Generating Set of the Complete Semigroups of Binary Relations


 Κύμα Γαλάνη
 1 χρόνια πριν
 Προβολές:
Transcript
1 Applied Mathematics Published Online January 06 in SciRes Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze Neset Aydin Ali Erdoğan 3 Shota Rustavelli University Batumi Georgia Çanakkale Onsekiz Mart University Çanakkale Turkey 3 Hacettepe University Ankara Turkey Received 6 ecember 05; accepted 5 January 06; published 8 January 06 Copyright 06 by authors and Scientific Research Publishing Inc This work is licensed under the Creative Commons Attribution International License (CC BY) Abstract ifficulties encountered in studying generators of semigroup B X of binary relations defined by a complete Xsemilattice of unions arise because of the fact that they are not regular as a rule which makes their investigation problematic In this work for special it has been seen that the B which are defined by semilattice can be generated by the set semigroup X { X ( ) } B = B V X = Keywords Semigroups Binary Relation Generated Set Generators Introduction Theorem Let { m } = be some finite Xsemilattice of unions and = { } C P P P Pm 0 be the family of sets of pairwise nonintersecting subsets of the set X If φ is a mapping of the semilattice on the family of sets and ϕ ( ) = P for any i = m and ˆ \ i i i 0 m 0 C which satisfies the condition ϕ ( ) = P0 = T then the following equalities are valid: = P P P P = P T ϕ () T ˆ i How to cite this paper: iasamidze Y Aydin N and Erdoğan A (06) Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics
2 Y iasamidze et al In the sequel these equalities will be called formal It is proved that if the elements of the semilattice are represented in the form then among the parameters P i ( i = 0 m ) there exist such parameters that cannot be empty sets for Such sets P i ( 0< i m ) are called basis sources whereas sets P i ( 0 j m ) which can be empty sets too are called completeness sources It is proved that under the mapping ϕ the number of covering elements of the preimage of a basis source is always equal to one while under the mapping ϕ the number of covering elements of the preimage of a completeness source either does not exist or is always greater than one (see [] Chapter ) Some positive results in this direction can be found in [][6] Let P0 P P Pm be parameters in the formal equalities BX ( ) and m = i= 0 t Pi t X\ Pi t ({ t } t ) () m = Pi t X i= 0 t Pi (( \ ) ) (3) The representation of the binary relation of the form and will be called subquasinormal and maximal subquasinormal If and are the subquasinormal and maximal subquasinormal representations of the binary relation then for the binary relations and the following statements are true: a) BX ( ) ; b) ; c) the subquasinormal representation of the binary relation is quasinormal; d) if P0 P Pm P0 P Pm then is a mapping of the family of sets { } e) if : X \ Results C = P P P Pm in the Xsemilattice of unions 0 { } m = t = t for all t X \ then is a mapping satisfying the condition Proposition Let B ( ) X m = Pi t t t i= 0 t Pi t X\ Then = = ({ } ( )) Proof It is easy to see the inclusion holds since x y xy X then xz m y for some z X So z X \ since z x z P t y Then ( ) for some k ( 0 k m ) If and ( i= 0 ( i t P )) i z P t y k ie z P t P k k and y z t For the last condition t P k follows that z y We have xz y and x( ) y Therefore the inclusion is true Of this and by inclusion follows that the equality = = holds Corollary If δ BX ( ) δ then = δ = Proof We have δ and δ Of this follows that = δ = since = Let the Xsemilattice = { 3 } of unions given by the diagram of Figure Formal equalities of the given semilattice have a form: 99
3 Y iasamidze et al Figure iagram of = P0 P P P3 P = P0 P P3 P = P0 P P3 P 3 = P0 P P P = P P 0 The parameters P P P 3 are basis sources and the parameters P0 P are completeness sources ie X 3 Example 3 Let X = { 3 567} P = { } P = { 5} P 3 = { 3 6} P0 = P = Then for the for = 5 = { } = { 3 6} = { 356} mal equalities of the semilattice follows that { } 3 5 = { 3 56} = {{ }{ }{ 3 }{ 3 }{ 3} } and = ({ } { }) ({ } { }) ({ } { }) ({ } { }) Then we have: t = { } t = { } t = { } t P t P t P3 t = t = ; t P0 t P ({ } { }) ({ } { }) ({ } { }) ({ } { }) = ; ({ } { }) ({ } { }) ({ } { }) ({ } { }) = Theorem Let the Xsemilattice = { 3 } of unions given by the diagram of Figure B = { BX ( ) V ( X ) = } and X \ 3 Then the set B is generating set of the semigroup BX ( ) Proof It is easy to see that X 6 since P P P3 { } and X \ 3 Now let be any binary rela B ; n B = n = 3 n Then the equality = = ( is subquasinormal representation of a binary relation ) is true By assumption BX ( ) ie the quasinormal representation of a binary relation have a form Y Y Y Y = Y tion of the semigroup X Of this follows that = (5) ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) For the binary relation we consider the following case V X = Then = X T where T By element T we consider the following cases: a) Let T In this case suppose that P P P P P T T T 0 3 X on the set { } \{ } T Then 3 () 00
4 where Y Y Y Y { } ( P0 ) ( P T) ( P T) ( P3 T) ( P ) { t } ( t ) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) then it is easy to see that B 3 formal equality and equalities (6) and (5) we have: = P P = P P = T = T; since ( ) Y iasamidze et al (6) V = V = From the = P P P P = P P P P = T T = T; = P P P P = P P P P = T T = T; = P0 P P3 P = P0 P P3 P = T T = T; = P P P P P = P P P P P = T T T = T; = since 3 0 ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y T) ( Y3 T) ( Y T) ( Y T) ( Y0 T) X T = Y Y Y Y Y = X T = In this case suppose that P0 P P P3 P = 3 are mapping of the set X \ in the set Then = P P P P P t t where Y Y Y Y { } ( 0 ) ( ) ( ) ( 3 3) ( ) ({ } ) ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) since ( ) then it is easy to see that B 3 V = V = From the formal equality and equalities (7) and (5) we have: = P0 P = P0 P = ; 3 = P0 P P P = P0 P P P = ; = P0 P P3 P = P0 P P3 P = ; = P0 P P3 P = P0 P P3 P = ; = P P P P P = P P P P P = ; b) V ( X ) since V ( X ) cases = = Then Let V ( X ) { T} ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = = X V ( X ) { { } { 3} { } { 3 } { } { } } is Xsemilattice of unions For the semilattice of unions V ( X ) = where T { } 3 (7) consider the following Then binary relation has representation of the form 0
5 Y iasamidze et al ( Y ) ( Y T T ) = In this case suppose that where Y Y Y Y { } P0 P P P3 P T T X on the set \{ } T Then ( P0 ) ( P T) ( P ) ( P3 T) ( P ) { t } ( t ) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) Y = Y and Y3 Y Y Y0 = Y0 then it is easy to see that B since V = V = From the formal equality and equalities (8) and (5) we have: = P P = P P = = 0 0 = P P P P = P P P P = T = T; = P P P P = P P P P = T T = T; = P P P P = P P P P = T = T; = P P P P P = P P P P P = T T = T; ; (8) = Let V ( X ) = { T } form ( Y T T) ( Y0 ) ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y3 T) ( Y T) ( Y T) ( Y0 T) = Y Y Y Y Y T = Y Y T where T { } 3 = In this case suppose that Then binary relation has representation of the where Y Y Y Y { } P P P P P T 0 3 X on the set \ { } ( 0 ) ( ) ( ) ( 3 ) ( ) ({ } ) T Then = P P P T P P t f t ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) Y = YT and Y3 Y Y Y0 = Y0 then it is easy to see that B V = V = From the formal equality and equalities (9) and (5) we have: since (9) 0
6 Y iasamidze et al = P0 P = P0 P = T = T; 3 = P0 P P P = P0 P P P = T = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P3 P = P0 P P3 P = T = ; = P0 P P P3 P = P0 P P P3 P = T = ; = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y T) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = ( Y T) ( ( Y3 Y Y Y0 ) ) = ( YT T) ( Y0 ) c) V ( X ) = 3 Then V ( X ) { { } { 3 } { } { } { 3 } { 3 } } since V ( X ) is Xsemilattice of unions For the semilattice of unions V ( X ) cases Let V ( X ) = { } ( Y ) ( Y ) ( Y 0 ) Then binary relation has representation of the form = In this case suppose that where Y Y Y Y { } P0 P P P3 P X on the set \ { } Then ( P0 ) ( P ) ( P ) ( P3 ) ( P ) ({ t } f ( t )) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) consider the following 3 Y = Y Y = Y and Y3 Y Y0 = Y0 then it is easy to see that B since V = V = From the formal equality and equalities (0) and (5) we have: = ( P0 P) = P0 P = = ; 3 = ( P0 P P P) = P0 P P P = = ; = ( P0 P P3 P) = P0 P P3 P = = ; = ( P0 P P3 P) = P0 P P3 P = = ; = ( P0 P P P3 P) = P0 P P P3 P = = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y ) ( ( Y3 Y Y0 ) ) = ( Y ) ( Y ) ( Y0 ) V X = Then binary relation has representation of the form Let { 3 } (0) 03
7 Y iasamidze et al ( Y ) ( Y 3 3) ( Y 0 ) = In this case suppose that where Y Y Y Y { } P0 P P P3 P 3 X on the set \ { 3 } Then ( P0 ) ( P 3) ( P ) ( P3 ) ( P ) ({ t } f ( t )) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) Y = Y Y3 = Y3 and Y Y Y0 = Y0 then it is easy to see that = = From the formal equality and equalities () and (5) we have: B since 3 ( ) ( ) V V = P P = P P = = 0 0 = P P P P = P P P P = = ; 3 3 = P0 P P3 P = P0 P P3 P = = ; 3 = P0 P P3 P = P0 P P3 P = = ; = ( P0 P P P3 P) = P0 P P P3 P = = ; 3 = 3 Let V ( X ) = { } ( Y ) ( Y ) ( Y 0 ) ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( ) ( 3 3) ( 0 ) = Y Y Y Y Y = ( Y ) ( Y3 3) ( Y0 ) Then binary relation has representation of the form = In this case suppose that P0 P P P3 P X on the set \ { } Then ( P0 ) ( P ) ( P ) ( P3 ) ( P ) ({ t } f ( t )) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) ; where Y Y 3 Y Y { } Y B since = Y Y = Y and Y3 Y Y0 = Y0 then it is easy to see that V = V = From the formal equality and equalities () and (5) we have: () () 0
8 Y iasamidze et al = P0 P = P0 P = = ; 3 = P0 P P P = P0 P P P = = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P P3 P = P0 P P P3 P = = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y ) ( ( Y3 Y Y0 ) ) = ( Y ) ( Y ) ( Y0 ) V X = Then binary relation has representation of the form Let { } ( Y ) ( Y ) ( Y 0 ) = In this case suppose that P0 P P P3 P \ Then X on the set { } ( P0 ) ( P ) ( P ) ( P3 ) ( P ) ({ t } f ( t )) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) where Y Y 3 Y Y { } Y Y Y B since V V = = Y and Y3 Y Y0 = Y0 then it is easy to see that = = From the formal equality and equalities (3) and (5) we have: = P0 P = P0 P = = ; 3 = P0 P P P = P0 P P P = = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P P3 P = P0 P P P3 P = = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y ) ( ( Y3 Y Y0 ) ) = Y Y Y ( ) ( ) ( 0 ) 5 Let V ( X ) = { 3 } ( Y ) ( Y 3 3) ( Y 0 ) Then binary relation has representation of the form = In this case suppose that P0 P P P3 P 3 3 (3) 05
9 Y iasamidze et al X on the set { } ( 0 ) ( 3) ( ) ( 3 3) ( ) { } \ 3 Then = P P P P P t f t ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) where Y Y 3 Y Y { } Y Y Y B since V V = = Y3 and Y3 Y Y0 = Y0 then it is easy to see that = = From the formal equality and equalities () and (5) we have: = P0 P = P0 P = = ; 3 = P0 P P P = P0 P P P = 3 = ; = P0 P P3 P = P0 P P3 P = 3 3 = 3; = P0 P P3 P = P0 P P3 P = 3 = ; = P0 P P P3 P = P0 P P P3 P = 3 3 = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 ) ( Y 3) ( Y ) ( Y0 ) = ( Y ) ( Y 3) ( ( Y3 Y Y0 ) ) = ( Y ) ( Y3 3) ( Y0 ) V X = Then binary relation has representation of the form 6 Let { 3 } ( Y ) ( Y 3 3) ( Y 0 ) = In this case suppose that P0 P P P3 P 3 3 \ Then X on the set { 3 } ( P0 ) ( P 3) ( P ) ( P3 3) ( P ) { t } f ( t ) ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) = = where Y Y 3 Y Y { } Y Y Y B since V V = = Y3 and Y3 Y Y0 = Y0 then it is easy to see that = = From the formal equality and equalities (5) and (5) we have: = P0 P = P0 P = = ; = P P P P = P P P P = = ; = P0 P P3 P = P0 P P3 P = 3 3 = 3; = P P P P = P P P P = = ; = P0 P P P3 P = P0 P P P3 P = = ; 3 3 = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y3 ) ( Y 3) ( Y ) ( Y0 ) ( Y ) ( Y 3) (( Y3 Y Y0 ) ) ( Y ) ( Y3 3) ( Y0 ) = = () (5) 06
10 7 Let V ( X ) = { 3 } ( Y ) ( Y 3 3) ( Y ) ( Y 0 ) Then binary relation has representation of the form = In this case suppose that P0 P P P3 P 3 X on the set \ { 3 } Then ( P0 ) ( P 3) ( P ) ( P3 ) ( P ) { t } f ( t ) ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) = where Y Y 3 Y Y { } Y Y Y that B since References Y iasamidze et al = 3 = Y3 Y = Y and Y Y0 = Y0 then it is easy to see V = V = From the formal equality and equalities (6) and (5) we have: = P0 P = P0 P = = ; 3 = P0 P P P = P0 P P P = 3 = 3; = P0 P P3 P = P0 P P3 P = 3 = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P P3 P = P0 P P P3 P = 3 = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 3) ( Y ) ( ( Y Y0 ) ) = Y Y Y Y ( ) ( 3 3) ( ) ( 0 ) [] iasamidze Ya and Makharadze Sh (03) Complete Semigroups of Binary Relations Cityplace Kriter Country Region Turkey 50 p [] avedze MKh (968) Generating Sets of Some Subsemigroups of the Semigroup of All Binary Relations in a Finite Set Proc A I Hertzen Leningrad State Polytechn Inst (In Russian) [3] avedze MKh (97) A Semigroup Generated by the Set of All Binary Relations in a Finite Set XIth AllUnion Algebraic Colloquium Abstracts of Reports Kishinev 939 (In Russian) [] avedze MKh (968) Generating Sets of the Subsemigroup of All Binary Relations in a Finite Set oklady AN BSSR (In Russian) [5] Givradze O (00) Irreducible Generating Sets of Complete Semigroups of Unions BX of Class ( X ) (6) efined by Semilattices Proceedings of the International Conference Modern Algebra and Its Aplications Batumi [6] Givradze O (0) Irreducible Generating Sets of Complete Semigroups of Unions B X efined by Semilattices of Class in Case When X = and \ 3 > Proceedings of the International Conference Modern Algebra and Its Aplications Batumi 07
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότεραEvery set of firstorder formulas is equivalent to an independent set
Every set of firstorder formulas is equivalent to an independent set May 6, 2008 Abstract A set of firstorder formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραLecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραMINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normalorder
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239246 HIKARI Ltd, www.mhikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραHomomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 22489940 Volume 3, Number 1 (2013), pp. 3945 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 33013307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραTHE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano
235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića
Διαβάστε περισσότεραCommutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu 641021 Assistant Professor of Mathematics,
Διαβάστε περισσότεραDIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606694) 0) 7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
Διαβάστε περισσότερα5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von NeumannMorgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Διαβάστε περισσότεραIntuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
Διαβάστε περισσότεραInverse trigonometric functions & General Solution of Trigonometric Equations.   
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular SturmLiouville. ii Singular SturmLiouville mixed boundary conditions. iii Not SturmLiouville ODE is not in SturmLiouville form. iv Regular SturmLiouville note
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότεραOn a fourdimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a fourdimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραLecture 15  Root System Axiomatics
Lecture 15  Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Διαβάστε περισσότεραHomomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Διαβάστε περισσότεραPhys460.nb Solution for the tdependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n firstorder differential equations
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραMain source: "Discretetime systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discretetime systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915  Edmund Taylor Whittaker (18731956) devised a
Διαβάστε περισσότερα1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραNowherezero flows Let be a digraph, Abelian group. A Γcirculation in is a mapping : such that, where, and : tail in X, head in
Nowherezero flows Let be a digraph, Abelian group. A Γcirculation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowherezero Γflow is a Γcirculation such that
Διαβάστε περισσότεραSOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 2127 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Διαβάστε περισσότεραMath 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Διαβάστε περισσότεραThe challenges of nonstable predicates
The challenges of nonstable predicates Consider a nonstable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of nonstable predicates
Διαβάστε περισσότεραCoefficient Inequalities for a New Subclass of Kuniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 097489 Volume, Number (00), pp. 6775 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests SideNote: So far we have seen a few approaches for creating tests such as NeymanPearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of onesided
Διαβάστε περισσότεραLecture 13  Root Space Decomposition II
Lecture 13  Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Διαβάστε περισσότεραk A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3 Fuzzy arithmetic: ~Addition(+) and subtraction (): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραHomomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PSalgebras
Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93104 ISSN: 2279087X (P), 22790888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, 1, 1, 1) p 0 = p 0 p = p i = p i p μ p μ = p 0 p 0 + p i p i = E c 2  p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραThe Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Διαβάστε περισσότεραPartial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραThe strong semilattice of πgroups
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 11, No. 3, 2018, 589597 ISSN 13075543 www.ejpam.com Published by New York Business Global The strong semilattice of πgroups Jiangang Zhang 1,, Yuhui
Διαβάστε περισσότεραSequent Calculi for the Modal µcalculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µcalculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µcalculus over K Axioms: All classical
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Διαβάστε περισσότεραFourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Διαβάστε περισσότεραΕγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα
[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη
Διαβάστε περισσότεραA General Note on δquasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143149 A General Note on δquasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Διαβάστε περισσότεραLecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότεραNew bounds for spherical twodistance sets and equiangular lines
New bounds for spherical twodistance sets and equiangular lines Michigan State University Oct 831, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n firstorder differential equations
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 0303 :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραProblem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραBounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2permitting for the enumeration degrees. Till now,
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραChap. 6 Pushdown Automata
Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a nontrivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00 Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότερα( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Διαβάστε περισσότεραMeanVariance Analysis
MeanVariance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider MeanVariance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
Διαβάστε περισσότεραAffine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
Διαβάστε περισσότεραORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Διαβάστε περισσότερα6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Διαβάστε περισσότερα2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 20050308 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Διαβάστε περισσότεραChapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
Διαβάστε περισσότεραΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια
Διαβάστε περισσότεραarxiv: v1 [math.ra] 19 Dec 2017
TWODIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &
Διαβάστε περισσότεραF A S C I C U L I M A T H E M A T I C I
F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept
Διαβάστε περισσότεραGÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
IFSCOM016 1 Proceeding Book No. 1 pp. 155161 (016) ISBN: 9789756900543 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)
Διαβάστε περισσότεραThe Translational Hulls of Inverse wpp Semigroups 1
International Mathematical Forum, 4, 2009, no. 28, 13971404 The Translational Hulls of Inverse wpp Semigroups 1 Zhibin Hu Department of Mathematics, Jiangxi Normal University Nanchang, Jiangxi 330022,
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραLocal Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS43726 A cubic spline example Consider
Διαβάστε περισσότεραA Note on Characterization of Intuitionistic Fuzzy Ideals in Γ NearRings
International Journal of Computational Science and Mathematics. ISSN 09743189 Volume 3, Number 1 (2011), pp. 6171 International Research Publication House http://www.irphouse.com A Note on Characterization
Διαβάστε περισσότερα3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(αβ) cos α cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β sin α cos(αβ cos α cos β sin α NOTE: cos(αβ cos α cos β cos(αβ cos α cos β Proof of cos(αβ cos α cos β sin α Let s use a unit circle
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 20121231 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραSome new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)sets, κµ topology.
Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN21751188 on line ISSN00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary
Διαβάστε περισσότεραSpaceTime Symmetries
Chapter SpaceTime Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Διαβάστε περισσότεραPg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Διαβάστε περισσότεραQuadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Διαβάστε περισσότεραScrum framework: Ρόλοι
Ψηφιακή ανάπτυξη Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #2 : Ευέλικτες (Agile) μέθοδοι για την ανάπτυξη λογισμικού Learning Objective : Scrum framework: Ρόλοι Filippo
Διαβάστε περισσότεραLecture 10  Representation Theory III: Theory of Weights
Lecture 10  Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with nonnegative integral Dynkin coefficients Λ
Διαβάστε περισσότερα