ΑΝΑΛΥΣΗ ΔΙΤΙΜΩΝ ΧΡΟΝΟΣΕΙΡΩΝ: ΒΡΟΧΟΠΤΩΣΕΙΣ ΤΟΥ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ
|
|
- Ευστοργιος Δράκος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ ΑΝΑΛΥΣΗ ΔΙΤΙΜΩΝ ΧΡΟΝΟΣΕΙΡΩΝ: ΒΡΟΧΟΠΤΩΣΕΙΣ ΤΟΥ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ Μανώλης Δρυμώνης και Μαρία Κατέρη Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Πανεπιστήμιο Πειραιά ΠΕΡΙΛΗΨΗ Στην εργασία αυτή θα αναφερθούμε εν συντομία στην θεωρία παλινδρόμησης για κατηγορικές χρονοσειρές, η οποία βασίζεται σε γνωστά αποτελέσματα των γενικευμένων γραμμικών μοντέλων καθώς και στην συμπερασματολογία με τη μέθοδο της μερικής πιθανοφάνειας. Η παραπάνω μεθοδολογία εφαρμόζεται στην μοντελοποίηση της δίτιμης χρονοσειράς των ημερησίων δεδομένων βροχόπτωσης του νομού Ιωαννίνων, για την περίοδο 4//995 έως την 3/2/999. Τα αποτελέσματα της ανάλυσής μας συμφωνούν με τον φυσικό μηχανισμό που διαμορφώνει τις βροχοπτώσεις στην συγκεκριμένη περιοχή.. ΕΙΣΑΓΩΓΗ Διαθέτουμε την ημερήσια βροχόπτωση σε mm για μια περίοδο Ν=823 ημερών από τις 4//995 έως τις 3/2/999, για τον νομό Ιωαννίνων. Με βάση τα δεδομένα μας, θα προσπαθήσουμε να ερμηνεύσουμε την συμπεριφορά του φαινομένου της βροχής στην δεδομένη περιοχή. Θα αναλύσουμε τη δίτιμη χρονοσειρά της βροχόπτωσης, ένα τμήμα της οποίας δίνεται στο Σχήμα. Η μεταβλητή ενδιαφέροντος λαμβάνει την τιμή 0 (δεν έβρεξε) εφόσον το ύψος της ημερήσιας βροχόπτωσης ήταν μικρότερο ή ίσο των 0. mm και την τιμή αν το ύψος της βροχής ήταν μεγαλύτερο των 0. mm (έβρεξε). Η βροχόπτωση ανα ημέρα διαμορφώνεται τόσο από τις βροχοπτώσεις προηγούμενων ημερών όσο και από εξωτερικούς παράγοντες (θερμοκρασία, ατμοσφαιρική πίεση, υγρασία) της εκάστοτε αλλά και προγενέστερων ημερών. Για την παραπάνω ανάλυση προσφέρονται τα Γενικευμένα Γραμμικά Μοντέλα Σχήμα : Δίτιμη χρονοσειρά βροχόπτωσης για Ν=04 ημέρες (Generalized Linear Models-GLM), τα οποία επιτρέπουν την μοντελοποίηση φαινομένων που επιδεικνύουν διαχρονική εξάρτηση
2 Αρχικά, στην Ενότητα 2, θα αναφερθούμε στην θεωρία των GLM για εξαρτημένα δεδομένα και εν συνεχεία θα παρουσιάσουμε την θεωρία της Μερικής Πιθανοφάνειας (Parial Likelihood-PL). Στην Ενότητα 3 θα μιλήσουμε για τις Δίτιμες Χρονοσειρές και την συμπερασματολογία τους μέσω της PL. Tέλος, στην Ενότητα 4 θα παρουσιάσουμε την προσπάθεια μοντελοποίησης των βροχοπτώσεων του νομού Ιωαννίνων βάση των προηγούμενων θεωρητικών αποτελεσμάτων. 2. GLM ΚΑΙ ΕΞΑΡΤΗΜΕΝΑ ΔΕΔΟΜΕΝΑ Η θεωρία των GLM εισήχθη απο τους elder and Wedderburn (972). Για την ανάλυση όμως των ποιοτικών χρονοσειρών μέσω GLM, η σχετική θεωρία απαιτείται να τροποποιηθεί καθώς οι παρατηρήσεις, ενώ προέρχονται απο την Εκθετική Οικογένεια Κατανομών (Ε.Ο.Κ), δεν είναι ανεξάρτητες μεταξύ τους. Τα GLM για εξαρτημένα δεδομένα αναφέρονται σε κατηγορικές μεταβλητές των οποίων η δεσμευμένη κατανομή δοθέντος του παρελθόντος ανήκει στην Ε.Ο.Κ. Έτσι για την δεσμευμένη κατανομή της Y δοθέντος του παρελθόντος ( I ) για κάθε χρονική στιγμή =,2,..., θα ισχύει Παρατηρώντας την σχέση () βλέπουμε ότι η μορφή της τυχαίας συνιστώσας δεν διαφοροποιείται απο εκείνη της περίπτωσης των ανεξάρτητων παρατηρήσεων. Η ίδια διαπίστωση γίνεται και για τη συστηματική συνιστώσα, την οποία θα παρουσιάσουμε στην συνέχεια στα πλαίσια των δίτιμων χρονοσειρών. Για την στατιστική ανάλυση των κατηγορικών χρονοσειρών μέσω μοντέλων παλινδρόμησης που βασίζονται στα GLM καθοριστικό ρόλο διαδραματίζει η θεωρία της Μερικής Πιθανοφάνειας (βλ. Fokianos and Kedem, 2002). Θεωρούμε τη διδιάστατη χρονοσειρά { Y, X }, =,2,..., με Y την αποκριτική μεταβλητή και X τη τυχαία χρονοεξαρτώμενη συμμεταβλητή. Για την από κοινού κατανομή της παραπάνω δειγματοληπτικής διαδρομής ισχύει f ( y, x,..., y, x yθ b(θ ) f ( y ;θ,φ / I ) = exp + c( y ;φ). α (φ) ; θ) = f ( x ; θ ) f ( x / d ; κ ) f ( y / c ; μ ), (2) = 2 = () Το I είναι η σ-άλγεβρα η οποία εμπεριέχει οτιδήποτε είναι γνωστό σε εμάς από την στιγμή που ξεκινήσαμε να παρατηρούμε το φαινόμενο (=0) μέχρι και τον χρόνο -. Συνάμα I μπορεί να περιέχει τιμές ντετερμινιστικών μεταβλητών που αναφέρονται στο χρόνο το
3 με d = ( y, x,..., y, x ) και c = ( y, x,..., y, x, x ). Το δεύτερο γινόμενο της (2) θα οδηγήσει στην PL. Στην παρούσα όμως μορφή δεν μπορεί να χρησιμοποιηθεί για συμπερασματολογία καθώς όσο περνάει ο χρόνος μεγαλώνει η διάσταση του συνόλου πληροφορίας c και επομένως αυξάνει ο αριθμός των προς εκτίμηση παραμέτρων 2. Προκειμένου να ξεπεραστεί αυτό το πρόβλημα, για κάθε χρονική στιγμή η f ( y / c ; μ ) αντικαταστήθηκε από την f ( y / I ). Συνάμα για κάθε χρόνο =,2,... θεωρούμε την p-διάστατη συμμεταβλητή διαδικασία { Z }(covariae process) με Z = ( Z ( ),..., Z ( ) p )'. Παρατήρηση: To Z περιέχει υστερήσεις τόσο της Y (π.χ Y, Y 2 ), όσο και υστερήσεις της X (π.χ X, X 2 ) καθώς και τιμές ντετερμινιστικών μεταβλητών οι οποίες είναι γνωστές το χρόνο ( W ). Έτσι το μοντέλο μας θα στηριχτεί στις δεσμευμένες ροπές 2 μ = E [ Y / I ] και σ = Var [ Y / I ] (3) και το πρόβλημα είναι η σύνδεση του μ με το Z. Κατάλληλη επιλογή του Z, σύμφωνα με την κρίση του ερευνητή, επιτρέπει parsimonious modeling. Με τον τρόπο αυτό η f / ) συμβολίζεται με f ( ; β), όπου ( y I p β R είναι το σταθερό διάνυσμα με το οποίο συνδέεται το 2 2 έχουμε μ = (β) και μ β μέσω της PL της { } σ y Z μ με το. Έτσι θα σ = και το πρόβλημα ανάγεται στην εκτίμηση του Y, =,2,... που έχει την τελική μορφή PL( β ; y,..., y ) = f ( y ; β). (4) = Το διάνυσμα το οποίο μεγιστοποιεί την (4) ονομάζεται εκτιμητής μέγιστης μερικής πιθανοφάνειας (maximum parial likelihood esimaor-mple). O MPLE είναι συνεπής και ασυμπτωτικά κανονικός (Wong, 986). 2 Tα διανύσματα κ και μ αποτελούν τις παραμέτρους των υπο συνθήκη πυκνοτήτων πιθανότητας των μεταβλητών X και Y αντιστοίχως και μαζί με το θ συνιστούν τις παραμέτρους του πιθανοθεωρητικού μοντέλου που καταλήξαμε με την (2)
4 3. ΔΙΤΙΜΕΣ ΧΡΟΝΟΣΕΙΡΕΣ Μέσω της PL μας δίνεται η δυνατότητα οι μεταβλητές Y να μοντελοποιηθούν σαν ανεξάρτητες μέσω της θεωρίας των GLM. Αυτό συμβαίνει διότι, όπως αποδεικνύεται, οι εξισώσεις των σκορ για την έρευση του β μέσω της PL είναι ίδιες με τις εξισώσεις των σκορ που ισχύουν όταν έχουμε ανεξάρτητα δεδομένα. Πλέον τα τυπικά σφάλματα των εκτιμητριών είναι υπο συνθήκη σφάλματα δοθέντος της ιστορίας I Θεωρούμε λοιπόν την δίτιμη χρονοσειρά { Y }, =,2,... καθώς και την p- διάστατη συμμεταβλητή στοχαστική διαδικασία { }, =,2,... Z. Για την δεσμευμένη κατανομή του Y δοθέντος του I έχουμε ότι Y / I ~ Bernoulli(, π ) με π ( β ) = P ( Y = / I ). Η δεσμευμένη β συνάρτηση πυκνότητας πιθανότητας του και έχει την ακόλουθη μορφή Y δοθέντος του I ανήκει στην Ε.Ο.Κ π f ( y ;θ,φ / I ) = exp y log( ) + log( π ). π Το πρόβλημα είναι να συνδέσουμε την πιθανότητα «επιτυχίας» π με το διάνυσμα Z μέσω του διανύσματος β σύμφωνα με την σχέση g ( π ) = β' Z η οποία ισοδυνάμως γράφεται π = h(η ), με η = β' Z. Η g είναι μια γνωστή μονότονη συνάρτηση και ονομάζεται συνάρτησης σύνδεσης, ενώ η h είναι η αντίστροφη της. Επειδή η R και π ( β ) [ 0, ] καταλήγουμε ότι h : R [0,]. Επομένως θα επιλέξουμε την h ανάμεσα απο κάποιες γνωστές cdf. Έτσι το μοντέλο συμπερασματολογίας για την π θα έχει την μορφή P Y = / I ) = F( β' Z ) h( β' Z ). β ( = Οι πιο συνηθισμένες επιλογές για την h στις δίτιμες χρονοσειρές είναι οι sandard logisic disribuion, exreme value disribuion και η sandardized normal disribuion. Στην ανάλυση των βροχοπτώσεων του νομού Ιωαννίνων θα χρησιμοποιήσουμε μοντέλα λογιστικής παλινδρόμησης ( π ( β ) = /( + exp[ β' Z ]) h(η ) ) και η μερική πιθανοφάνεια του β παίρνει την ακόλουθη απλή μορφή PL( β) = = [ π ] y [ π ] y
5 4. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΒΡΟΧΟΠΤΩΣΗΣ ΤΟΥ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ Το φαινόμενο της βροχής επιδεικνύει εξαιρετικά πολύπλοκη δομή. Οι βροχοπτώσεις σχετίζονται πρωτίστως με την ατμοσφαιρική κυκλοφορία. Παράλληλα οι βροχοπτώσεις επηρεάζονται απο τοπικούς παράγοντες θερμοκρασίας, υγρασίας και ατμοσφαιρικής πίεσης (Lolis, Barzokas and Kasoulis, 2004). To γεγονός αυτό, σε συνδυασμό και με την σύνδεση της βροχής με τα γεωγραφικά χαρακτηριστικά της κάθε περιοχής, μας οδηγεί στο συμπέρασμα ότι τα αποτελέσματα που θα παρουσιάσουμε για τα Ιωάννινα σε καμία περίπτωση δεν μπορούν να γενικευθούν για την ερμηνεία των βροχοπτώσεων άλλων περιοχών. Για την ανάλυση μας διαθέτουμε τις ακόλουθες μεταβλητές Y : βροχόπτωση τη μέρα (δίτιμη). T : θερμοκρασία τη μέρα (ελάχιστη, μέγιστη, εύρος). H : υγρασία τη μέρα (τιμή της ανα δυο ώρες). A : ατμοσφαιρική πίεση τη μέρα (τιμή της ανα δυο ώρες). Για την ( H ) και την ( A ) υπολογίσαμε τις μέσες τιμές των 2 μετρήσεων που διαθέτουμε για αυτές ημερησίως. Για την ( T ) επιλέξαμε το εύρος διότι σύμφωνα με τα κλιματολογικά δεδομένα, τις ημέρες που έχουμε συννεφιά παρατηρείται σχετικά μικρότερο εύρος θερμοκρασίας απο αυτό που καταγράφεται τις ημέρες που επικρατεί ξαστεριά. Για την στατιστική επεξεργασία των δεδομένων χρησιμοποιήσαμε το S-PLUS και την βιβλιοθήκη MASS που είναι κατάλληλη για GLM και εξαρτημένα δεδομένα. Τέλος για την επιλογή βέλτιστου μοντέλου στηριχτήκαμε κυρίως στα κριτήρια πληροφορίας του AIC και BIC. Προσαρμόζοντας μοντέλα στην αρχική μας χρονοσειρά διαπιστώσαμε ότι αν και δεν ήταν parsimonious, δεν παρουσίαζαν καλή προσαρμογή. Η διαπίστωση αυτή συμφωνεί με την διεθνή βιβλιογραφία σχετικά με δεδομένα τέτοιας μορφής. Προκειμένου να βρούμε πιο ελκυστικά μοντέλα τα οποία θα μας παρέχουν συγκεκριμένες πληροφορίες για το μηχανισμό των βροχοπτώσεων στον νομό Ιωαννίνων, αποφασίσαμε να λάβουμε υπόψη μας τα μετεωρολογικά γνωρίσματα της δεδομένης περιοχής. Τους χειμερινούς μήνες λοιπόν στα Ιωάννινα οι βροχές οφείλονται κυρίως σε συστήματα χαμηλών πιέσεων τα οποία κινούνται από την δυτική προς την ανατολική Μεσόγειο. Διαφορετική κατάσταση επικρατεί τα καλοκαίρια όπου οι βροχοπτώσεις προκαλούνται πρωτίστως από τοπικούς παράγοντες θερμικής φύσεως. Με βάση τα προαναφερθέντα φαίνεται ρεαλιστικό να μοντελοποιήσουμε ξεχωριστά κάθε χειμώνα (αρχές Νοέμβρη-τέλος Μάρτη) και ξεχωριστά κάθε καλοκαίρι (αρχές Μαΐου-τέλος Σεπτέμβρη), εξαιρώντας από την ανάλυση μας τους μήνες Απρίλιο και Οκτώβρη που συνιστούν τις λεγόμενες buffer ζώνες. Τα αρχικά μοντέλα για κάθε χειμώνα δεν θα περιέχουν συμμεταβλητές της θερμοκρασίας και τα αρχικά υποδείγματα των καλοκαιριών δεν θα έχουν ερμηνευτικές μεταβλητές της ατμοσφαιρικής πίεσης. Έτσι θα καταλήξουμε σε υποδείγματα με μικρό αριθμό παραμέτρων
6 Για οικονομία χώρου θα παρουσιάσουμε την προσπάθεια μοντελοποίησης των χειμώνων. Έτσι για κάθε χειμερινή περίοδο (περίοδοι: 95-96, 96-97, 97-98, 98-99), σύμφωνα με τα προαναφερθέντα, το αρχικό μοντέλο θα περιλαμβάνει τις ακόλουθες μεταβλητές Y, Y 2, Y 3, H, H, H 2, H 3, A, A, A 2, A 3, Την καλύτερη προσαρμογή στα δεδομένα παρατηρούμε τον χειμώνα (ΜΧ96.97) όπου τόσο το αρχικό μοντέλο όσο και το βέλτιστο (συνάρτηση sepaic- ΜΧ96.97sep) H, A, A έχουν μικρότερο AIC σε σχέση με τους υπόλοιπους χειμώνες. Στον πίνακα που ακολουθεί δίνονται για αυτά τα διαγνωστικά κριτήρια AIC, BIC, η απόκλιση (Deviance-D), το 2 του Pearson καθώς και το μέσο τετραγωνικό σφάλμα (Μean Square Error-MSE). Aκόμη για κάθε υπόδειγμα δίνεται ο αριθμός των παραμέτρων (p) καθώς και οι αντίστοιχοι βαθμοί ελευθερίας (df). To μοντέλο ( H, A, A ) είναι parsimonious και παρατηρούμε ότι συμφωνεί με τον φυσικό μηχανισμό που διαμορφώνει τις βροχοπτώσεις στα Ιωάννινα τους χειμερινούς μήνες. Η προσαρμογή του δεδομένου υποδείγματος στις υπόλοιπες χειμερινές ζώνες έδωσε εξίσου καλά αποτελέσματα. Το γεγονός αυτό δείχνει πως θα είχε νόημα η από κοινού μοντελοποίηση των βροχοπτώσεων βάση και των τεσσάρων χρονοσειρών του χειμώνα. Κάτι τέτοιο όμως δεν παρέχεται αυτοματοποιημένα απο τα στατιστικά πακέτα. Το δεδομένο πρόβλημα θα αποτελέσει αντικείμενο μελλοντικής έρευνας. 4. Αυτοπαλινδρομούμενα Μοντέλα Για την στατιστική ανάλυση δεδομένων βροχόπτωσης συχνά χρησιμοποιούνται μοντέλα λογιστικής παλινδρόμησης με συμμεταβλητές τις χρονικές υστερήσεις της βροχής (Chandler, 2003). Για την δειγματοληπτική διαδρομή των 823 ημερών προσαρμόσαμε τα ακόλουθα μοντέλα
7 για τα οποία προέκυψαν Βλέπουμε λοιπόν ότι οι βροχοπτώσεις ανα ημέρα διαμορφώνονται κυρίως απο τις χρονικές υστερήσεις της βροχής πρώτης και τρίτης τάξης αφού παρατηρούμε ότι τα υποδείγματα ΜΧF και MΧ4F παρουσιάζουν την καλύτερη προσαρμογή στα δεδομένα. 4.2 Μοντελοποίηση των βροχοπτώσεων για ομαδοποιημένα δεδομένα Οι μετεωρολόγοι συχνά παρέχουν προβλέψεις για την βροχόπτωση της επόμενης εβδομάδας ή του επόμενου δεκαπενθημέρου. Με βάση αυτή την τακτική ομαδοποιήσαμε τα αρχικά δεδομένα, θεωρώντας ως νέα μονάδα παρατήρησης το δεκαπενθήμερο. Αρχικά λοιπόν θεωρήσαμε ένα σύνολο C, 620 ημερών που καταγράψαμε την κατάσταση της βροχόπτωσης. Εν συνεχεία, διαμερίσαμε το σύνολο αυτό σε 08 διαδοχικά δεκαπενθήμερα C i, i =,2, με C = Y, Y,..., Y,..., Y ) όπου i ( i 2i i 5i Y i : η βροχόπτωση (σε mm ) την -οστή μέρα του i-οστού δεκαπενθήμερου. Mε τον τρόπο αυτό προέκυψε η δίτιμη μεταβλητή D i η οποία λαμβάνει τις τιμές 0 (ξηρό δεκαπενθήμερο) και (βροχερό δεκαπενθήμερο) σύμφωνα με την παρακάτω κωδικοποίηση Στην νέα δίτιμη χρονοσειρά D, D2,..., D08 προσαρμόστηκαν τα αυτοπαλίνδρομα υποδείγματα που παρουσιάσαμε στην παράγραφο 4.. Αυτό που διαπιστώσαμε ήταν ότι στα ομαδοποιημένα δεδομένα επικρατεί η ίδια δομή, που διαμορφώνει τις βροχοπτώσεις, με εκείνη των ημερησίων μετρήσεων
8 5. ΣΥΜΠΕΡΑΣΜΑΤΑ Γενικά τα GLM που στηρίζονται σε δεδομένα βροχοπτώσεων αξιοποιούνται κυρίως για την ανίχνευση κλιματολογικών αλλαγών σε συγκεκριμένες γεωγραφικές ζώνες. Παράλληλα μέσω των δεδομένων μοντέλων επιδιώκεται η ανάδειξη του φυσικού μηχανισμού που διαμορφώνει τις βροχοπτώσεις ανα περιοχή. Τέλος να σημειώσουμε ότι τα GLM δεν συνηθίζεται να χρησιμοποιούνται για την παροχή προβλέψεων στην μετεωρολογία. Η πρόβλεψη διεξάγεται μέσω χωρικών δεδομένων (spaial daa). ABSTRACT A his projec we will refer o caegorical ime series, whose foundaion is based on generalized linear models and parial likelihood inference. This approach will be used for he modeling of binary ime series of daily rainfall daa from Ioannina, for he period beween 4//995 unil 3/2/999. The resuls from our analysis agree wih he naural mechanism which modes he rainfall a his region. AAΦΟΡΕΣ Chandler, R. E. (2003). On he use of generalized linear models for inerpreing climae variabiliy. Research Repor, o.232, Deparmen of Saisical Science, Universiy College London. Lolis, C. J., Barzokas, A. and Kasoulis, B. D. (2004). Relaion beween sensible and laen hea fluxes in he Medierranean and precipiaion in he greek area during winer. Inernaional Journal of Climaology, 24, elder, J. A. and Wedderburn, R. W. M. (972). Generalized Linear Models. Journal of he Royal Saisical Sociey, Series A, 35, Fokianos, K. and Kedem, B. (2002). Regression Models for Time Series Analysis, John Wiley, Hoboken J. Wong, W. H. (986). Theory of parial likelihood. Annals of Saisics, 4,
ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ
ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Στατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος
iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 4 ου κεφαλαίου Ελεγχοσυναρτήσεις Γενικευμένου Λόγου Πιθανοφανειών Σταύρος Χατζόπουλος 27/03/2017, 03/04/2017, 24/04/2017 1 Εισαγωγή Έστω το τ.δ. X,,, από την κατανομή
Στατιστική. Εκτιμητική
Στατιστική Εκτιμητική Χατζόπουλος Σταύρος 28/2/2018 και 01 /03/2018 Εισαγωγή Το αντικείμενο της Στατιστικής είναι η εξαγωγή συμπερασμάτων που αφορούν τον πληθυσμό ή το φαινόμενο που μελετάμε, με τη βοήθεια
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
Οικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των εισαγωγικών εννοιών που
5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο
5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 5 ου κεφαλαίου Ελεγχοσυναρτήσεις για τις Παραμέτρους της Κανονικής Κατανομής Σταύρος Χατζόπουλος 08/05/207, 5/05/207 Εισαγωγή Στις παραγράφους που ακολουθούν παρουσιάζονται
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών
Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών
ΓΕΝΙΚΗ ΚΛΙΜΑΤΟΛΟΓΙΑ - ΚΛΙΜΑ ΜΕΣΟΓΕΙΟΥ και ΚΛΙΜΑ ΕΛΛΑ ΟΣ
ΓΕΝΙΚΗ ΚΛΙΜΑΤΟΛΟΓΙΑ - ΚΛΙΜΑ ΜΕΣΟΓΕΙΟΥ και ΚΛΙΜΑ ΕΛΛΑ ΟΣ ύο Μέρη Γενική Κλιµατολογία-Κλίµα Μεσογείου Κλίµα Ελλάδος ΓΕΝΙΚΗ ΚΛΙΜΑΤΟΛΟΓΙΑ & ΚΛΙΜΑ ΜΕΣΟΓΕΙΟΥ ιδάσκων Χρήστος Μπαλαφούτης Καθηγητής Τοµέα Μετεωρολογίας
Πολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Περιεχόμενα. Πρόλογος... 15
Περιεχόμενα Πρόλογος... 15 Κεφάλαιο 1 ΘΕΩΡΗΤΙΚΑ ΚΑΙ ΦΙΛΟΣΟΦΙΚΑ ΟΝΤΟΛΟΓΙΚΑ ΚΑΙ ΕΠΙΣΤΗΜΟΛΟΓΙΚΑ ΖΗΤΗΜΑΤΑ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ ΤΟΥ ΠΡΑΓΜΑΤΙΚΟΥ ΚΟΣΜΟΥ... 17 Το θεμελιώδες πρόβλημα των κοινωνικών επιστημών...
1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ
ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου
Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Σημερινό μάθημα: Εκτιμήτριες συναρτήσεις, σημειακή εκτίμηση παραμέτρων και γραμμική παλινδρόμηση Στατιστική συμπερασματολογία (ή εκτιμητική ): εξαγωγή
Πιθανότητες και Αρχές Στατιστικής (10η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 48 Σημερινό
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 6.1 Ετεροσκεδαστικότητα: Εισαγωγή Συχνά, η υπόθεση της σταθερής διακύμανσης των όρων σφάλματος,
ΓΡΑΜΜΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ-ΚΑΝΟΝΙΚΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕΣΩ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΚΑΝΟΝΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (24), σελ. 243-25 ΓΡΑΜΜΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΗ-ΚΑΝΟΝΙΚΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕΣΩ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΚΑΝΟΝΙΚΕΣ ΧΡΟΝΟΣΕΙΡΕΣ Κουγιουµτζής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@e.aegea.gr Τηλ: 7035468 Μέθοδος Υπολογισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
Γραμμικά Μοντέλα. Βιολέττα Ε. Πιπερίγκου. Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών. h p://
Γραμμικά Μοντέλα Βιολέττα Ε. Πιπερίγκου Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών vpiperig@math.upatras.gr h p://www.math.upatras.gr/ vpiperig Γραφείο 213, τηλ. 2610 997285 BEΠ (UPatras) Γραμμικά Μοντέλα 1η,
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ
ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ
Συνολοκλήρωση και VAR υποδείγματα
ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ
Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά
Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο
Λήψη αποφάσεων κατά Bayes
Λήψη αποφάσεων κατά Bayes Σημειώσεις μαθήματος Thomas Bayes (1701 1761) Στυλιανός Χατζηδάκης ECE 662 Άνοιξη 2014 1. Εισαγωγή Οι σημειώσεις αυτές βασίζονται στο μάθημα ECE662 του Πανεπιστημίου Purdue και
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ. Σημειώσεις Πανεπιστημιακών Παραδόσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ Σημειώσεις Πανεπιστημιακών Παραδόσεων ΑΛΕΞΑΝΔΡΟΣ ΜΗΛΙΏΝΗΣ ΟΚΤΩΒΡΙΟΣ 07 ΚΕΦΑΛΑΙΟ ΧΡΟΝΟΣΕΙΡΕΣ- ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. ΟΡΙΣΜΟΣ
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0
ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό
2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για
2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Απλή Γραμμική Παλινδρόμηση II
. Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες
Απλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
Διαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Ανάλυση και Σχεδιασμός Μεταφορών Ι Ανάλυση Διακριτών Επιλογών
Ανάλυση Διακριτών Επιλογών Παναγιώτης Παπαντωνίου Δρ. Πολιτικός Μηχανικός, Συγκοινωνιολόγος Πάτρα, 2017 Περιεχόμενα Αθροιστικά μοντέλα Εξατομικευμένα μοντέλα Μοντέλα Διακριτών Μεταβλητών Θεωρία Μεγιστοποίησης
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος
ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ
3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων
ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ
ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ Η ΕΠΟΧΙΚΟΤΗΤΑ ΣΤΙΣ ΤΙΜΕΣ ΤΟΥ ΑΝΘΡΑΚΑ, ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ, ΤΟΥ ΧΑΛΥΒΑ ΚΑΙ ΤΟΥ ΧΡΥΣΟΥ Δαμιανού Χριστίνα Διπλωματική
Λογιστική Παλινδρόµηση
Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών
Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών
Χρονοσειρές - Μάθημα 8 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(,q) μοντέλο x x x z z z q q Πλεονεκτήματα:. Απλά. Κανονική διαδικασία, ανεπτυγμένη
ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA
ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΜΕΛΟΣ ΤΗΣ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΪΚΗΣ ΕΤΑΙΡΕΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ (RSAI, ERSA) Οικονομική Κρίση και Πολιτικές Ανάπτυξης και Συνοχής 10ο Τακτικό Επιστημονικό
Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1
Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ Σημειώσεις Πανεπιστημιακών Παραδόσεων ΑΛΕΞΑΝΔΡΟΣ ΜΗΛΙΏΝΗΣ ΟΚΤΩΒΡΙΟΣ 205 ΚΕΦΑΛΑΙΟ
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Παραμέτρων
ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17
ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Εισαγωγή στη θεωρία ακραίων τιμών
Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»
9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Θεωρητικές Κατανομές Πιθανότητας
Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ
Το Κεντρικό Οριακό Θεώρημα
Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που
Χ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΣΥΝΔΥΑΣΤΙΚΗ 1.1 ΒΑΣΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 13 1.2 ΠΡΟΣΘΕΤΙΚΗ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ... 15 1.3 ΔΙΑΤΑΞΕΙΣ..... 16 1.4 ΜΕΤΑΘΕΣΕΙΣ... 18 1.5 ΣΥΝΔΥΑΣΜΟΙ... 20 1.6 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΤΑΘΕΣΕΙΣ......