Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras"

Transcript

1 Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, ISSN: X (P), (online) Published on 11 November Annals of Homomorphism and Cartesian Product on Fuzzy ranslation and Fuzzy ultiplication of PS-algebras.Priya 1 and.ramachandran 2 1 Department of athematics, PSNA College of Engineering and echnology Dindigul , amilnadu, India tpriyasuriya@gmail.com 2 Department of athematics,.v.uthiah Government Arts College for Women Dindigul , amilnadu, India yasrams@yahoo.co.in Received 19 October 2014; accepted 8 November 2014 Abstract. In this paper, we define Homomorphism and Cartesian product on fuzzy translation and fuzzy muliplication of PS-algebras and discussed some of its properties in detail by using the concepts of fuzzy PS-ideal and fuzzy PS-sub algebra. Keywords: fuzzy-α-translation, fuzzy-α-multiplication of PS-algebra, fuzzy PS-ideal, fuzzy PS-sub algebra, homomorphism and Cartesian product. AS athematics Subject Classifications (2010): 06F35, 03G25 1. Introduction he concept of fuzzy set was initiated by Zadeh in 1965 [4]. It has opened up keen insights and applications in a wide range of scientific fields. Since its inception, the theory of fuzzy subsets has developed in many directions and found applications in a wide variety of fields. he study of fuzzy subsets and its applications to various mathematical contexts has given rise to what is now commonly called fuzzy mathematics. Fuzzy algebra is an important branch of fuzzy mathematics. Fuzzy ideas have been applied to other algebraic structures such as groups, rings, modules, vector spaces and topologies. In this way, Iseki and anaka [1] introduced the concept of BCKalgebras in Iseki [2] introduced the concept of BCI-algebras in It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Priya and Ramachandran [6,7] introduced the class of PS-algebras, which is a generalization of BCI / BCK/Q / KU / d algebras and studied various properties [5,8,9]. In this paper, we introduce the concept homomorphism and Cartesian product of fuzzy-α-translation, fuzzy-α-multiplication of PS-algebras and established some of its properties in detail. 2. Preliminaries In this section, we introduced some fundamental definitions that will be used in the sequel. 93

2 .Priya and.ramachandran Definition 2.1. [1] A BCK- algebra is an algebra (X,*,0) of type(2,0) satisfying the following conditions: i) (x * y) * (x * z) (z * y) ii) x * (x * y) y iii) x x iv) x y and y x x=y v) 0 x x=0, where x y is defined by x * y = 0, for all x, y, z X. Definition 2.2. [2] A BCI-algebra is an algebra (X,*,0) of type(2,0) satisfying the following conditions: i) (x * y) *(x * z) (z*y) ii) x * (x * y) y iii) x x iv) x y and y x x = y v) x 0 x = 0, where x y is defined by x * y = 0,for all x, y, z X. Definition 2.3. [7] A nonempty set X with a constant 0 and a binary operation * is called PS algebra if it satisfies the following axioms. 1. x * x = 0 2. x * 0 = 0 3. x * y = 0 and y * x = 0 x = y, x, y X. Definition 2.4. [6] Let X be a PS-algebra. A fuzzy set µ in X is called a fuzzy PS-ideal of X if it satisfies the following conditions. i) µ(0) µ(x) ii) µ (x) min {µ (y *x), µ(y)}, for all x, y X. Definition 2.5. [6] A fuzzy set µ in a PS-algebra X is called a fuzzy PS- sub algebra of X if µ(x * y) min {µ(x), µ(y)}, for all x, y X. Remark. Let X be a PS-algebra. For any fuzzy set µ of X, we define = 1 sup{µ(x) / x X }, unless otherwise we specified. Definition 2.6. ([3,5,12]) Let µ be a fuzzy subset of X and α [0,]. A mapping µ α : X [0, 1] is said to be a fuzzy-α-translation of µ if it satisfies µ α (x) = µ(x) + α, x X. Definition 2.7. ([3,5,12]) Let µ be a fuzzy subset of X and α [ 0,1]. A mapping µ α : X [0, 1] is said to be a fuzzy-α-multiplication of µ if it satisfies µ α (x) = α µ(x), x X. Example 2.8. [5] Let X = { 0, 1, 2 } be the set with the following table. *

3 Homomorphism and Cartesian Product on Fuzzy ranslation and Fuzzy ultiplication of PS-algebras hen (X, *, 0 ) is a PS algebra. 0.3 if x 1 Define a fuzzy set µ of X by µ(x) =. 0.2 if x = 1 hen µ is a fuzzy PS-sub algebra of X. Here = 1 sup {µ(x) / x X} = = 0.7, Choose α= 0.4 [0, ] and β = 0.5 [0, 1] = 0.7 if x 1 hen the mapping µ 0.4 : X [0, 1] is defined by µ 0.4 = = 0.6 if x = 1 which satisfies µ 0.4 (x) = µ(x) + 0.4, x X, is a fuzzy 0.4-translation and the mapping (0.5)(0.3) = 0.15 if x 1 µ 0.5 : X [0, 1] is defined by µ 0.5 (x) = (0.5)(0.2) = 0.10 if x = 1 which satisfies µ 0.5 (x) = (0.5)µ(x), x X, is a fuzzy 0.5-multiplication. 3. Homomorphism on fuzzy translation and fuzzy multiplication In this section, we discuss homomorphism on fuzzy translation and fuzzy multiplication of PS-algebra and proved certain results on the basis of fuzzy PS-ideal and fuzzy PS- sub algebra. Definition 3.1. [10][13] Let f: X X be an endomorphism and µ α be a fuzzy -αtranslation of µ in X. We define a new fuzzy set in X by (µ α ) f in X as ( µ α ) f (x) = ( µ α ) (f(x)) = µ[f(x)] + α, x X. heorem 3.2. Let f be an endomorphism of PS- algebra X. If µ is a fuzzy PS-ideal of X, then so is ( µ α ) f. Proof: Let µ be a fuzzy PS-ideal of X. Now, (µ α ) f (0) = µ α [ f(0)] = µ [ f(0) ] + α µ [ f(x) ] + α = ( µ α ) (f(x)) = (µ α ) f (x) (µ α ) f (0) (µ α ) f (x) Let x,y X. hen (µ α ) f (x) = µ α [f( x)] = µ [ f(x) ] + α min { µ (f(y) * f(x)), µ(f (y))} + α = min { µ ( f( y * x ) ), µ(f (y))} + α = min { µ ( f( y * x ) ) + α, µ(f (y)) + α} = min { µ α [f( y * x )], µ α [f(y)]} = min { (µ α ) f ( y * x ), (µ α ) f (y) } (µ α ) f ( x ) min { (µ α ) f ( y * x ), (µ α ) f (y) } Hence (µ α ) f is a fuzzy PS-ideal of X. 95

4 .Priya and.ramachandran heorem 3.3. Let f: X Y be an epimorphism of PS- algebra. If (µ α ) f is a fuzzy PSideal of X, then µ is a fuzzy PS-ideal of Y. Proof: Let (µ α ) f be a fuzzy PS-ideal of X and let y Y. hen there exists x X such that f(x) = y. Now, µ(0) + α = µ α (0) = µ α [f(0)] = (µ α ) f (0) (µ α ) f (x) = µ α [f(x)] = µ[f(x)] + α and so µ(0) µ[f(x)] = µ (y). µ (0) µ (y ) Let y 1, y 2 Y. µ( y 1 ) + α = µ α (y 1 ) = µ α (f (x 1 )) = (µ α ) f ( x 1 ) min { (µ α ) f ( x 2 * x 1 ), (µ α ) f ( x 2 ) } = min { µ α [f (x 2 * x 1 )], µ α [f(x 2 )] } = min { µ α [f (x 2 ) * f(x 1 )], µ α [f( x 2 )] } = min { µ α [ y 2 * y 1 ], µ α [y 2 ] } = min { µ (y 2 * y 1 ) + α, µ(y 2 ) + α } = min {µ (y 2 * y 1 ), µ(y 2 )} + α µ (y 1 ) min { µ ( y 2 * y 1 ), µ(y 2 )} µ is a fuzzy PS-ideal of Y. heorem 3.4. Let f: X Y be a homomorphism of PS- algebra. If µ is a fuzzy PS-ideal of Y then (µ α ) f is a fuzzy PS-ideal of X. Proof: Let µ be a fuzzy PS-ideal of Y and let x,y X. hen (µ α ) f (0) = µ α [f(0)] = µ (f(0)) + α µ (f(x)) + α = µ α [ f(x)] = (µ α ) f (x) (µ α ) f (0) (µ α ) f (x). Also (µ α ) f (x) = µ α [ f (x ) ] = µ (f(x)) + α min { µ ( f(y) * f(x) ), µ ( f (y) ) } + α = min { µ ( f( y * x) ), µ ( f (y) ) } + α = min { µ ( f( y * x) ) + α, µ ( f (y) ) + α } = min { µ α [ f( y * x) ], µ α [ f (y) ]} = min { (µ α ) f (y * x), (µ α ) f (y) } (µ α ) f ( x ) min { (µ α ) f (y * x), (µ α ) f (y) }. Hence (µ α ) f is a fuzzy PS-ideal of X. heorem 3.5. If µ is a fuzzy PS- sub algebra of X, then (µ α ) f is also a fuzzy PS-sub algebra of X. 96

5 Homomorphism and Cartesian Product on Fuzzy ranslation and Fuzzy ultiplication of PS-algebras Proof: Let µ be a fuzzy PS- sub algebra of X. Let x, y X. Now, (µ α ) f (x* y) = µ α [ f (x *y) ] = µ [ f (x *y) ] + α = µ ( f (x) * f(y) ) + α min {µ (f (x)), µ(f(y)) } + α = min {µ (f (x)) + α, µ (f(y)) + α } = min {µ α [f (x)], µ α [f(y)] } = min {(µ α ) f (x), (µ α ) f (y) } (µ α ) f (x* y) min {(µ α ) f (x), (µ α ) f (y) } Hence (µ α ) f is a fuzzy PS-sub algebra of X. heorem 3.6. Let f: X Y be a homomorphism of a PS-algebra X into a PS-algebra Y and µ α be a fuzzy - α - translation of µ, then the pre- image of µ α denoted by f -1 (µ α ) is defined as {f -1 (µ α )}(x) = µ α (f(x)), x X. If µ is a fuzzy PS- sub algebra of Y, then f -1 (µ α ) is a fuzzy PS- sub algebra of X. Proof: Let µ be a fuzzy PS- sub algebra of Y. Let x, y X. Now, {f -1 (µ α )}(x* y) = µ α [ f (x *y) ] = µ [ f (x *y) ] + α = µ [ f (x) * f(y) ] + α min { µ [f (x)], µ [f(y)] } + α = min { µ [f (x)] + α, µ [f(y)] + α } = min { µ α [f (x)], µ α [f(y)] } = min {{f -1 (µ α )} (x), {f -1 (µ α )}(y) } f -1 (µ α )}(x* y) min {{f -1 (µ α )} (x), {f -1 (µ α )}(y) } f -1 (µ α ) is a fuzzy PS-sub algebra of X. Definition 3.7. Let f: X X be an endomorphism and µ α be a fuzzy-α-multiplication of µ in X. We define a new fuzzy set in X by (µ α ) f in X as ( µ α ) f (x) = ( µ α ) [f(x)] = α µ[f(x)], x X. heorem 3.8. Let f be an endomorphism of PS- algebra X. If µ is a fuzzy PS-ideal of X, then so is ( µ α ) f. Proof: Let µ be a fuzzy PS-ideal of X. Now, (µ α ) f (0) = µ α [ f(0)] = α µ [ f(0) ] α µ [ f(x) ] = ( µ α ) (f(x)) = (µ α ) f (x) (µ α ) f (0) (µ α ) f (x) Let x,y X. hen (µ α ) f (x) = µ α [f( x)] = α µ [ f(x) ] α min { µ (f(y) * f(x)), µ(f (y))} = α min { µ ( f( y * x ) ), µ(f (y))} 97

6 .Priya and.ramachandran = min {α µ ( f( y * x ) ), α µ(f (y)) } = min { µ α [f( y * x )], µ α [f(y)]} = min { (µ α ) f ( y * x ), (µ α ) f (y) } (µ α ) f ( x ) min { (µ α ) f ( y * x ), (µ α ) f (y) } Hence (µ α ) f is a fuzzy PS-ideal of X. heorem 3.9. Let f: X Y be an epimorphism of PS- algebra. If (µ α ) f is a fuzzy PSideal of X, then µ is a fuzzy PS-ideal of Y. Proof: Let (µ α ) f be a fuzzy PS-ideal of X and let y Y. hen there exists x X such that f(x) = y. Now, α µ(0) = µ α (0) = µ α [ f(0)] = (µ α ) f (0) (µ α ) f (x) = µ α [f(x)] = α µ[f(x)] µ(0) µ[f(x)] = µ (y). µ (0) µ (y ) Let y 1, y 2 Y. α µ(y 1 ) = µ α [y 1 ] = µ α [f (x 1 )] = (µ α ) f ( x 1 ) min { (µ α ) f ( x 2 * x 1 ), (µ α ) f ( x 2 ) } = min { µ α [f (x 2 * x 1 )], µ α [f(x 2 )] } = min { µ α [f (x 2 ) * f(x 1 )], µ α [f( x 2 )] } = min { µ α [ y 2 * y 1 ], µ α [y 2 ] } = min { α µ (y 2 * y 1 ), α µ(y 2 ) } = α min {µ (y 2 * y 1 ), µ(y 2 )} µ (y 1 ) min { µ ( y 2 * y 1 ), µ(y 2 )} µ is a fuzzy PS-ideal of Y. heorem Let f: X Y be a homomorphism of PS- algebra. If µ is a fuzzy PS-ideal of Y then (µ α ) f is a fuzzy PS-ideal of X. Proof: Let µ be a fuzzy PS-ideal of Y and let x,y X. hen (µ α ) f (0) = µ α [f(0)] = α µ (f(0)) α µ (f(x)) = µ α [ f(x)] = (µ α ) f (x) (µ α ) f (0) (µ α ) f (x). Also, (µ α ) f (x) = µ α [ f (x ) ] = α µ (f(x)) α min { µ ( f(y) * f(x) ), µ ( f (y) ) } = α min { µ ( f( y * x) ), µ ( f (y) ) } = min { α µ ( f( y * x) ), α µ ( f (y) ) } 98

7 Homomorphism and Cartesian Product on Fuzzy ranslation and Fuzzy ultiplication of PS-algebras = min { µ α [ f( y * x) ], µ α [ f (y) ]} = min { (µ α ) f (y * x), (µ α ) f (y) } (µ α ) f ( x ) min { (µ α ) f (y * x), (µ α ) f (y) }. Hence (µ α ) f is a fuzzy PS-ideal of X. heorem If µ be a fuzzy PS- sub algebra of X, then (µ α ) f is also a fuzzy PS-sub algebra of X. Proof: Let µ be a fuzzy PS- sub algebra of X. Let x, y X. Now, (µ α ) f (x* y) = µ α [ f (x *y)] = α µ [ f (x *y)] = α µ ( f (x) * f(y)) α min{µ (f (x)),µ(f(y))} = min{α µ (f (x)),α µ (f(y))} = min{µ α [f (x)], µ α [f(y)]} = min {(µ α ) f (x), (µ α ) f (y)} (µ α ) f is a fuzzy PS-sub algebra of X. heorem Let f: X Y be a homomorphism of a PS-algebra X into a PS-algebra Y and µ α be a fuzzy - α - multiplication of µ, then the pre- image of µ α denoted by f -1 (µ α ) is defined as {f -1 (µ α )}(x) = µ α (f(x)), x X. If µ is a fuzzy PS- sub algebra of Y, then f -1 (µ α ) is a fuzzy PS- sub algebra of X. Proof: Let µ be a fuzzy PS- sub algebra of Y. Let x, y X. Now, {f -1 (µ α )}(x* y) = µ α [ f (x *y) ] = α µ [ f (x *y) ] = α µ [ f (x) * f(y) ] α min { µ [f (x)], µ [f(y)] } = min {α µ [f (x)], α µ [f(y)] } = min { µ α [f (x)], µ α [f(y)] } = min {{f -1 (µ α )} (x), {f -1 (µ α )}(y) } f -1 (µ α )}(x* y) min {{f -1 (µ α )} (x), {f -1 (µ α )}(y) } f -1 (µ α ) is a fuzzy PS-sub algebra of X. 4. Cartesian product on fuzzy translation and fuzzy multiplication In this section, we discuss the Cartesian product of fuzzy translation and fuzzy multiplication of PS-algebras and establish some of its properties in detail on the basis of fuzzy PS-ideal and fuzzy PS- sub algebra. Definition 4.1. ([11,14]) Let µ α and δ α be the fuzzy sets in X. hen Cartesian product µ α xδ α :X x X [0,1] is defined by ( µ α x δ α ) ( x, y) = min {µ α (x), δ α (y)}, for all x, y X. heorem 4.2. If µ and δ are fuzzy PS-idels in a PS algebra X, then µ α x δ α is a fuzzy PS-ideal in X x X. 99

8 .Priya and.ramachandran Proof: Let ( x 1, x 2 ) X x X. ( µ α x δ α ) (0,0) = min { µ α (0), δ α (0) } = min { µ (0) + α, δ (0) + α } = min { µ (0), δ (0) } + α min { µ (x 1 ), δ (x 2 ) } + α = min { µ (x 1 ) + α, δ (x 2 ) + α } = min { µ α (x 1 ), δ α (x 2 ) } = (µ α x δ α ) (x 1, x 2 ) Let ( x 1, x 2 ), ( y 1, y 2 ) X x X. (µ α x δ α ) ( x 1, x 2 ) = min { µ α ( x 1 ), δ α ( x 2 ) } = min { µ (x 1 ) + α, δ (x 2 ) + α } = min { µ (x 1 ), δ (x 2 ) } + α min { min {µ (y 1 * x 1 ), µ (y 1 )}, min {δ (y 2 * x 2 ), δ (y 2 )}} + α = min {min {µ (y 1 * x 1 ), µ (y 1 )} + α, min {δ (y 2 * x 2 ), δ (y 2 )} + α} = min{min {µ (y 1 * x 1 ) +α, µ (y 1 ) +α}, min {δ (y 2 * x 2 ) +α, δ (y 2 ) +α}} = min {min {µ α (y 1 * x 1 ), µ α (y 1 )}, min {δ α (y 2 * x 2 ), δ α (y 2 )}} = min {min {µ α (y 1 * x 1 ), δ α (y 2 * x 2 )}, min {µ α (y 1 ), δ α (y 2 )} = min {(µ α x δ α ) ( ( y 1 * x 1 ),( y 2 * x 2 ), (µ α x δ α ) (y 1, y 2 )} = min {(µ α x δ α ) ( (y 1, y 2 ) * (x 1, x 2 ) ), (µ α x δ α ) (y 1, y 2 )} (µ α x δ α ) (x 1, x 2 ) min {(µ α x δ α ) ( (y 1, y 2 ) * (x 1, x 2 ) ), (µ α x δ α ) (y 1, y 2 )}. Hence µ α x δ α is a fuzzy PS- ideal in X x X. heorem 4.3. Let µ & δ be fuzzy sets in a PS-algebra X such that µ α x δ α is a fuzzy PS-ideal of X x X. hen (i) Either µ α (0) µ α (x) (or) δ α (0) δ α (x) for all x X. (ii) If µ α (0) µ α (x) for all x X, then either δ α (0) µ α (x) (or) δ α (0) δ α (x) (iii) If δ α (0) δ α (x) for all x X, then either µ α (0) µ α (x) (or) µ α (0) δ α (x) Proof: Let µ α x δ α be a fuzzy PS-ideal of X x X. (i) Suppose that µ α (0) < µ α (x) and δ α (0) < δ α (x) for some x, y X. hen (µ α x δ α ) (x,y) = min{ µ α (x), δ α (y) } > min { µ α (0), δ α (0) } = (µ α x δ α ) (0, 0), which is a contradiction. herefore µ α (0) µ α (x) (or) δ α (0) δ α (x) for all x X. (ii) Assume that there exists x, y X such that δ α (0) < µ α (x) and δ α (0) < δ α (x). hen (µ α x δ α ) (0,0) = min { µ α (0), δ α (0) } = δ α (0) and hence (µ α x δ α ) (x, y) = min {µ α (x),δ α (y)} > δ α (0) = (µ α x δ α ) (0,0) Which is a contradiction. Hence, if µ α (0) µ α (x) for all x X, then either δ α (0) µ α (x) (or) δ α (0) δ α (x). Similarly, we can prove that if δ α (0) δ α (x) for all x X, then either µ α (0) µ α (x) (or) µ α (0) δ α (x), which yields (iii). heorem 4.4. Let µ & δ be fuzzy sets in a PS-algebra X such that µ α x δ α is a fuzzy PS-ideal of X x X. hen either µ or δ is a fuzzy PS-ideal of X. Proof: First we prove that δ is a fuzzy PS-ideal of X. 100

9 Homomorphism and Cartesian Product on Fuzzy ranslation and Fuzzy ultiplication of PS-algebras Since by (i) either µ α (0) µ α (x) (or) δ α (0) δ α (x) for all x X. Assume that δ α (0) δ α (x) for all x X. δ(0) + α δ(x) + α. δ (0) δ (x). It follows from (iii) that either µ α (0) µ α (x) (or) µ α (0) δ α (x). If µ α (0) δ α (x), for any x X, then δ α (x) = min {µ α (0), δ α (x)} = (µ α x δ α ) (0, x) δ(x) + α = δ α (x) = (µ α x δ α ) (0, x) min {(µ α x δ α ) ( (0,y) * (0,x) ), (µ α x δ α ) (0, y)} = min {(µ α x δ α ) ( (0*0),(y*x) ), (µ α x δ α ) (0, y)} = min {(µ α x δ α ) (0,(y*x) ), (µ α x δ α ) (0, y)} = min { δ α (y*x), δ α (y)} = min { δ (y * x) + α, δ (y) + α} = min { δ (y * x), δ (y) } + α δ(x) min { δ (y * x), δ (y) } Hence δ is a fuzzy PS-ideal of X. Next we will prove that µ is a fuzzy PS-ideal of X. Let µ α (0) µ α (x). µ (0) µ (x) Since by theorem (ii), either δ α (0) µ α (x) (or) δ α (0) δ α (x). Assume that δ α (0) µ α (x), then µ α (x) = min { µ α (x), δ α (0)} = (µ α x δ α ) (x,0). µ(x) + α = µ α (x) = (µ α x δ α ) (x,0) min{(µ α x δ α )( (y,0) * (x,0) ), (µ α x δ α ) (y,0)} = min {(µ α x δ α ) ( (y * x), (0*0) ), (µ α x δ α ) (y,0)} = min {(µ α x δ α ) ( (y * x), 0 ), (µ α x δ α ) (y,0)} = min {µ α (y * x), µ α (y)} = min { µ (y * x ) + α, µ (y) + α } = min { µ (y * x ), µ (y) } + α µ(x) min { µ (y * x ), µ (y) } Hence µ is a fuzzy PS-ideal of X. heorem 4.5. If µ and δ are fuzzy PS-sub algebras of a PS-algebra X, then µ α x δ α is also a fuzzy PS-sub algebra of X x X. Proof: For any x 1, x 2, y 1, y 2 X. (µ α x δ α ) ( (x 1, y 1 ) * ( x 2, y 2 ) ) = (µ α x δ α ) ( x 1 * x 2, y 1 * y 2 ) = min { µ α ( x 1 * x 2 ), δ α ( y 1 * y 2 ) } = min { µ ( x 1 * x 2 ) + α, δ ( y 1 * y 2 ) + α } = min { µ ( x 1 * x 2 ), δ ( y 1 * y 2 ) } + α min { min {µ (x 1 ), µ (x 2 )},min{δ( y 1 ), δ( y 2 )}} + α = min { min {µ (x 1 ), µ (x 2 )} +α,min{δ( y 1 ),δ( y 2 )}+ α } = min {min{µ (x 1 ) +α, µ (x 2 ) +α},min{δ( y 1 )+α,δ(y 2 ) + α}} = min {min { µ α (x 1 ), µ α (x 2 ) }, min { δ α (y 1 ), δ α (y 2 )} = min { min {µ α (x 1 ),δ α (y 1 )}, min {µ α (x 2 ), δ α (y 2 )} } = min { (µ α x δ α ) ( x 1, y 1 ), (µ α x δ α ) ( x 2, y 2 ) } 101

10 .Priya and.ramachandran (µ α x δ α ) ( (x 1, y 1 ) * ( x 2, y 2 ) ) min { (µ α x δ α ) ( x 1, y 1 ), (µ α x δ α ) ( x 2, y 2 ) } his completes the proof. heorem 4.6. If µ and δ are fuzzy PS-ideals in a PS-algebra X, then µ α x δ α is a fuzzy PS-ideal in X x X. Proof: Let ( x 1, x 2 ) X x X. ( µ α x δ α ) (0,0) = min { µ α (0), δ α (0) } = min { α µ (0), α δ (0) } = α min { µ (0), δ (0) } α min { µ (x 1 ), δ (x 2 ) } = min { α µ (x 1 ), α δ (x 2 ) } = min { µ α (x 1 ), δ α (x 2 ) } = (µ α x δ α ) (x 1, x 2 ) Let ( x 1, x 2 ), ( y 1, y 2 ) X x X. (µ α x δ α ) ( x 1, x 2 ) = min { µ α ( x 1 ), δ α ( x 2 ) } = min { α µ (x 1 ), α δ (x 2 ) } = α min { µ (x 1 ), δ (x 2 ) } α min { min {µ (y 1 * x 1 ), µ (y 1 )}, min {δ (y 2 * x 2 ), δ (y 2 )}} = min {α min {µ (y 1 * x 1 ), µ (y 1 )}, α min {δ (y 2 * x 2 ), δ (y 2 )} } = min {min {α µ (y 1 * x 1 ), α µ (y 1 )}, min {α δ (y 2 * x 2 ),α δ (y 2 ) } = min {min {µ α (y 1 * x 1 ), µ α (y 1 )}, min {δ α (y 2 * x 2 ), δ α (y 2 )} = min {min {µ α (y 1 * x 1 ), δ α (y 2 * x 2 )}, min {µ α (y 1 ), δ α (y 2 )} = min {(µ α x δ α ) ( ( y 1 * x 1 ),( y 2 * x 2 ), (µ α x δ α ) (y 1, y 2 ) } = min {(µ α x δ α ) ( (y 1, y 2 ) * (x 1, x 2 ) ), (µ α x δ α ) (y 1, y 2 )} (µ α x δ α ) (x 1, x 2 ) min {(µ α x δ α ) ( (y 1, y 2 ) * (x 1, x 2 ) ), (µ α x δ α ) (y 1, y 2 )}. Hence µ α x δ α is a fuzzy PS- ideal in X x X. heorem 4.7. Let µ & δ be fuzzy sets in a PS-algebra X such that µ α x δ α is a fuzzy PS-ideal of X x X. hen (i) Either µ α (0) µ α (x) (or) δ α (0) δ α (x) for all x X. (ii) If µ α (0) µ α (x) for all x X, then either δ α (0) µ α (x) (or) δ α (0) δ α (x) (iii) If δ α (0) δ α (x) for all x X, then either µ α (0) µ α (x) (or) µ α (0) δ α (x) Proof: Straight forward. heorem 4.8. Let µ & δ be fuzzy sets in a PS-algebra X such that µ α x δ α is a fuzzy PS-ideal of X x X. hen either µ or δ is a fuzzy PS-ideal of X. Proof: First we prove that δ is a fuzzy PS-ideal of X. Since by (i) either µ α (0) µ α (x) (or) δ α (0) δ α (x) for all x X. Assume that δ α (0) δ α (x) for all x X. α δ(0) α δ(x). δ (0) δ (x) It follows from (iii) that either µ α (0) µ α (x) (or) µ α (0) δ α (x). If µ α (0) δ α (x), for any x X, then δ α (x) = min {µ α (0), δ α (x)} = (µ α x δ α ) (0, x) α δ(x) = δ α (x) = (µ α x δ α ) (0, x) 102

11 Homomorphism and Cartesian Product on Fuzzy ranslation and Fuzzy ultiplication of PS-algebras min {(µ α x δ α ) ( (0,y) * (0,x) ), (µ α x δ α ) (0, y)} = min {(µ α x δ α ) ( (0*0),(y*x) ), (µ α x δ α ) (0, y)} = min {(µ α x δ α ) (0,(y*x) ), (µ α x δ α ) (0, y)} = min { δ α (y*x), δ α (y)} = min { α δ (y * x), α δ (y) } = α min { δ (y * x), δ (y) } δ(x) min { δ (y * x), δ (y) } Hence δ is a fuzzy PS-ideal of X. Similarly we will prove that µ is a fuzzy PS-ideal of X. heorem 4.9. If µ and δ are fuzzy PS-sub algebras of a PS-algebra X, then µ α x δ α is also a fuzzy PS-sub algebra of X x X. Proof: For any x 1, x 2, y 1, y 2 X. (µ α x δ α ) ( (x 1, y 1 ) * ( x 2, y 2 ) ) = (µ α x δ α ) ( x 1 * x 2, y 1 * y 2 ) = min { µ α ( x 1 * x 2 ), δ α ( y 1 * y 2 ) } = min { α µ ( x 1 * x 2 ), α δ ( y 1 * y 2 ) } = α min { µ ( x 1 * x 2 ), δ ( y 1 * y 2 ) } α min { min {µ (x 1 ), µ (x 2 )},min{δ( y 1 ), δ( y 2 )}} = min { α min {µ (x 1 ), µ (x 2 )}, α min{δ( y 1 ),δ( y 2 )} } = min{min{α µ(x 1 ), α µ (x 2 )}, min{ α δ( y 1 ), α δ(y 2 )}} = min{min{µ α (x 1 ), µ α (x 2 )},min {δ α (y 1 ), δ α (y 2 )} = min{min{µ α (x 1 ),δ α (y 1 )},min {µ α (x 2 ),δ α (y 2 )}} = min { (µ α x δ α ) ( x 1, y 1 ), (µ α x δ α ) ( x 2, y 2 ) } (µ α x δ α ) ( (x 1, y 1 ) * ( x 2, y 2 ) ) min { (µ α x δ α ) ( x 1, y 1 ), (µ α x δ α ) ( x 2, y 2 ) } his completes the proof. 5. Conclusion In this article we have been discussed homomorphism and Cartesian product on fuzzy translation and fuzzy muliplication of PS-algebras. It adds an another dimension to the defined PS--algebras. his concept can further be generalized to intuitionistic fuzzy set, interval valued fuzzy sets for new results in our future work. 6.Acknowledgement Authors wish to thank Dr. K..Nagalakshmi, Professor and Head, Department of athematics, K L N College of Information and echnology, Pottapalayam, Sivagangai District, amilnadu, India, Prof. P..Sithar Selvam, Professor and Head, Department of athematics, RVS School of Engineering and echnology, Dindigul, amilnadu, India, for their help to make this paper as successful one. Also we wish to thank Prof. adhumangal Pal, Editor in-chief and reviewers for their suggestions to improve this paper in excellent manner. REFERENCES 1. K.Iseki and S.anaka, An introduction to the theory of BCK algebras, ath. Japonica, 23 (1978)

12 .Priya and.ramachandran 2. K.Iseki, On BCI-algebras, ath. Seminar Notes, 8 (1980) K.J.Lee, Y.B.Jun and.i.doh, Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras, Commun. Korean ath. Soc., 24 (3) (2009) L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) Priya and.ramachandran, Fuzzy translation and Fuzzy multiplication on PSalgebras, Inter. J. Innovation in Science and athematics, 2(5) (2014) Priya and.ramachandran, A note on Fuzzy PS Ideals in PS-Algebra and its level subsets, Inter. J. Advanced athematical Sciences, 2(2) (2014) Priya and.ramachandran, Classification of PS-algebras, International Journal of Innovative Science, Engineering and echnology, 1(7) (2014) Priya and.ramachandran, Some properties of fuzzy dot PS-sub algebras of PSalgebras, Annals of Pure and Applied athematics, 6(1) (2014) Priya and.ramachandran, Some characterization of anti fuzzy PS-ideals of PSalgebras in Homomorphism and Cartesian products, International Journal of Fuzzy athematical Archive, 4(2) (2014) Priya and.ramachandran, A note on anti Q-fuzzy R-closed PS-ideals in PSalgebras, Annals of Pure and Applied athematics, 6(2) (2014) Priya and.ramachandran, Homomorphism and Cartesian product of fuzzy PSalgebras, Applied athematical Sciences, 8,vol (67) (2014) Senapati,.Bhowmik and.pal, Atanossov s intuitionistic fuzzy translation of intuitionistic fuzzy H-ideals in BCK/BCI algebras, Notes on Intutionistics Fuzzy Sets, 19(1) (2013) Senapati,.Bhowmik and. Pal, Fuzzy closed ideals of B-algebras with intervalvalued membership function, Intern. J. Fuzzy athematical Archive, 1 (2013) Senapati,.Bhowmik and.pal, Fuzzy closed ideals of B-algebras, International Journal of Computer Science Engineering and echnology, 1(10) (2011)

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 1 (2011), pp. 61-71 International Research Publication House http://www.irphouse.com A Note on Characterization

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

On Annihilator of Fuzzy Subsets of Modules

On Annihilator of Fuzzy Subsets of Modules International Journal of Algebra, Vol. 3, 2009, no. 10, 483-488 On Annihilator of Fuzzy Subsets of Modules Helen K. Saikia 1 and Mrinal C. Kalita 2 1 Department of Mathematics, Gauhati university, Guwahati-781014,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Operation Approaches on α-γ-open Sets in Topological Spaces

Operation Approaches on α-γ-open Sets in Topological Spaces Int. Journal of Math. Analysis, Vol. 7, 2013, no. 10, 491-498 Operation Approaches on α-γ-open Sets in Topological Spaces N. Kalaivani Department of Mathematics VelTech HighTec Dr.Rangarajan Dr.Sakunthala

Διαβάστε περισσότερα

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS IFSCOM016 1 Proceeding Book No. 1 pp. 84-90 (016) ISBN: 978-975-6900-54-3 SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS SINEM TARSUSLU(YILMAZ), GÖKHAN ÇUVALCIOĞLU,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Intuitionistic Supra Gradation of Openness

Intuitionistic Supra Gradation of Openness Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E.

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Fuzzy Soft Rings on Fuzzy Lattices

Fuzzy Soft Rings on Fuzzy Lattices International Journal of Computational Science and Mathematics. ISSN 0974-389 Volume 3, Number 2 (20), pp. 4-59 International Research Publication House http://www.irphouse.com Fuzzy Soft Rings on Fuzzy

Διαβάστε περισσότερα

On Intuitionistic Fuzzy LI -ideals in Lattice Implication Algebras

On Intuitionistic Fuzzy LI -ideals in Lattice Implication Algebras Journal of Mathematical Research with Applications Jul., 2015, Vol. 35, No. 4, pp. 355 367 DOI:10.3770/j.issn:2095-2651.2015.04.001 Http://jmre.dlut.edu.cn On Intuitionistic Fuzzy LI -ideals in Lattice

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Fuzzifying Tritopological Spaces

Fuzzifying Tritopological Spaces International Mathematical Forum, Vol., 08, no. 9, 7-6 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/imf.08.88 On α-continuity and α-openness in Fuzzifying Tritopological Spaces Barah M. Sulaiman

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application; λρ-calculus Yuichi Komori komori@math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences, Chiba University Arato Cho aratoc@g.math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences,

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)

ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Commun. Korean Math. Soc. 25 (2010), No. 3, pp. 457 475 DOI 10.4134/CKMS.2010.25.3.457 ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II) Ahmed Abd El-Kader Ramadan, Salah El-Deen Abbas, and Ahmed Aref

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

The Properties of Fuzzy Relations

The Properties of Fuzzy Relations International Mathematical Forum, 5, 2010, no. 8, 373-381 The Properties of Fuzzy Relations Yong Chan Kim Department of Mathematics, Gangneung-Wonju National University Gangneung, Gangwondo 210-702, Korea

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set

New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set Mathematics and Statistics (): 6-7 04 DOI: 0.89/ms.04.000 http://www.hrpub.org New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set Said Broumi * Florentin Smarandache Faculty of Arts

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Young Bae Jun Madad Khan Florentin Smarandache Saima Anis. Fuzzy and Neutrosophic Sets in Semigroups

Young Bae Jun Madad Khan Florentin Smarandache Saima Anis. Fuzzy and Neutrosophic Sets in Semigroups Young Bae Jun Madad Khan Florentin Smarandache Saima Anis Fuzzy and Neutrosophic Sets in Semigroups Young Bae Jun, Madad Khan, Florentin Smarandache, Saima Anis Fuzzy and Neutrosophic Sets in Semigroups

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

MINIMAL INTUITIONISTIC GENERAL L-FUZZY AUTOMATA

MINIMAL INTUITIONISTIC GENERAL L-FUZZY AUTOMATA italian journal of pure applied mathematics n. 35 2015 (155 186) 155 MINIMAL INTUITIONISTIC GENERAL L-UZZY AUTOMATA M. Shamsizadeh M.M. Zahedi Department of Mathematics Kerman Graduate University of Advanced

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα