: Βαθμονόμηση κλίμακας Κελσίου? Εξηγήστε Ο Κέλσιος, για τη βαθμονόμηση του θερμομέτρου του, χρησιμοποίησε νερό. Για μηδέν ( 0 οc) όρισε τη θερμοκρασία που τήκεται) ο πάγος και για εκατό

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Αγωγιμότητα στα μέταλλα

Αγωγιμότητα στα μέταλλα Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Σχολείο: Ονόματα των μαθητών: 1) 2)...... 3) 1 Πειραματικός προσδιορισμός

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 14-15 Ε.Κ.Φ.Ε. Νέας Σμύρνης Εξέταση στη Φυσική ΛΥΚΕΙΟ: Τριμελής ομάδα μαθητών: 1.. 3. Αναπληρωματικός: Θέματα: Ηλ. Μαυροματίδης Β Σειρά Θεμάτων (Φυσική) Μέτρηση της

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ. . γ) Μετατόπιση δεξιά, συνολικά µείωση της ποσότητας του Cl. . στ) Καµία µεταβολή.

ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ. . γ) Μετατόπιση δεξιά, συνολικά µείωση της ποσότητας του Cl. . στ) Καµία µεταβολή. Επαναληπτικά Θέµατα ΟΕΦΕ 0 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ α γ γ 4 β 5 α) Σ β) Λ γ) Σ δ) Λ ε) Λ ΘΕΜΑ ο α) Μετατόπιση αριστερά, µείωση της ποσότητας του Cl β) Μετατόπιση δεξιά, αύξηση

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ ΙΙΙ Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ ΙΙΙ Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη - &. ΠΕΙΡΑΜΑ ΙΙΙ Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από

Διαβάστε περισσότερα

Ιδιοσυχνότητα Παρατήρηση ιεγείρουσα δύναµη. Ερώτηση:

Ιδιοσυχνότητα Παρατήρηση ιεγείρουσα δύναµη. Ερώτηση: ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ελεύθερη ταλάντωση - Ιδιοσυχνότητα Παρατήρηση: Εφ' όσον θέλουµε να διατηρείται το πλάτος σταθερό πρέπει να προσφέρουµε ενέργεια στο σύστηµα συνεχώς µε τη βοήθεια µιας δύναµης:

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ( εύτερη Φάση)

Γ ΛΥΚΕΙΟΥ ( εύτερη Φάση) Η ΠΚΥΠΡΙ ΟΛΥΜΠΙ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ( εύτερη Φάση Σάββατο, πριλίου, 7 Ώρα:.. Οδηγίες: Το δοκίµιο αποτελείται από έξι (6 θέµατα. Να απαντήσετε τα ερωτήµατα όλων των θεµάτων. Να εκφράζετε τις απαντήσεις σας,

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ

Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Πανελλήνιος Μαθητικός Διαγωνισμός για την επιλογή στη 13η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2015 Σάββατο 07 Φεβρουαρίου 2015 ΦΥΣΙΚΗ Σχολείο: Ονόματα των μαθητών: 1) 2)...... 3) 1 Πειραματικός προσδιορισμός

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων

ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων ΠΕΙΡΑΜΑ VII-β Μέτρηση Θερµικής Αγωγιµότητας Μετάλλων Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε τη διάδοση θερµότητας κατά µήκος µιας µεταλλλικής ράβδου και θα µετρήσουµε το συντελεστή θερµικής

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος

Διαβάστε περισσότερα

Δίνεται η επιτάχυνση της βαρύτητας:. [10 m/ s, x=0,5 ημ(20t +π) και u= 10 ημ(20t +π), 210Ν, -190Ν, -1000j/s]

Δίνεται η επιτάχυνση της βαρύτητας:. [10 m/ s, x=0,5 ημ(20t +π) και u= 10 ημ(20t +π), 210Ν, -190Ν, -1000j/s] ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1-

Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1- Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: 1) 2) 3) 4) Ε.Κ.Φ.Ε Κέρκυρας -1- ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Α. Θεωρητική εισαγωγή Το απλό εκκρεμές είναι μια διάταξη που

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς ελατηρίου

Υπολογισμός της σταθεράς ελατηρίου Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή

Διαβάστε περισσότερα

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν:

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν: 15 η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2017 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν: (1) (2) (3) Σέρρες 10/12/2016 Σύνολο μορίων:..... 0 ΜΕΤΡΗΣΗ ΕΙΔΙΚΗΣ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ 30/9/08 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας Κεφ. 1

Ερωτήσεις κατανόησης σελίδας Κεφ. 1 Ερωτήσεις κατανόησης σελίδας 50 5 Κεφ.. Ο όγκος του διπλανού ορθογωνίου παραλληλεπιπέδου εκφράζεται µε τη συνάρτηση V() = ( )( ). Το πεδίο ορισµού της συνάρτησης αυτής είναι το διάστηµα : A. [0, + ] B.

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου ΑΣΚΗΣΗ 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός είναι ο υπολογισμός της σταθεράς k ενός ελατηρίου. Θα γίνει με δύο τρόπους: Από το νόμο του Hooke F = k x, βρίσκοντας την κλίση μιας πειραματικής

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας. ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου. Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου. Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ ΜΕΛΕΤΗ ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΣΕ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

Διαβάστε περισσότερα

Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών

Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών Ο11 Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί α) στην μελέτη του φαινομένου της εξασθένησης του φωτός καθώς αυτό διέρχεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 30/9/208 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 Τάξη: B Βαθμός: Μάθημα: Φυσικά (Φυσική και Χημεία) Ολογράφως:.. Ημερομηνία: 02/06/2011 Διάρκεια: 2 Ώρες Υπογραφή:

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων

ΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων ΠΕΙΡΑΜΑ 8 Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της ροπής αδρανείας διαφόρων στερεών σωµάτων και των στροφικών ταλαντώσεων που εκτελούν γύρω

Διαβάστε περισσότερα

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΘΕΜΑ Α Α1. Δ Α2. Γ Α3. Α Α4. Δ Α5. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β Β1. α) Σωστή η ii. β) Στη θέση ισορροπίας (Θ.Ι.) του σώματος ισχύει η συνθήκη ισορροπίας: ΣF=0

Διαβάστε περισσότερα