R E C E N Z I. Konkursъt e ob ven v br. 31/ g. na Dъrжaven vestnik. Dokumenti sa podali dvama kandidati:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "R E C E N Z I. Konkursъt e ob ven v br. 31/ g. na Dъrжaven vestnik. Dokumenti sa podali dvama kandidati:"

Transcript

1 R E C E N Z I po konkurs za docent s kandidati doc. d-r Silvi Pъrvanova Bumova gl. as. d-r Danail Stefanov Brezov Nauqna oblast: 4. Prirodni nauki, matematika i informatika Profesionalno napravlenie: 4.5. Matematika (Algebra i priloжeni ) Ob ven v Dъrжaven vestnik br. 31/ g. Konkursъt e ob ven v br. 31/ g. na Dъrжaven vestnik. Dokumenti sa podali dvama kandidati: (1) doc. d-r Silvi Pъrvanova Bumova, (2) gl. as. d-r Danail Stefanov Brezov. Ne zabel zah dopusnati naruxeni po procedurata na konkursa. We analiziram posledovatelno nauqnata i pedagogiqeskata de nost na dvamata kandidati spored materialite, predstaveni za uqastie v konkursa. Kandidatite sa podredeni po reda na postъpvane na materialite. I. Doc. d-r Silvi Pъrvanova Bumova 1. Danni za kandidata Silvi Bumova e rodena na 28. septemvri 1973 g. v gr. Sandanski. Prez 1996 g. zavъrxva Fakulteta po matematika i informatika na SU Sv. Kl. Ohridski. Prez 1996 g. zapoqva rabota v IMI BAN, kъdeto e posledovatalno nauqen sъtrudnik III, II i I stepen. Prez 2002 g. Silvi Bumova zawitava doktorska disertaci na tema Application of polynomials to spherical codes and designs v Tehniqeski Universitet, A ndhoven, Holandi. Prez 2013 g. t specializira v Tehniqeski Universitet - M nhen kato stipendiant na DAAD. Prez perioda g. Silvi Bumova raboti kato prepodavatel po matematika v Amerikanski koleж v Sofi. Ot 2011 g. do 2016 g. t e glaven asistent vъv VSU L. Karavelov. Prez 2016 g. e izbrana za docent na VSU L. Karavelov, kъdeto raboti i dosega. 1

2 2. Opisanie na nauqnite trudove Kandidatъt e predstavil za uqastie v konkursa 12 nauqni statii i tri elektronni uqebni posobi s lekcii po slednite uqebni disciplini: line na algebra i analitiqna geometri, matematiqeski analiz i grupi ot permutacii. Sedem ot statiite sa publikuvani v referirani spisani, kato qetiri ot tezi spisani sa s impakt-faktor. Ostanalite pet raboti sa v sbornici s dokladi ot konferencii i simpoziumi. Statiite sa otpeqtani v slednite izdani : - Designs, Codes and Cryptography - 1; (IF 0.825) - Journal of Algebra and its Applications - 1; (IF 0.968) - Israel Journal of Mathematics - 1; (Elsevier, IF 0.659) - Problemy Peredaqi Informacii - 1; (IF Math Net Ru 0.393) - Electronic Journal of Discrete Mathematics (Kluwer) - 1; - Serdica Math. Journal - 1; - Electronic Journal of the South-West University, Blagoevgrad - 1; - Proceedings of the Int. Workshop on Optimal codes and related topics - 1; - Proceedings of the Workshop on ACCT - 3; - Proceedings of the Conference Constructive Function Theory - 1. Ot predstavenite raboti edna stati e samosto telna, qetiri statii sa s edin, tri sa s dvama, tri s trima i edna s qetiri sъavtora. Priemam uqastieto na kandidata v sъvmestnite raboti za ravnosto no. Vsiqki raboti sa napisani sled predstav neto na disertacionni trud za prisъжdane na stepenta doktor. Nauqnite izsledvani na kandidata sa posveteni na razliqni matematiqeski problemi ot oblastta na algebrata, teori na kodiraneto, kriptografi ta i drugi svъrzani s t h oblasti. Kandidatъt e klasificiral rabotite, predstaveni za uqastie v konkursa v n kolko napravleni. Sferiqni kodove i diza ni. V tazi grupa se vkl qvat statii [1,2,3,4,5,6,7]. V t h se prodъlжavat izsledvani ta ot doktorskata disertaci na kandidata. Na -obwo v tezi raboti se razviva podhod kъm izsledvaneto na sferiqni diza ni s neqetna sila i otnositelno malka neqetna mownost. Centralni za tazi grupa ot statii sa raboti [6] i [7]. V pъrvata ot t h se poluqavat ocenki za ekstremalnite skalarni proizvedeni na takiva diza ni. Tezi ocenki pozvol vat 2

3 da se dokaжe nesъwestvuvaneto na redica hipotetiqni diza ni. Opisani sa priloжeni na razrabotenite metodi za τ = 3,5 i 7. Podobni rezultati sa poluqeni i vъv vtorata rabota, kъdeto e zavъrxena na klasifikaci ta na mownostite, za koito sъwestvuvat 3-diza ni vъrhu S n 1 za n = 8,13,14 i 18. Poluqenite rezultati izpolzvat kakto polinomialni metodi (polinomi na Gegegnbauer), taka i geometriqni argumenti. Algebri s polinomni tъжdestva V tazi grupa se vkl qvat statii [8,9,10,12]. V t h se razgleжdat razliqni zadaqi za algebri s polinomni tъжdestva. Na -vaжni tuk sa publikacii [9] i [10]. Rabota [8] e sъkratena versi na [9], dokladvana na XII Meжdunarodna konferenci po Algebriqna i kombinatorna teori na kodiraneto v Novosibirsk. V [9] se razgleжda T-ideala T(U k ) ot polinomni tъжdestva v algebrata na k k-gornotriъgъlni matrici nad pole s nuleva harakteristika. V rabotata e predstven algoritъm za presm tane na poraжdawite funkcii na redicata ot koharakerite na T(U k ). Qrez prilagane na tozi algoritъm sa namereni v ven vid kratnostite m λ (U k ) v n koi vaжni specialni sluqai. V [10] se razgleжdat PI-algebri R nad pole s harakteristika 0 i s poraжdawa funkci na redicata ot korazmernostite c(r,t). Neka R e s T ideal T(R) i neka R 1, R 2 i R sa sa PI-algebri, za koito T(R) = T(R 1 )T(R 2 ). V rabotata e dokazano, qe ako c(r 1,t) i c(r 2,t) sa racionalni funkcii, to i c(r,t) e racionalna funkci. Dokazano e sъwo, qe ako c(r 1,t) e racionalna i c(r 2,t) e algebriqna, to i c(r,t) sъwo e algebriqna. Teori na simetriqnite funkcii Tuk se vkl qva rabota [11]. Rabotata e dosta dъlga t e v obem ot 52 stranici. V ne s pomowta na klasiqeski metod ot naqaloto na XXv., svъrzan s imenata na Eliъt i MakMahon, se rexavat zadaqi za izqisl vane na proizvod wi funkcii na mnogo promenlivi ot specialen vid. Zadaqata se sъstoi v namiraneto na proizvod wata funkci na kratnostite na funkciite na Xur pri razlagane na specialna simetriqna funkci po bazisa na Xur. Tova pozvol va da se presmetnat redovete na Hilbert za redica algebri, vkl qvawi simetriqni algebri na kra noporodeni polinomni algebri na pъlnata line na grupa, graduirani kra noporodeni moduli na kra noporodeni algebri, otnositelno svobodni algebri v mnogoobrazi ot asociativni algebri. Kandidatъt e predstavil i spisъk ot 59 citata, koito pokazvat, qe rabotite í sa dobre poznati i visoko oceneni ot matematiqeskata obwnost. 3

4 V materialite po konkursa sa vkl qeni i zapiski po tri disciplini: line na algebra i analitiqna geometri, matematiqeski analiz-2 i grupi ot permutacii. We komentiram malko po-podrobno tezi tekstove v qastta, otnas wa se do prepodavatelskata de nost na kandidata. 3. Nauqni prinosi Po moe mnenie po-vaжnite prinosi na kandidata se sveжdat do slednoto: (1) Dokazani sa rezultati za nesъwestvuvane na sferiqni diza ni s neqetna sila i malka mownost. (2) Poluqeni sa ocenki za ekstremalnite skalarni proizvedeni na simetriqni diza ni s neqetna sila. (3) Presmetnati sa redovete na Hilbert za razliqni redici ot algebri. (4) Poluqeni sa novi rezultati za algebri s polinomni tъжdestva. 4. Prepodavatelska de nost Kandidatъt ima bogata prepodavatelska de nost, obhvawawa period ot nad 10 godini. T vkl qva vodene na upraжneni po Line na algebra i analitiqna geometri, Matematiqeski analiz - 1, Matematiqeski analiz - 2 vъv VSU L. Karavelov, upraжneni po algebra, line na algebra, analitiqna geometri, grupi ot permutacii vъv FMI na SU, lekcii po teori na kodiraneto, kriptografi i priloжna matematika vъv FMI na Velikotъrnovski Universitet, kakto i redica izborni kursove v Amerikanski koleж, Sofi. V materialite, podadeni za uqastie v konkursa, Silvi Bumova e predstavila, izgotveni ot ne zapiski ot lekcii po tri disciplini: line na algebra i analitiqna geometri (101 str., v sъavtorstvo s Veliqka Miluxeva), Matematiqeski analiz - 2 (63 str., v sъavtorstvo s Nikola Manev) i grupi ot permutacii (37 str.). Zapiskite po pъrvata disciplina pokrivat standarten material. Za sъжalenie namereni ta na avtorite ne sa dovъrxeni i mnogo glavi ot planiranite ne sa napisani (markirani sa samo kato zaglavi ). Napisanata qast vkl qva dosta dobro izloжenie na slednite temi: kompleksni qisla i polinomi, matrici i determinanti, line ni prostranstva, pravi i ravnini (v dvumerni i trimerni prostranstva), evklidovi i unitarni prostranstva. Oformlenieto na napisanata qast e mnogo dobro. Zapiskite po Matematiqeski analiz (2. qast) sa v na -zavъrxen vid. V t h sa vkl qeni i gol m bro primeri i zadaqi. Razgledanite temi tuk sa: redove, redove na Furie, funkcii na mnogo promenlivi, krivi v R 2 i R 3 (kato 4

5 poslednata tema bi tr bvalo da se razgleжda kato uvod v diferencialnata geometri ). Na -interesni za men sa materialite po grupi ot permutacii. Za sъжalenie i te ne sa zavъrxeni i trudno mogat da bъdat izpolzvani v tozi im vid. Dokolkoto mi e izestno te otraz vat speckursa, ko to kandidatъt e qel vъv FMI predi n kolko godini. Materialъt e razdelen v qetiri glavi. Pъrvata glava e newo kato uvod v teori na grupite i vkl qva izreжdane na definicii i rezultati bez dokazatelstva. Glava 2 e posvetena na n koi specialni klasove grupi: simetriqnata grupa, specialni matriqni grupi. Izloжenieto tuk e veqe po-podrobno. Vkl qeni sa primeri i upraжneni. Glava 3 e posvetena na grupi ot simetrii na geometriqni figuri i grupi ot avtomorfizmi na grafi. Glava 4 e po sъwestvo centralnata za kursa. T zapoqva s vъveжdane na pon tieto de stvie na grupa vъrhu mnoжestvo, stabilizator na element i orbita na element. Dokazani sa fundamentalni rezultati za de stvie na grupa vъrhu mnoжestvo i sa razgledani n koi interesni primeri. No kato c lo kursъt ne navliza v po-dъlboki temi i preprawa kъm klasiqeskite tekstove na H. Viland, D. Pasman, P. Kamerъn, D. Diksъn i B. Mortimъr. 5. Proektna de nost, uqasti v konferencii i dr. Doc. Silvi Bumova uqastva aktivno vъv vsiqki proekti za nauqni izsledvani, koito departament Matematiqeski osnovi na informatikata ima s Fond Nauqni izsledvani prez perioda g. Sledva da se otbeleжi aktivnoto í uqastie v organiziraneto i proveжdaneto na meжdunarodnite konferencii po Algebriqna i kombinatorna teori na kodiraneto ACCT, kakto i na rabotnite seminari po Optimalni kodove (Optimal codes and related topics). Silvi Bumova e sekretar na sekci Matematiqeski osnovi na informatikata v Instituta po matematika i informatika v perioda g. 6. Qisleni pokazateli Sъglasno predstavenite materiali rabotite na doc. Bumova mogat da bъdat klasificirani kakto sledva: - nauqni spisani s IF: 4 - nauqni spisani sъs SJR: 1 - nauqni spisani bez IF ili SJR: 2 - sbornici s dokladi ot konferencii sъs SJR : 0 - sbornici s dokladi ot konferencii bez SJR : 5 5

6 Obwi t impakt-faktor na predstavenite statii e 2.845, a indeksъt SJR e Obwi t bro citirani na rabotite na kandidata e 59. Ot t h 32 citata sa v referirani spisani, a tri citata sa v izkl qitelno prestiжni monografii s avtori Dж. Konue i N. Sloan, Vl. Levenxte n, T. Erikson i V. Zinovьev. 7. Kritiqni beleжki N mam kritiqni beleжki po sъwestvo, no bih preporъqal dorabotvane na zapiskite po grupi ot permutacii. Tova bi se vpisalo dobre v pedagogoqeski i nauqen profil na katedra Algebra. Kolkoto do drugite tekstove sqitam, qe dori samo v naxata literatura ima mnogo dobri pomagala i n ma nuжda ot pisane na novi. 8. Liqni vpeqatleni Poznavam liqno kandidata ot nad 20 godini. Prisъstval sъm mnogokratno na ne ni dokladi, iznas ni na naxi i meжdunarodni konferencii. Vpeqatleni ta mi sa, qe t e seriozen izsledovatel sъs zadъlboqeni poznani v xiroki oblasti na algebrata, teori na kodiraneto i kriptografi ta. Za men e izvъn vs ko sъmnenie, qe t udovletvor va iziskvani ta za zaemane na dlъжnostta docent na Fakulteta po matematika i informatika na Sofi ski Universitet. 9. Ocenka na kandidata Sqitam, qe v svo ta nauqno-izsledovatelska rabota doc. Silvi Bumova e poluqila znaqimi nauqni rezultati, koito sъotvetstvat na sъvremennite postiжeni i predstavl vat originalen prinos v naukata. S rabotite si kandidatъt pokazva zadъlboqeni teoretiqni znani v oblastta na algebrata, teori na kodiraneto i kriptografi ta. Prepodavatelskata í de nost e izkl qitelno intenzivna i e proveжdana na visoko nivo. Zaedno s tova t vzima aktivno uqastie v жivota na matematiqeskata obwnost. Goreizloжenoto mi dava osnovanie da dam poloжitelna ocenka na kandidaturata na doc. Silvi Pъrvanova Bumova v konkursa za docent v profesionalno napravlenie: 4.5. Matematika (algebra i priloжeni ) za nuжdite na FMI na SU Sv. Kliment Ohridski. 6

7 II. Gl. as. Danail Stefanov Brezov 1. Danni za kandidata Danail Brezov e roden na 28. mart 1981 g. v gr. Stara Zagora. To zavъrxva Fiziqeski fakultet na SU Sv. Kl. Ohridski prez 2004 g. s obrazovatelno-kvalifikacionnata stepen bakalavъr. Prez 2006 g. to se diplomira kato magistъr v magistъrskata programa Matematika i matematiqna fizika na Fakulteta po matematika i informatika. Prez 2006 g. zapoqva rabota v Instituta po biofizika na BAN kato fizik. Prez 2007 g. postъpva na rabota v UASG, kъdeto raboti i dosega kato glaven asistent. Prez 2015 g. Danail Brezov zawitava doktorska disertaci v Instituta po mehanika na BAN. Temata na disertacionni mu trud e Vektorni parametrizacii i faktorizacii v evklidovi i hiperboliqni modeli v mehanikata (nauqna oblast: teoretiqna mehanika). 2. Opisanie na nauqnite trudove Kandidatъt e predstvil za uqastie v konkursa 16 nauqni truda i tri uqebni pomagala. Xest ot nauqnite trudove sa publikuvani v referirani spisani, (qetiri ot koito sa s impakt-faktor), a ostanlite deset sa v sbornici s dokladi na konferencii. Statiite sa publikuvani v nauqni izdani kakto sledva: - Advances of Applied Clifford Algebras -1 (IF 0.905), - Journal of the Korean Physical Society - 1 (IF 0.445), - Proceedings of Applied Mathematics and Mechanics -1 (IF 0.24), - Comptes Rendus de l Academie Bulgare des Sciences - 1 (IF 0.233), - Journal of Geometry and Symmetry in Physics - 2, - AIP Conference Proceedings - 6, - International Conference on Geometry Integrability and Quantization - 1, - Advanced Computing and Industrial Mathemtics - 1, - Proc. Int Conf. on Intelligent Robotics and Applications - 1, - Mathematics and Industry - 1. Edna stati e samosto telna, vsiqki ostanali sa s dvama (posto nni) sъavtori. Priemam uqastieto na kandidata v sъvmestnite raboti za ravnosto no. Vsiqki raboti sa napisani sled predstav neto na disertacionni trud za prisъжdane na stepenta doktor. Qasti ot [15] se presiqat s razdel 5.5 7

8 na disertacionni trud, no samata rabota ne e citirana sred rabotite, izpolzvani v nego. Nauqnite izsledvani na kandidata se vkl qvat v oblastta na teoretiqnata mehanika i matematiqnata fizika, kakto i v drugi svъrzani s t h oblasti. Rabotite na kandidata sъzdavat vpeqatlenie za ambiciozen i seriozen izsledovatel s aktivna publikacionna de nost. Poveqeto ot t h sa posveteni na vektorni parametrizacii za poluqvane na razlagani na trimerni rotacii po podviжni ili nepodviжni osi. Tazi grupa vkl qva raboti [2,3,5,6,8,9,10,14,15], kъdeto se izsledvat razlagani na rotacii v R 3 spr mo otnapred zadadeni osi, kakto i neobhodimi i dostatъqni uslovi za sъwestvuvane na takiva razlagani. Druga grupa ot raboti e posvetena na predstv ni na n koi klasiqeski grupi. Taka v [1] sa izsledvani predstv ni ta na SL 2 kato se diskutirat i priloжeni v specialna teri na otnositelnostta, klasiqeskata i kvantovata mehanika. Na -blizko do temata na konkursa (algebra i priloжeni ) e rabota [15], v ko to sъwestvuvat prepratki kъm teori na qislata [15]. T e inspirirana ot n kolko beleжki v American Mathematical Monthly i Mathematical Gazette sъglasno koito vsiqki rexeni na n koi uravneni ot vida x 2 1 +x x 2 n = x mogat da se poluqat kato orbiti na opredeleno qastno rexenie pod de stvieto n koi klasiqeski grupi. Za sъжalenie ot teksta ne stava sno dali avtorite ima pretencii za n kakvi teoretiko-qislovi prinosi i s kakvo predloжenite metodi prevъzhoжdat klasiqeskite. We otbeleжa, qe obwoto rexenie na uravneni ot gorni vid (za vs ko n) e opisano owe v klasiqeskata kniga po diofantovi uravneni na Luis Mordel. Obwi t vid na rexeni ta e bil izvesten owe na Karma kъl v naqaloto na veka, a Mordel izpolzva v rexavaneto im kompleksni qisla i kvaternioni. Tam e razgledano, razbira se, i uravnenieto x 2 1 +x2 2 = x2 3 +x2 4 Tazi rabota, kakto i vsiqki ostanali, e napisana opisatelno bez sno formulirani rezultati i poqti bez dokazatelstva. 3. Nauqni prinosi Po moe mnenie po-vaжnite prinosi na kandidata se sveжdat do izpolzvane na vektorni parametrizacii v duha na monografi ta na Fьodorov za rexavane na specialni zadaqi ot mehanikata, glavno za poluqavane na neobhodimi i dostatъqni uslovi za razlagane na vъrteni v R 3 na rotacii i vъobwe za predstav neto im kato superpozici na rotaciii spr mo otnapred zadadeni osi. Kandidatъt e predstavil i tri uqebni pomagala, ozaglaveni sъotvetno: 8

9 - Introduction in Algebra and Analytic Geometry - Applied Mathematics - Izomorfizmi pri n koi algebri na Lie v niskite razmernosti Pъrvite dve ot pomagalata sa napisani na angli ski ezik. Ne e sno dali tezi pomagala sa preminali recenzirane. Sqitam, qe pone dve ot t h pokazvat seriozni defekti i sa neprigodni za obuqenie. Po-podrobno we komentiram n koi ot t h v toqkata kritiqni beleжki. 4. Prepodavatelska de nost Kandidatъt e vodil lekcii i upraжneni po Line na algebra i analitiqna geometri, Analiz - 2 i Priloжna matematika. Ako sъdъrжanieto na poslednata disciplina sъotvetstva na materiala ot ednoimennoto elektronno posobie, to t e dosta stranen miks ot redove, kompleksen analiz, analiz na Furie, vero tnosti i statistika i qisleni metodi. V predstaveni spisъk e spomenat i kursъt Izomorfizmi na n koi grupi i algebri na Li v niskite razmernosti. L bopitno e, pred kakva auditori e qeten tozi kurs, ko to e dosta specialen. Mnogo visoko ocen vam angaжiranostta na kandidata sъs studentskite olimpiadi, kakto i s organiziraneto na l tnata xkola po matematika v UASG prez l to na Proektna de nost, uqasti v konferencii, liqni vpeqatleni i dr. Kandidatъt e predstavil spisъk na okolo 30 konferencii v koito e uqastval. Tova pravi po okolo dve konferencii na godina, koeto e dosta visoka konferentna aktivnost. N ma svedeni kandidatъt da e iznas l plenarni dokladi. D-r Brezov e uqastnik v proekt Efektivnost na instrumentite za strategiqesko prostranstveno planirane na mestno novo: sistema za ocen vane. Proektъt e vъtrexno-universitetski i ne izgleжda svъrzan s osnovnite nauqni interesi na kandidata. 6. Qisleni pokazateli Sъglasno predstavenite materiali rabotite na gl. as. Brezov mogat da bъdat klasificirani kakto sledva: - nauqni spisani s IF: 4 - nauqni spisani sъs SJR: 2 - nauqni spisani bez IF ili SJR: 0 - sbornici s dokladi ot konferencii sъs SJR : 7 - sbornici s dokladi ot konferencii bez SJR : 3 9

10 Obwi t impakt-faktor na predstavenite statii e 1.823, a indeksъt SJR e Obwi t bro citirani na rabotite na kandidata e 13. Ot t h 8 citata sa v referirani spisani. 7. Kritiqni beleжki Krititqnite mi beleжki sa kъm predstavenite uqebni materiali i po-specialno kъm dvata t.nar. elektronni uqebnika, napisani na angli ski ezik. Pъrvi t ot t h, nareqen Uvod v line nata algebra i analitiqnata geometri, namiram za kl qov v tozi konkurs, tъ kato materialъt, pokrit ot nego, sъvpada s tozi ot kursovete, koito se vod t ot katedra Algebra. Naqalnite glavi sa podgotvitelni: pъrvata e posvetena na binomni koeficienti i matematiqeska indukci, vtorata - na kompleksni qisla, i tretata na polinomi. Binomnite koeficienti ( n k) se vъveжdat samo za celi neotricatelni n (koeto vsъwnost e izvestno owe ot deveti ili deseti klas na srednoto uqiliwe) kato koeficienta pred a k b n k v razvitieto na (a + b) n. Osnovnoto rekurentno sъtnoxenie za binomni koeficienti ne se dokazva, a se zabel zva v triъgъlnika na Paskal. Vъobwe v teksta lipsvat dokazatelstva, stilъt e opisatelen. Po podoben naqin v razdela za matematiqeska indukci se vъveжda qisloto e (deklarativno i bez argumentaci zawo granicata lim n (1+1/n) n vъobwe sъwestvuva). V razdela sъs zadaqi ima otkroveni grexki kato, naprimer, qe sumata ot kubovete na pъrvite n estestveni qisla e n 2 (2n 2 1) (zadaqa 5a)), kakto i izkl qitelno vrednata zadaqa 6a, v ko to se iska da se dokaжe po indukci, qe 10 k=11/k < 1+10/n sled kato e dobre izvestno, qe harmoniqni t red e razhod w. Sъwi t stil na izloжenie prodъlжava i v sledvawite glavi. V glavata za kompleksni qisla nauqavame, qe estestvenite qisla obrazuvat modul nad sebe si (str. 14, red 11 otd.). Kazva se, qe kompleksnite qisla obrazuvat pole predi vъobwe da se definirat operacii s t h i predi da e sno kakvo e pole; po sъwi naqin se kazva, qe obrazuvat algebra, predi da e sno, kakvo e algebra, spomenva se qe C e maksimalno razxirenie na R, makar da e izvestno, qe ima mnogo transcendentni razxireni na C, napr. C(x) poleto na racionalnite funkcii nad C. Pokazatelno za celi stil na izloжenie e izveжdaneto na formulata na O ler e iϕ = cosϕ + isinϕ, koeto se sveжda do zamestvane na a s iϕ vъv formulata e a = lim n (1+ a n )n = k=0 a k k!. Pri tova ostava ne sen smisъlъt na granicata vd sno. 10

11 Glavata za polinomi e napisana sъwo dosta diletantski. Tam nauqavame naprimer, qe polinom e izraz ot vida P(z) = n k 0 a kz n k, kъdeto a k,z C.... Stepenta na polinom se nariqa ko znae zawo red na polinom, kazva se, qe primeri za polinomi bili line nite funkcii (?), formalen red se definira kato polinom s bezkra na stepen i t.n. i t.n. Teoremata za delene s ostatъk na polinom s koeficienti ot pole (vsъwnost avtorъt razgleжda samo polinomi nad C) e napisana v dosta stranen vid: P(z) S(z) = R(z)+ Q(z) Q(z). Ne e sno kak se razbira izrazъt 1/Q(z). Ako tova e obratni t na Q(z), to to pъrvo ne vinagi sъwestvuva, vtoro ne e polinom a formalen red. Zawo prosto ne se napixe P(z) = R(z)Q(z)+S(z)? V razdel 3.3: zawo sme sigurno qe sъwestvuvat qislata A i vъv formulata (3.7). Primerite mogat da bъdat prodъlжeni. Sъwinskata qast zapoqva s glava 4. Tam newata se vloxavat nito edno ot fundamentalnite pon ti na line nata algebra ne e vъvedeno strogo. We spomena samo definici ta za vektorno prostranstvo (str. 37): A real vector space is a set V, which contains all linear combinations of its elements with real coefficients... Stranno e, qe v litertaurata ne e vkl qeno nito edno bъlgrasko zaglavie pri naliqieto na otliqni uqebnici i pomagala. Po podoben naqin sto t newata i s vtoroto pomagalo po priloжna matematika. We priveda samo dva primera za nivoto na predloжeni tekst (str. 3, beleжkata pod qerta): injectivity (of α) means that each element k in the domain N has its image α(k) C kakto i definici ta na granica na redica na str.4, red 8-9 otdolu: Now, if a sequence {a k } has a unique point of accumulation, say a, it is called its limit and we write lim k a k = a, or simply a k a. Then we also say that {a k } is convergent Liqni vpeqatleni Ne poznavam kandidata i n mam liqni vpeqatleni ot nauqnata i prepodavatelskata mu de nost. 9. Ocenka na kandidata Sqitam, qe gl. as. Danail Brezov e poluqil originalni i znaqimi rezultati v klasiqeska oblast na matematiqnata fizika. Publikacionnata mu 11

12 de nost v poslednite godini e izkl qitelno intenzivna. Ocen vam poloжitelno angaжiraneto mu s de nostta na akademiqnata obwnost na UASG. Za sъжalenie imam seriozni rezervi kъm pedagogiqeskata de nost na kandidata i po-specialno kъm vъzmoжnostite mu da vodi lekcii po algebriqni disciplini. Argumentite mi se sveжdat kakto do dosta niskoto kaqestvo na predstavenite uqebni materiali, taka i do lipsata na formalna podgotovka po abstraktna algebra ot kandidata po vreme na sledvaneto mu. Sqitam, qe kъm tozi moment kandidatъt pokazva znaqitelni propuski v matematiqeskoto si obrazovanie po algebra, i davam otricatelna ocenka na kandidaturata mu v konkursa za docent v profesionalno napravlenie: 4.5. Matematika (algebra i priloжeni ) za nuжdite na FMI na SU Sv. Kliment Ohridski. Zakl qenie V zakl qenie we naprav kratko sravnenie na dvete kandidaturi. I dvamata kandidati pokazvat priblizitelno ravna publikacionna de nost; qislenite pokazateli sъwo sa priblizitelno ravni. Doc. Silvi Bumova e predstavila znaqitelno po-dъlъg spisъk ot citirani. Tematiqno rabotite na doc. Bumova sъotvetstvat po-toqno na temata na konkursa. Oblastite, v koito se vkl qvat tezi raboti, mogat da bъdat opredeleni kato algebriqna kombinatorika, P I- algebri (klasiqeska algebriqna discplina), teori na kodiraneto. Ot druga strana rabotite na gl. as. Brezov mogat da bъdat klasificirani kato teoretiqna mehanika i matematiqna fizika. Kandidatъt ne predstav nito edna rabota v algebriqno spisanie. Stilъt na izloжenie v rabotite mu e opisatelen i netipiqen za matematiqeski publikacii. Wo se otnas do prepodavatelskata de nost, doc. Silvi Bumova e vodila poveqe i po-raznoobrazni kursove, koito sъotvetstvat na profila na katedra Algebra. Kolkoto do gl.as. Brezov, opitъt mu se sveжda do vodene na zan ti po line na algebra i analitiqna geometri, no po-gore veqe izrazih rezervite si kъm algebriqnata mu podgotovka. Goreizloжenoto mi da osnovanie ubedeno da preporъqam kandidaturata na doc. d-r Silvi Pъrvanova Bumova za docent na Fakulteta po matematika i informatika na SU Sv. Kliment Ohridski v profesionalno napravlenie: 4.5. Matematika (algebra i priloжeni ). Sofi, g. Qlen na Nauqnoto Жuri: (prof. d.m.n. Ivan Landжev) 12

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

EGZISTENCIJA I KONSTRUKCIJA NA POLINOMNO RE[ENIE NA EDNA PODKLASA LINEARNI HOMOGENI DIFERENCIJALNI RAVENKI OD VTOR RED

EGZISTENCIJA I KONSTRUKCIJA NA POLINOMNO RE[ENIE NA EDNA PODKLASA LINEARNI HOMOGENI DIFERENCIJALNI RAVENKI OD VTOR RED 8 MSDR 004, (33-38) Zbonik na tudovi ISBN 9989 630 49 6 30.09.- 03.0.004 god. COBISS.MK ID 6903 Ohid, Makedonija EGZISTENCIJA I KONSTRUKCIJA NA POLINOMNO RE[ENIE NA EDNA PODKLASA LINEARNI HOMOGENI DIFERENCIJALNI

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Решенија на задачите за основно училиште. REGIONALEN NATPREVAR PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO REPUBLIKA MAKEDONIJA 25 april 2009

Решенија на задачите за основно училиште. REGIONALEN NATPREVAR PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO REPUBLIKA MAKEDONIJA 25 april 2009 EGIONALEN NATPEVA PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO EPUBLIKA MAKEDONIJA 5 april 9 Zada~a Na slikata e prika`an grafikot na proena na brzinata na dvi`eweto na eden avtoobil so tekot na vreeto

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Japanese Fuzzy String Matching in Cooking Recipes

Japanese Fuzzy String Matching in Cooking Recipes 1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Voved vo matematika za inжeneri

Voved vo matematika za inжeneri Univerzitet,,Sv. Kiril i Metodij, Skopje Fakultet za elektrotehnika i informaciski tehnologii Sonja Gegovska-Zajkova, Katerina Ha i-velkova Saneva, Elena Ha ieva, Marija Kujum ieva-nikoloska, Aneta Buqkovska,

Διαβάστε περισσότερα

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ Πτυχιακή Εργασία Φοιτητής: ΜIΧΑΗΛ ΖΑΓΟΡΙΑΝΑΚΟΣ ΑΜ: 38133 Επιβλέπων Καθηγητής Καθηγητής Ε.

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Discriminantal arrangement

Discriminantal arrangement Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

A Hierarchy of Theta Bodies for Polynomial Systems

A Hierarchy of Theta Bodies for Polynomial Systems A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία. Γεώργιος Ακρίβης Προσωπικά στοιχεία Έτος γέννησης 1950 Τόπος γέννησης Χρυσοβίτσα Ιωαννίνων Εκπαίδευση 1968 1973,, Ιωάννινα. Μαθηματικά 1977 1983,, Μόναχο, Γερμανία. Μαθηματικά, Αριθμητική Ανάλυση Ακαδημαϊκές

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις» Τα μητρώα καταρτίστηκαν με απόφαση της Ακαδημαϊκής Συνέλευσης της ΣΝΔ της 18ης Απριλίου 2013. Η ανάρτησή τους στον ιστότοπο της ΣΝΔ εγκρίθηκε με απόφαση του Εκπαιδευτικού Συμβουλίου της 24ης Απριλίου 2013.

Διαβάστε περισσότερα

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

9. Matriqnoe predstavlenie line nyh operatorov. Diagonalizuemostь matricy line nogo operatora.

9. Matriqnoe predstavlenie line nyh operatorov. Diagonalizuemostь matricy line nogo operatora. A Utexev 9 Matriqnoe predstavlenie line nyh operatorov Diagonalizuemostь matricy line nogo operatora 1 Matriqnoe predstavlenie line nyh operatorov Budem oboznaqatь qerez V line noe vektornoe prostranstvo

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ Υ ΑΤΙΚΩΝ & Ε ΑΦΙΚΩΝ ΠΟΡΩΝ ΕΠΙΒΑΡΥΝΣΗ ΜΕ ΒΑΡΕΑ ΜΕΤΑΛΛΑ Ε ΑΦΩΝ ΤΗΣ

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Σχεδίαση και Ανάπτυξη Παιχνιδιού για την Εκμάθηση των Βασικών Στοιχείων ενός Υπολογιστή με Χρήση του Περιβάλλοντος GameMaker

Σχεδίαση και Ανάπτυξη Παιχνιδιού για την Εκμάθηση των Βασικών Στοιχείων ενός Υπολογιστή με Χρήση του Περιβάλλοντος GameMaker Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ηλίας Ανδρεάδης Α.Ε.Μ 1443 Μιχάλης Στρατίδης Α.Ε.Μ 1543 Σχεδίαση και

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

Κβαντικη Θεωρια και Υπολογιστες

Κβαντικη Θεωρια και Υπολογιστες Κβαντικη Θεωρια και Υπολογιστες 1 Εισαγωγη Χειμερινο Εξαμηνο Iωαννης E. Aντωνιου Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο Θεσσαλονικη 54124 iantonio@math.auth.gr http://users.auth.gr/iantonio Κβαντική

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα