# Generating Set of the Complete Semigroups of Binary Relations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Generating Set of the Complete Semigroups of Binary Relations"

## Transcript

1 Applied Mathematics Published Online January 06 in SciRes Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze Neset Aydin Ali Erdoğan 3 Shota Rustavelli University Batumi Georgia Çanakkale Onsekiz Mart University Çanakkale Turkey 3 Hacettepe University Ankara Turkey Received 6 ecember 05; accepted 5 January 06; published 8 January 06 Copyright 06 by authors and Scientific Research Publishing Inc This work is licensed under the Creative Commons Attribution International License (CC BY) Abstract ifficulties encountered in studying generators of semigroup B X of binary relations defined by a complete X-semilattice of unions arise because of the fact that they are not regular as a rule which makes their investigation problematic In this work for special it has been seen that the B which are defined by semilattice can be generated by the set semigroup X { X ( ) } B = B V X = Keywords Semigroups Binary Relation Generated Set Generators Introduction Theorem Let { m } = be some finite X-semilattice of unions and = { } C P P P Pm 0 be the family of sets of pairwise nonintersecting subsets of the set X If φ is a mapping of the semilattice on the family of sets and ϕ ( ) = P for any i = m and ˆ \ i i i 0 m 0 C which satisfies the condition ϕ ( ) = P0 = T then the following equalities are valid: = P P P P = P T ϕ () T ˆ i How to cite this paper: iasamidze Y Aydin N and Erdoğan A (06) Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics

2 Y iasamidze et al In the sequel these equalities will be called formal It is proved that if the elements of the semilattice are represented in the form then among the parameters P i ( i = 0 m ) there exist such parameters that cannot be empty sets for Such sets P i ( 0< i m ) are called basis sources whereas sets P i ( 0 j m ) which can be empty sets too are called completeness sources It is proved that under the mapping ϕ the number of covering elements of the pre-image of a basis source is always equal to one while under the mapping ϕ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see [] Chapter ) Some positive results in this direction can be found in []-[6] Let P0 P P Pm be parameters in the formal equalities BX ( ) and m = i= 0 t Pi t X\ Pi t ({ t } t ) () m = Pi t X i= 0 t Pi (( \ ) ) (3) The representation of the binary relation of the form and will be called subquasinormal and maximal subquasinormal If and are the subquasinormal and maximal subquasinormal representations of the binary relation then for the binary relations and the following statements are true: a) BX ( ) ; b) ; c) the subquasinormal representation of the binary relation is quasinormal; d) if P0 P Pm P0 P Pm then is a mapping of the family of sets { } e) if : X \ Results C = P P P Pm in the X-semilattice of unions 0 { } m = t = t for all t X \ then is a mapping satisfying the condition Proposition Let B ( ) X m = Pi t t t i= 0 t Pi t X\ Then = = ({ } ( )) Proof It is easy to see the inclusion holds since x y xy X then xz m y for some z X So z X \ since z x z P t y Then ( ) for some k ( 0 k m ) If and ( i= 0 ( i t P )) i z P t y k ie z P t P k k and y z t For the last condition t P k follows that z y We have xz y and x( ) y Therefore the inclusion is true Of this and by inclusion follows that the equality = = holds Corollary If δ BX ( ) δ then = δ = Proof We have δ and δ Of this follows that = δ = since = Let the X-semilattice = { 3 } of unions given by the diagram of Figure Formal equalities of the given semilattice have a form: 99

3 Y iasamidze et al Figure iagram of = P0 P P P3 P = P0 P P3 P = P0 P P3 P 3 = P0 P P P = P P 0 The parameters P P P 3 are basis sources and the parameters P0 P are completeness sources ie X 3 Example 3 Let X = { 3 567} P = { } P = { 5} P 3 = { 3 6} P0 = P = Then for the for- = 5 = { } = { 3 6} = { 356} mal equalities of the semilattice follows that { } 3 5 = { 3 56} = {{ }{ }{ 3 }{ 3 }{ 3} } and = ({ } { }) ({ } { }) ({ } { }) ({ } { }) Then we have: t = { } t = { } t = { } t P t P t P3 t = t = ; t P0 t P ({ } { }) ({ } { }) ({ } { }) ({ } { }) = ; ({ } { }) ({ } { }) ({ } { }) ({ } { }) = Theorem Let the X-semilattice = { 3 } of unions given by the diagram of Figure B = { BX ( ) V ( X ) = } and X \ 3 Then the set B is generating set of the semigroup BX ( ) Proof It is easy to see that X 6 since P P P3 { } and X \ 3 Now let be any binary rela- B ; n B = n = 3 n Then the equality = = ( is subquasinormal representation of a binary relation ) is true By assumption BX ( ) ie the quasinormal representation of a binary relation have a form Y Y Y Y = Y tion of the semigroup X Of this follows that = (5) ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) For the binary relation we consider the following case V X = Then = X T where T By element T we consider the following cases: a) Let T In this case suppose that P P P P P T T T 0 3 X on the set { } \{ } T Then 3 () 00

4 where Y Y Y Y { } ( P0 ) ( P T) ( P T) ( P3 T) ( P ) { t } ( t ) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) then it is easy to see that B 3 formal equality and equalities (6) and (5) we have: = P P = P P = T = T; since ( ) Y iasamidze et al (6) V = V = From the = P P P P = P P P P = T T = T; = P P P P = P P P P = T T = T; = P0 P P3 P = P0 P P3 P = T T = T; = P P P P P = P P P P P = T T T = T; = since 3 0 ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y T) ( Y3 T) ( Y T) ( Y T) ( Y0 T) X T = Y Y Y Y Y = X T = In this case suppose that P0 P P P3 P = 3 are mapping of the set X \ in the set Then = P P P P P t t where Y Y Y Y { } ( 0 ) ( ) ( ) ( 3 3) ( ) ({ } ) ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) since ( ) then it is easy to see that B 3 V = V = From the formal equality and equalities (7) and (5) we have: = P0 P = P0 P = ; 3 = P0 P P P = P0 P P P = ; = P0 P P3 P = P0 P P3 P = ; = P0 P P3 P = P0 P P3 P = ; = P P P P P = P P P P P = ; b) V ( X ) since V ( X ) cases = = Then Let V ( X ) { T} ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = = X V ( X ) { { } { 3} { } { 3 } { } { } } is X-semilattice of unions For the semilattice of unions V ( X ) = where T { } 3 (7) consider the following Then binary relation has representation of the form 0

5 Y iasamidze et al ( Y ) ( Y T T ) = In this case suppose that where Y Y Y Y { } P0 P P P3 P T T X on the set \{ } T Then ( P0 ) ( P T) ( P ) ( P3 T) ( P ) { t } ( t ) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) Y = Y and Y3 Y Y Y0 = Y0 then it is easy to see that B since V = V = From the formal equality and equalities (8) and (5) we have: = P P = P P = = 0 0 = P P P P = P P P P = T = T; = P P P P = P P P P = T T = T; = P P P P = P P P P = T = T; = P P P P P = P P P P P = T T = T; ; (8) = Let V ( X ) = { T } form ( Y T T) ( Y0 ) ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y3 T) ( Y T) ( Y T) ( Y0 T) = Y Y Y Y Y T = Y Y T where T { } 3 = In this case suppose that Then binary relation has representation of the where Y Y Y Y { } P P P P P T 0 3 X on the set \ { } ( 0 ) ( ) ( ) ( 3 ) ( ) ({ } ) T Then = P P P T P P t f t ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) Y = YT and Y3 Y Y Y0 = Y0 then it is easy to see that B V = V = From the formal equality and equalities (9) and (5) we have: since (9) 0

6 Y iasamidze et al = P0 P = P0 P = T = T; 3 = P0 P P P = P0 P P P = T = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P3 P = P0 P P3 P = T = ; = P0 P P P3 P = P0 P P P3 P = T = ; = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y T) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = ( Y T) ( ( Y3 Y Y Y0 ) ) = ( YT T) ( Y0 ) c) V ( X ) = 3 Then V ( X ) { { } { 3 } { } { } { 3 } { 3 } } since V ( X ) is X-semilattice of unions For the semilattice of unions V ( X ) cases Let V ( X ) = { } ( Y ) ( Y ) ( Y 0 ) Then binary relation has representation of the form = In this case suppose that where Y Y Y Y { } P0 P P P3 P X on the set \ { } Then ( P0 ) ( P ) ( P ) ( P3 ) ( P ) ({ t } f ( t )) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) consider the following 3 Y = Y Y = Y and Y3 Y Y0 = Y0 then it is easy to see that B since V = V = From the formal equality and equalities (0) and (5) we have: = ( P0 P) = P0 P = = ; 3 = ( P0 P P P) = P0 P P P = = ; = ( P0 P P3 P) = P0 P P3 P = = ; = ( P0 P P3 P) = P0 P P3 P = = ; = ( P0 P P P3 P) = P0 P P P3 P = = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y ) ( ( Y3 Y Y0 ) ) = ( Y ) ( Y ) ( Y0 ) V X = Then binary relation has representation of the form Let { 3 } (0) 03

7 Y iasamidze et al ( Y ) ( Y 3 3) ( Y 0 ) = In this case suppose that where Y Y Y Y { } P0 P P P3 P 3 X on the set \ { 3 } Then ( P0 ) ( P 3) ( P ) ( P3 ) ( P ) ({ t } f ( t )) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) Y = Y Y3 = Y3 and Y Y Y0 = Y0 then it is easy to see that = = From the formal equality and equalities () and (5) we have: B since 3 ( ) ( ) V V = P P = P P = = 0 0 = P P P P = P P P P = = ; 3 3 = P0 P P3 P = P0 P P3 P = = ; 3 = P0 P P3 P = P0 P P3 P = = ; = ( P0 P P P3 P) = P0 P P P3 P = = ; 3 = 3 Let V ( X ) = { } ( Y ) ( Y ) ( Y 0 ) ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( ) ( 3 3) ( 0 ) = Y Y Y Y Y = ( Y ) ( Y3 3) ( Y0 ) Then binary relation has representation of the form = In this case suppose that P0 P P P3 P X on the set \ { } Then ( P0 ) ( P ) ( P ) ( P3 ) ( P ) ({ t } f ( t )) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) ; where Y Y 3 Y Y { } Y B since = Y Y = Y and Y3 Y Y0 = Y0 then it is easy to see that V = V = From the formal equality and equalities () and (5) we have: () () 0

8 Y iasamidze et al = P0 P = P0 P = = ; 3 = P0 P P P = P0 P P P = = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P P3 P = P0 P P P3 P = = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y ) ( ( Y3 Y Y0 ) ) = ( Y ) ( Y ) ( Y0 ) V X = Then binary relation has representation of the form Let { } ( Y ) ( Y ) ( Y 0 ) = In this case suppose that P0 P P P3 P \ Then X on the set { } ( P0 ) ( P ) ( P ) ( P3 ) ( P ) ({ t } f ( t )) = ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) where Y Y 3 Y Y { } Y Y Y B since V V = = Y and Y3 Y Y0 = Y0 then it is easy to see that = = From the formal equality and equalities (3) and (5) we have: = P0 P = P0 P = = ; 3 = P0 P P P = P0 P P P = = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P P3 P = P0 P P P3 P = = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 ) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y ) ( ( Y3 Y Y0 ) ) = Y Y Y ( ) ( ) ( 0 ) 5 Let V ( X ) = { 3 } ( Y ) ( Y 3 3) ( Y 0 ) Then binary relation has representation of the form = In this case suppose that P0 P P P3 P 3 3 (3) 05

9 Y iasamidze et al X on the set { } ( 0 ) ( 3) ( ) ( 3 3) ( ) { } \ 3 Then = P P P P P t f t ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) where Y Y 3 Y Y { } Y Y Y B since V V = = Y3 and Y3 Y Y0 = Y0 then it is easy to see that = = From the formal equality and equalities () and (5) we have: = P0 P = P0 P = = ; 3 = P0 P P P = P0 P P P = 3 = ; = P0 P P3 P = P0 P P3 P = 3 3 = 3; = P0 P P3 P = P0 P P3 P = 3 = ; = P0 P P P3 P = P0 P P P3 P = 3 3 = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 ) ( Y 3) ( Y ) ( Y0 ) = ( Y ) ( Y 3) ( ( Y3 Y Y0 ) ) = ( Y ) ( Y3 3) ( Y0 ) V X = Then binary relation has representation of the form 6 Let { 3 } ( Y ) ( Y 3 3) ( Y 0 ) = In this case suppose that P0 P P P3 P 3 3 \ Then X on the set { 3 } ( P0 ) ( P 3) ( P ) ( P3 3) ( P ) { t } f ( t ) ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) = = where Y Y 3 Y Y { } Y Y Y B since V V = = Y3 and Y3 Y Y0 = Y0 then it is easy to see that = = From the formal equality and equalities (5) and (5) we have: = P0 P = P0 P = = ; = P P P P = P P P P = = ; = P0 P P3 P = P0 P P3 P = 3 3 = 3; = P P P P = P P P P = = ; = P0 P P P3 P = P0 P P P3 P = = ; 3 3 = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) ( Y ) ( Y3 ) ( Y 3) ( Y ) ( Y0 ) ( Y ) ( Y 3) (( Y3 Y Y0 ) ) ( Y ) ( Y3 3) ( Y0 ) = = () (5) 06

10 7 Let V ( X ) = { 3 } ( Y ) ( Y 3 3) ( Y ) ( Y 0 ) Then binary relation has representation of the form = In this case suppose that P0 P P P3 P 3 X on the set \ { 3 } Then ( P0 ) ( P 3) ( P ) ( P3 ) ( P ) { t } f ( t ) ( Y ) ( Y ) ( Y ) ( Y ) ( Y ) = where Y Y 3 Y Y { } Y Y Y that B since References Y iasamidze et al = 3 = Y3 Y = Y and Y Y0 = Y0 then it is easy to see V = V = From the formal equality and equalities (6) and (5) we have: = P0 P = P0 P = = ; 3 = P0 P P P = P0 P P P = 3 = 3; = P0 P P3 P = P0 P P3 P = 3 = ; = P0 P P3 P = P0 P P3 P = = ; = P0 P P P3 P = P0 P P P3 P = 3 = ; = = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 3) ( Y ) ( Y ) ( Y0 ) = ( Y ) ( Y3 3) ( Y ) ( ( Y Y0 ) ) = Y Y Y Y ( ) ( 3 3) ( ) ( 0 ) [] iasamidze Ya and Makharadze Sh (03) Complete Semigroups of Binary Relations Cityplace Kriter Country- Region Turkey 50 p [] avedze MKh (968) Generating Sets of Some Subsemigroups of the Semigroup of All Binary Relations in a Finite Set Proc A I Hertzen Leningrad State Polytechn Inst (In Russian) [3] avedze MKh (97) A Semigroup Generated by the Set of All Binary Relations in a Finite Set XIth All-Union Algebraic Colloquium Abstracts of Reports Kishinev 93-9 (In Russian) [] avedze MKh (968) Generating Sets of the Subsemigroup of All Binary Relations in a Finite Set oklady AN BSSR (In Russian) [5] Givradze O (00) Irreducible Generating Sets of Complete Semigroups of Unions BX of Class ( X ) (6) efined by Semilattices Proceedings of the International Conference Modern Algebra and Its Aplications Batumi [6] Givradze O (0) Irreducible Generating Sets of Complete Semigroups of Unions B X efined by Semilattices of Class in Case When X = and \ 3 > Proceedings of the International Conference Modern Algebra and Its Aplications Batumi 07

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

### Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### Congruence Classes of Invertible Matrices of Order 3 over F 2

International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

### Homomorphism in Intuitionistic Fuzzy Automata

International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

### A Note on Intuitionistic Fuzzy. Equivalence Relation

International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

### Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

### DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

### 5. Choice under Uncertainty

5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

### Intuitionistic Fuzzy Ideals of Near Rings

International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Example Sheet 3 Solutions

Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

### Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

### SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

### Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

### Homomorphism of Intuitionistic Fuzzy Groups

International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

### Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### Reminders: linear functions

Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

### Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

### 1. Introduction and Preliminaries.

Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

### SOME PROPERTIES OF FUZZY REAL NUMBERS

Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

### Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

### The challenges of non-stable predicates

The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

### Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

### Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

### Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

### Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

### k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

### HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

### 6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

### The Simply Typed Lambda Calculus

Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

### Partial Differential Equations in Biology The boundary element method. March 26, 2013

The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

### Lecture 2. Soundness and completeness of propositional logic

Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

### The strong semilattice of π-groups

EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 11, No. 3, 2018, 589-597 ISSN 1307-5543 www.ejpam.com Published by New York Business Global The strong semilattice of π-groups Jiangang Zhang 1,, Yuhui

Διαβάστε περισσότερα

### Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

### Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

### A General Note on δ-quasi Monotone and Increasing Sequence

International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

### Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

### Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

### derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

### Problem Set 3: Solutions

CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

### Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### Solution Series 9. i=1 x i and i=1 x i.

Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

### Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

### Matrices and Determinants

Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

### ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

### SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

### Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### Mean-Variance Analysis

Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

### Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

### ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

### 6.3 Forecasting ARMA processes

122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

### 2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

### Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

### ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

### arxiv: v1 [math.ra] 19 Dec 2017

TWO-DIMENSIONAL LEFT RIGHT UNITAL ALGEBRAS OVER ALGEBRAICALLY CLOSED FIELDS AND R HAHMED UBEKBAEV IRAKHIMOV 3 arxiv:7673v [mathra] 9 Dec 7 Department of Math Faculty of Science UPM Selangor Malaysia &

Διαβάστε περισσότερα

### F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

### GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

### The Translational Hulls of Inverse wpp Semigroups 1

International Mathematical Forum, 4, 2009, no. 28, 1397-1404 The Translational Hulls of Inverse wpp Semigroups 1 Zhibin Hu Department of Mathematics, Jiangxi Normal University Nanchang, Jiangxi 330022,

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### Math221: HW# 1 solutions

Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

### Local Approximation with Kernels

Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

### A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

### 3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

### Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

### Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

### Space-Time Symmetries

Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

### Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

### Quadratic Expressions

Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

### Scrum framework: Ρόλοι

Ψηφιακή ανάπτυξη Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #2 : Ευέλικτες (Agile) μέθοδοι για την ανάπτυξη λογισμικού Learning Objective : Scrum framework: Ρόλοι Filippo

Διαβάστε περισσότερα

### Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα