Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.."

Transcript

1 Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας ενδιαφέρει να συγκρίνουμε τον κίνδυνο εμφάνισης μιας νόσου σε ένα άτομο που έχει εκτεθεί στον παράγοντα κινδύνου με τον αντίστοιχο κίνδυνο ενός ατόμου που δεν έχει εκτεθεί στον ίδιο παράγοντα κινδύνου. Υ: Νόσος Χ: Παράγοντας Κινδύνου (Ασθενής) 2 (Υγιής) Σύνολο (Παρόν) 2. 2 (Απών) Σύνολο..2.. =

2 Αποδιδόμενος Κίνδυνος (Attributable Risk, AR) Ως αποδιδόμενο κίνδυνο ορίζουμε τη διαφορά μεταξύ των ρυθμών επίπτωσης (ή των δεικτών θνησιμότητας) των ομάδων με άτομα εκτεθειμένα και μη εκτεθειμένα σε ένα παράγοντα κινδύνου. Όταν αναφερόμαστε σε ένα πίνακα συνάφειας 2 2 τότε ο αποδιδόμενος κίνδυνος ορίζεται ως η διαφορά των δεσμευμένων πιθανοτήτων j i και j i 2 AR P( A ) P( A ) π = P(A ) P( A ) j i j i 2 j 2 i 2 j 2 i πιθανότητες εμφάνισης της νόσου αν κάποιος ασθενής (Α) έχει εκτεθεί στον κίνδυνο () ή όχι ( )

3 Εκτίμηση Αποδιδόμενος Κίνδυνος 2 2 AR p p p j i p j i Υ: Νόσος Χ: Παράγοντας Κινδύνου (Ασθενής) 2 (Υγιής) Σύνολο (Παρόν) 2. 2 (Απών) Σύνολο..2.. = j i ij i.

4 Αποδιδόμενος Κίνδυνος έλεγχος υποθέσεων (ανεξαρτησίας) H 0 : AR = 0 έναντι της εναλλακτικής H : AR 0. Το πρόβλημα με τον παραπάνω δείκτη είναι ότι μετράει απόλυτες διαφορές. Έτσι οι πιθανότητες 0.0 και 0.20 θα μας δώσουν ίδιο AR με τις πιθανότητες 0.6 και 0.7 αγνοώντας το γεγονός ότι στην πρώτη περίπτωση η πιθανότητα της μίας ομάδας είναι διπλάσια από την άλλη. p AR P( A ) P( A ) j i j i 2 AR P( A ) j i

5 Σχετικός Κίνδυνος (Relative Risk, RR) ορίζεται ως ο λόγος της επίπτωσης ή της θνησιμότητας δύο ομάδων με διαφορετική έκθεση στον παράγοντα κινδύνου Σε πίνακες 2x2 δίνεται από το λόγο των πιθανοτήτων j i j i 2 και RR P( A ) P( A ) p p RR p p j i j 2 i j i 2 j 2 i 2 j i. j i

6 Σχετικός Κίνδυνος (Relative Risk, RR) έλεγχος υποθέσεων (ανεξαρτησίας) H 0 : RR = H : RR έναντι της εναλλακτικής μοναδιαίος σχετικός κίνδυνος συνεπάγεται ανεξαρτησία μεταξύ των δύο μεταβλητών.

7 Σχετικός Κίνδυνος (Relative Risk, RR) Αν RR = a τότε Η πιθανότητα εμφάνισης της νόσου (Y = ) όταν ένα άτομο εκτεθεί στον παράγοντα κινδύνου (X = ) είναι ίση με a φορές την ίδια πιθανότητα όταν δεν εκτεθεί στον παράγοντα κινδύνου (X = 2). Αν a > τότε: Η πιθανότητα εμφάνισης της νόσου (Y = ) όταν ένα άτομο εκτεθεί στον παράγοντα κινδύνου (X = ) είναι ίση με a φορές μεγαλύτερη (ή (a )00% φορές μεγαλύτερη) από την ίδια πιθανότητα όταν δεν εκτεθεί στον κίνδυνο (X = 2).

8 Σχετικός Κίνδυνος (Relative Risk, RR) Αν a < τότε: Η πιθανότητα εμφάνισης της νόσου (Y = ) όταν ένα άτομο εκτεθεί στον παράγοντα κινδύνου (X = ) είναι ίση με a φορές μικρότερη (ή ( a) 00% φορές μικρότερη) από την ίδια πιθανότητα όταν δεν εκτεθεί στον κίνδυνο (X = 2) (η μεταβλητή ας εδώ λέγεται προστατευτικός παράγοντας). Αν a = τότε: Η πιθανότητα εμφάνισης της νόσου (Y = ) όταν ένα άτομο εκτεθεί στον παράγοντα κινδύνου (X = ) είναι ίση με την ίδια πιθανότητα όταν δεν εκτεθεί στον κίνδυνο (X = 2) (δηλαδή η μεταβλητή X δεν επηρεάζει την εμφάνιση της νόσου συνεπώς δεν αποτελεί παράγοντα κινδύνου).

9 Λόγος Σχετικών Πιθανοτήτων Σχετική Πιθανότητα (Odds) υποκαθιστά το όρο «probability» (πιθανότητα) και συνήθως δίνει μια εκτίμηση της τύχης που έχει κάποιος να κερδίσει σε ένα αγώνα ή στοίχημα. Μαθηματικά το odds ενός ενδεχομένου A δίνεται από τον τύπο: P( A) Odds( A) P( A) λόγος της πιθανότητας εμφάνισης ενός ενδεχομένου έναντι της πιθανότητας μη εμφάνισης του (δηλαδή η πιθανότητα του συμπληρωματικού, ως προς το δειγματικό χώρο, ενδεχομένου).

10 Λόγος Σχετικών Πιθανοτήτων η σχετική πιθανότητα είναι μετασχηματισμός της αρχικής πιθανότητας εφόσον: odds odds odds Η ερμηνεία της θεωρείται πιο εύκολη από την απλή πιθανότητα διότι συγκρίνει την πιθανότητα εμφάνισης ενός ενδεχομένου με την πιθανότητα μη εμφάνισης. Έτσι όταν η Ελληνική ομάδα είχε σχετική πιθανότητα να μην κερδίσει το ευρωπαϊκό πρωτάθλημα του : αυτό σήμαινε ότι πιθανότητα να μην κερδίσει το πρωτάθλημα ήταν ίση με 80 φορές την πιθανότητα να κερδίσει. Πιο απλά η πιθανότητα να κερδίσει ήταν μόλις (/(80 + ) =)

11 Λόγος Σχετικών Πιθανοτήτων Αν odds = (ή : ) τότε οι πιθανότητες εμφάνισης ή μη εμφάνισης του ενδεχομένου που εξετάζουμε είναι ίσες (δηλαδή 50%). Αν odds = a τότε η πιθανότητα εμφάνισης του ενδεχομένου που εξετάζουμε είναι ίση με a φορές την πιθανότητα μη εμφάνισής του. Αν odds = a και i. a > τότε η πιθανότητα εμφάνισης του ενδεχομένου που εξετάζουμε είναι a (ή (a )00%) φορές μεγαλύτερη από την πιθανότητα μη εμφάνισης του. ii. a < τότε η πιθανότητα εμφάνισης του ενδεχομένου που εξετάζουμε είναι a (ή ( a) 00%) φορές μικρότερη από την πιθανότητα μη εμφάνισης του.

12 Λόγος Σχετικών Πιθανοτήτων odds = συνεπάγεται ίση πιθανότητα εμφάνισης και μη εμφάνισης της νόσου. odds > συνεπάγεται η εμφάνιση της νόσου είναι πιο πιθανή από την πιθανότητα μη εμφάνισης της νόσου. odds < συνεπάγεται η εμφάνιση της νόσου είναι λιγότερο πιθανή από την πιθανότητα μη εμφάνισης της νόσου

13 Λόγος Σχετικών Πιθανοτήτων 2 2 πίνακες συνάφειας odds( X ) i i 2 i i 2 odds( X 2 ) i 2 i i 2 i 2 22 p odds( X ) p i. 2 i 2 2. p odds( X 2 ) p 2 i i

14 Λόγος Σχετικών Πιθανοτήτων μας ενδιαφέρουν οι σχετικές πιθανότητες εμφάνισης της νόσου όταν έχουμε έκθεση ή όχι στον παράγοντα κινδύνου. odds P( A ) P( A ) odds P( A ) P( A ) odds p odds p p p

15 Σύγκριση Σχετικών Πιθανοτήτων λόγος σχετικών πιθανοτήτων του X = έναντι του X = 2 δίνεται από τον τύπο odds( X ) / / OR odds( X 2 ) / / i 2 i 2 22 i 2 2 i λόγος σταυρωτού ή χιαστού πολλαπλάσιου Στους 2 2 πίνακες συνάφειας ο λόγος σχετικών πιθανοτήτων (ΛΣΠ) εκτιμάται από τον εκτιμητή: OR p p p p

16 Σύγκριση Σχετικών Πιθανοτήτων Αν θέλουμε να ορίσουμε το ΛΣΠ ως συνάρτηση των πιθανοτήτων εμφάνισης της νόσου τότε: OR p p OR p p Η σύνδεση των ΛΣΠ (OR) με την έννοια της ανεξαρτησίας σε πίνακες 2 2 είναι άμεση αφού: «ανεξαρτησία» OR = Η 0 : ΟR = έναντι της εναλλακτικής Η : ΟR.

17 Σύγκριση Σχετικών Πιθανοτήτων Αν OR = a τότε η σχετική πιθανότητα της νόσου (Y = ) όταν ένα άτομο εκτεθεί στον κίνδυνο (X = ) είναι ίση με a φορές την ίδια σχετική πιθανότητα όταν δεν εκτεθεί στον κίνδυνο (X = 2). Ή ισοδύναμα: η σχετική πιθανότητα μη εμφάνισης της νόσου (Y = 2) όταν ένα άτομο εκτεθεί στον κίνδυνο (X = 2) είναι ίση με a φορές την ίδια σχετική πιθανότητα όταν εκτεθεί στον κίνδυνο (X = ). Αν OR = a > τότε η σχετική πιθανότητα της νόσου (Y = ) όταν ένα άτομο εκτεθεί στον κίνδυνο (X = ) είναι a (ή {a }00%) φορές μεγαλύτερη της ίδιας σχετικής πιθανότητας όταν δεν εκτεθεί στον κίνδυνο (X = 2). Αν OR = a < τότε η σχετική πιθανότητα της νόσου (Y = ) όταν ένα άτομο εκτεθεί στον κίνδυνο (X = ) είναι a (ή { a}00%) φορές μικρότερη της ίδιας σχετικής πιθανότητας όταν δεν εκτεθεί στον κίνδυνο (X = 2).

18 Σύγκριση Σχετικών Πιθανοτήτων Στην στατιστική πολλές φορές χρησιμοποιούμε και το λογάριθμο του ΛΣΠ. Ο λόγος είναι ότι μπορούμε να εξετάσουμε την κατανομή του πιο εύκολα. Επιπλέον ο λογάριθμος είναι αυτός που επίσης χρησιμοποιείται στα μοντέλα λογιστικής παλινδρόμησης. Η 0 : log ΟR = 0 έναντι της εναλλακτικής Η : log ΟR 0.

19 Σχέση Σχετικού Κινδύνου και ΛΣΠ ο ΛΣΠ είναι ασυμπτωτικά ίσος με το σχετικό κίνδυνο όταν η πιθανότητα εμφάνισης της νόσου είναι μικρή δηλαδή στις σπάνιες αρρώστιες. Odds Odds( X ) j / j 2 j j 2 2 RR(Y ) OR. Odds Odds( X 2) / RR(Y 2) j 2 j 2 2 j 2 j 2 Αν το γεγονός που εξετάζουμε έχει πιθανότητα εμφάνισης πολύ μικρή (για παράδειγμα μια σπάνια ασθένεια) τότε π j=2 και π j=2 2 άρα και RR(Y = 2) καταλήγοντας στο αποτέλεσμα OR RR(Y = ).

20 Σχέση Σχετικού Κινδύνου και ΛΣΠ / / OR OR / / i 2 i 22 i. i i i 2 2 i 2 2 i i 2 2. i 2. i 2 i 2 Συνεπώς ο ΛΣΠ ορίζεται επαρκώς αν αντί για τις δεσμευμένες πιθανότητες π j= i για i =, 2 γνωρίζουμε τις πιθανότητες π i j= για i =, 2 οι οποίες μπορούν να εκτιμηθούν από μια μελέτη μαρτύρων-ασθενών.

21 Παράδειγμα Σε μια προοπτική μελέτη κατά την οποία εξετάσθηκαν 368 άνδρες καπνιστές ηλικίας κάτω των 60 ετών οι οποίοι έπαθαν μια καρδιακή ανακοπή και επιβίωσαν. Μετά από 2 έτη εξετάσθηκαν πόσοι από αυτούς είχαν επιβιώσει και τους χωρίσαμε ανάλογα εάν είχαν κόψει το τσιγάρο ή όχι. Έτσι εδώ μας ενδιαφέρει να εξετάσουμε αν το σταμάτημα του καπνίσματος (X) είχε ευνοϊκή επίδραση στην επιβίωση μετά από δύο έτη (Y). Τα δεδομένα δίνονται στον 2 2 Πίνακα που ακολουθεί: Χ: Υ: Επιβίωση σε 2 χρόνια Συνέχισαν το κάπνισμα : Πεθαμένος 2: Ζωντανός Σύνολο : Ναι 9 (2.3%) 35 (87.7%) 54 (4.8%) 2: Όχι 5 (7.0%) 99 (93.0%) 24 (58.2%) Σύνολο 34 (9.2%) 334 (90.8%) 368

22 αποδιδόμενος κίνδυνος Παράδειγμα Συνεπώς οι ασθενείς που συνέχισαν να καπνίζουν μετά το καρδιακό επεισόδιο παρουσιάζουν αυξημένη πιθανότητα θανάτου, σε σχέση με της που διέκοψαν το κάπνισμα, κατά 5.3 ποσοστιαίες μονάδες. Αυτή η διαφορά αποδίδεται στο σταμάτημα του καπνίσματος. Το πλεονέκτημα του αποδιδόμενου κινδύνου είναι ότι δίνει τη διαφορά σε ποσοστιαίες μονάδες κάτι που δε φαίνεται στο σχετικό κίνδυνο

23 Παράδειγμα σχετικός κίνδυνος Αυτό σημαίνει ότι ο κίνδυνος θανάτου για της ασθενείς που συνέχισαν το κάπνισμα είναι ίσος με.76 φορές (ή 76% μεγαλύτερος από) τον ίδιο κίνδυνο των ασθενών που σταμάτησαν το κάπνισμα.

24 Παράδειγμα Ο ποσοστιαίος αποδιδόμενος κίνδυνος είναι ίσος με 0.053/0.23 = 43.%. Αυτό σημαίνει ότι το 43% του κινδύνου θανάτου που διατρέχει της ασθενής που συνέχισε το κάπνισμα μπορεί να αποδοθεί στο γεγονός ότι δε σταμάτησε το κάπνισμα. Συνεπώς, το 43% των θανάτων (2 χρόνια μετά το πρώτο καρδιακό επεισόδιο) των ασθενών που συνέχισαν να καπνίζουν θα μπορούσε να είχε αποφευχθεί αν είχαμε μπορέσει να της πείσουμε να κόψουν το κάπνισμα (δηλαδή περίπου 8 άτομα, = 8.).

25 Παράδειγμα ΛΣΠ είναι ίσος Δηλαδή η σχετική πιθανότητα θανάτου για της ασθενείς που συνέχισαν το κάπνισμα είναι 86% μεγαλύτερη από την πιθανότητα θανάτου των ασθενών που σταμάτησαν το κάπνισμα. Βλέπουμε εδώ, ότι παρόλο που η πιθανότητα θανάτου είναι λίγο μεγαλύτερη του 0% για τη μία ομάδα, ο ΛΣΠ πλησιάζει αρκετά το σχετικό κίνδυνο.

26 Συμπερασματολογία Αποδιδόμενος Κίνδυνος Γενική Προσέγγιση: Της υποθέσουμε ότι έχουμε δύο ομάδες με διαφορετική έκθεση στον κίνδυνο και και ότι η μεταβλητή απόκρισης Y είναι της δίτιμη: έχει ή όχι τη νόσο (A και A ). Σε αυτή την περίπτωση της ενδιαφέρει να ελέγξουμε κατά πόσο η πιθανότητα εμφάνισης της νόσου είναι ίδια της δύο ομάδες. H 0 : P( A ) P( A ) έ ή H 0 : P( A ) P( A ) H 0 : P( A ) P( A ) 0 έ ή H 0 : P( A ) P( A ) 0

27 Συμπερασματολογία Αποδιδόμενος Κίνδυνος H 0 : έ ή H 0 : H 0 : 0 έ ή H 0 : 0 H : AR έ ή H : AR 0

28 Συμπερασματολογία Αποδιδόμενος Κίνδυνος Γενική Προσέγγιση: Της υποθέσουμε ότι έχουμε δύο ομάδες με διαφορετική έκθεση στον κίνδυνο και και ότι η μεταβλητή απόκρισης Y είναι της δίτιμη: έχει ή όχι τη νόσο (A και A ). Σε αυτή την περίπτωση της ενδιαφέρει να ελέγξουμε κατά πόσο η πιθανότητα εμφάνισης της νόσου είναι ίδια της δύο ομάδες. H 0 : P( A ) P( A ) έ ή H 0 : P( A ) P( A ) H 0 : P( A ) P( A ) 0 έ ή H 0 : P( A ) P( A ) 0

29 Συμπερασματολογία Αποδιδόμενος Κίνδυνος Συνεπώς μπορούμε να υποθέσουμε ότι ο αριθμός των ατόμων που έχουν τη νόσο σε κάθε ομάδα έκθεσης ακολουθεί διωνυμική κατανομή οπότε Y ~ Bi, Y ~ Bi, Επιπλέον μπορούμε να χρησιμοποιήσουμε το κεντρικό οριακό θεώρημα και να φτιάξουμε ένα z test. Αν οι αναμενόμενες τιμές π, ( π ), και είναι μεγαλύτερες του πέντε τότε ( ) p ~ N, p ~ N,

30 Συμπερασματολογία Αποδιδόμενος Κίνδυνος Συνεπώς Συνάρτηση ελέγχου 0, ~ N AR AR z N p p AR, ~

31 Συμπερασματολογία Αποδιδόμενος Κίνδυνος Αν ισχύει η Η 0 τότε Συνάρτηση ελέγχου 0, ~ N p p p p p p AR z

32 Συμπερασματολογία Αποδιδόμενος Κίνδυνος μπορούμε να φτιάξουμε 00( α)% διαστήματα εμπιστοσύνης για τον αποδιδόμενο κίνδυνο το οποίο θα δίνεται από τον τύπο

33 Συμπερασματολογία Αποδιδόμενος Κίνδυνος για πίνακες 2x2 ο αποδιδόμενος κίνδυνος δίνεται από τον τύπο: και εκτιμάται AR 2

34 Συμπερασματολογία Αποδιδόμενος Κίνδυνος για πίνακες 2x2 τυπικό σφάλμα του αποδιδόμενου κινδύνου, εάν η Η 0 ισχύει se( AR ) p p

35 Συμπερασματολογία Αποδιδόμενος Κίνδυνος για πίνακες 2x2 συνάρτηση ελέγχου z ( )

36 Συμπερασματολογία Σχετικός Κίνδυνος Γενική Προσέγγιση: ο σχετικός κίνδυνος ορίζεται ως ο λόγος των πιθανοτήτων εμφάνισης κινδύνου για της δύο ομάδες διαφορετικής έκθεσης στον κίνδυνο. Σε αυτή την ενότητα θα ασχοληθούμε με την κατανομή δειγματοληψίας του δειγματικού σχετικού κινδύνου την οποία μπορούμε να τη χρησιμοποιήσουμε για την κατασκευή διαστημάτων εμπιστοσύνης και ελέγχων υποθέσεων.

37 Για αρκετά μεγάλο δείγμα (πιο συγκεκριμένα για p 5 και ( p ) 5) μπορούμε να θεωρήσουμε ότι η κατανομή του p προσεγγίζεται ικανοποιητικά από την κανονική κατανομή με μέσο και διακύμανση που δίνονται από την παραπάνω εξίσωση. Συμπερασματολογία Σχετικός Κίνδυνος Γνωρίζουμε ότι p ~ Bi, p ~ Bi,

38 Συμπερασματολογία Σχετικός Κίνδυνος Επιπλέον μπορούμε να χρησιμοποιήσουμε το κεντρικό οριακό θεώρημα και να φτιάξουμε ένα z test. N p, ~ N p, ~

39 Συμπερασματολογία Σχετικός Κίνδυνος Σειρά Taylor k 2 3 ( k ) ( x a ) ( x a ) ( x a ) h( x ) h ( a ) h( a ) h ( a )( x a ) h ( a ) h ( a )... k0 k! 2 6 ( k ) h ( x ) παράγωγος k τάξης της συνάρτησης h(x). Έστω λοιπόν ότι X είναι τυχαία μεταβλητή και α = (X) = μ τότε μπορούμε να χρησιμοποιήσουμε την παραπάνω έκφραση για να υπολογίσουμε ασυμπτωτικά τη μέση τιμή και τη διακύμανση μιας συνάρτησης της Χ.

40 Συμπερασματολογία Σχετικός Κίνδυνος

41 Συμπερασματολογία Σχετικός Κίνδυνος θέτοντας Χ = p, h(x) = log(p ), (X) = π και V(X) = π Ε (-π Ε )/ το οποίο για μεγάλο γίνεται ίσο με log π Ε. Συνεπώς το log p είναι ασυμπτωτικά αμερόληπτος εκτιμητής του log π Ε.

42 Συμπερασματολογία Σχετικός Κίνδυνος N p p 0, ~ log log N p, log ~ log N p, log ~ log RR N p p RR, log ~ log log log

43 Συμπερασματολογία Σχετικός Κίνδυνος Εκτίμηση σφάλματος r r και είναι ο παρατηρούμενος αριθμός των ασθενών με ή χωρίς έκθεση στον κίνδυνο αντίστοιχα.

44 Συμπερασματολογία Σχετικός Κίνδυνος Ένα 00( α)% διάστημα εμπιστοσύνης για το λογάριθμο του σχετικού κινδύνου θα δίνεται από της τιμές:

45 Συμπερασματολογία Σχετικός Κίνδυνος Η 0 : log RR = 0 Η : log RR 0. έναντι της εναλλακτικής υπόθεσης συνάρτηση ελέγχου z r log AR ~ N0, r Αν z < Ζ -α/2 τότε δεν απορρίπτουμε την υπόθεση της ανεξαρτησίας σε επίπεδο σημαντικότητας 00α % αλλιώς απορρίπτουμε την H 0.

46 Συμπερασματολογία Σχετικός Κίνδυνος για πίνακες 2x2 Τυπικό σφάλμα

47 Συμπερασματολογία Λόγος Σχετικών Πιθανοτήτων Γενική Προσέγγιση: λόγος σχετικών πιθανοτήτων (ΛΣΠ ή Odds Ratio ή OR) δίνεται από τον τύπο: και εκτιμάται από Odds OR Odds p p p p OR p p p p

48 Συμπερασματολογία Λόγος Σχετικών Πιθανοτήτων Παίρνοντας τον log έχουμε: p p log OR log log p p Με βάση την διωνυμική κατανομή βρίσκουμε ότι:

49 Συμπερασματολογία Λόγος Σχετικών Πιθανοτήτων Από τον ασυμπτωτικό τύπο εφόσον h(x)=log x log(-x), h (x)=x - + ( x) - = /[x(-x)] και h (x) = -x -2 + ( x) -2.

50 Συμπερασματολογία Λόγος Σχετικών Πιθανοτήτων Επιπλέον για μεγάλο έχουμε Όσον αφορά τη διακύμανση έχουμε r

51 Συμπερασματολογία Λόγος Σχετικών Πιθανοτήτων Άρα: log OR ~ N log OR, r r r r Ένα 00( α)% διάστημα εμπιστοσύνης για το λογάριθμο του ΛΣΠ θα δίνεται από της τιμές:

52 Συμπερασματολογία Λόγος Σχετικών Πιθανοτήτων Αντίστοιχα για το ΛΣΠ το αντίστοιχο διάστημα εμπιστοσύνης προκύπτει από της τιμές: Η 0 : log ΟR = 0 έναντι της εναλλακτικής υπόθεσης Η : log ΟR 0. log OR z ~ συνάρτηση ελέγχου r r r r Αν z < Ζ -α/2 τότε δεν απορρίπτουμε την υπόθεση της ανεξαρτησίας σε επίπεδο σημαντικότητας 00 α % αλλιώς απορρίπτουμε την H 0. N 0,

53 Συμπερασματολογία Λόγος πιθανοτήτων για πίνακες 2x2 log OR ~ N log OR, Στην περίπτωση που ένα κελί είναι ίσο με μηδέν τότε ο ΛΣΠ θα είναι ίσος με μηδέν ή θα απειρίζεται

54 Παράδειγμα Σε μια προοπτική μελέτη κατά την οποία εξετάσθηκαν 368 άνδρες καπνιστές ηλικίας κάτω των 60 ετών οι οποίοι έπαθαν μια καρδιακή ανακοπή και επιβίωσαν. Μετά από 2 έτη εξετάσθηκαν πόσοι από αυτούς είχαν επιβιώσει και τους χωρίσαμε ανάλογα εάν είχαν κόψει το τσιγάρο ή όχι. Έτσι εδώ μας ενδιαφέρει να εξετάσουμε αν το σταμάτημα του καπνίσματος (X) είχε ευνοϊκή επίδραση στην επιβίωση μετά από δύο έτη (Y). Τα δεδομένα δίνονται στον 2 2 Πίνακα που ακολουθεί: Χ: Υ: Επιβίωση σε 2 χρόνια Συνέχισαν το κάπνισμα : Πεθαμένος 2: Ζωντανός Σύνολο : Ναι 9 (2.3%) 35 (87.7%) 54 (4.8%) 2: Όχι 5 (7.0%) 99 (93.0%) 24 (58.2%) Σύνολο 34 (9.2%) 334 (90.8%) 368

55 α) Αποδιδόμενος Κίνδυνος Παράδειγμα Επιθυμούμε να δούμε αν αυτή η διαφορά θνησιμότητας είναι στατιστικά σημαντική, συνεπώς θέλουμε να ελέγξουμε την υπόθεση: Η 0 : AR = 0, έναντι της εναλλακτικής Η : AR 0. τυπικό σφάλμα του αποδιδόμενου κινδύνου, εάν η Η 0 ισχύει

56 α) Αποδιδόμενος Κίνδυνος Παράδειγμα Επιθυμούμε να δούμε αν αυτή η διαφορά θνησιμότητας είναι στατιστικά σημαντική, συνεπώς θέλουμε να ελέγξουμε την υπόθεση: Η 0 : AR = 0, έναντι της εναλλακτικής Η : AR 0. τυπικό σφάλμα του αποδιδόμενου κινδύνου, εάν η Η 0 ισχύει δεν απορρίπτουμε την Η 0 δεν υπάρχει στατιστική διαφορά της θνησιμότητας ανάλογα αν ο ασθενής συνεχίσει ή όχι το κάπνισμα

57 α) Αποδιδόμενος Κίνδυνος 95% διάστημα εμπιστοσύνης Παράδειγμα

58 Παράδειγμα α) Σχετικός Κίνδυνος 95% διάστημα εμπιστοσύνης του λογαρίθμου

59 Παράδειγμα Η 0 : RR = Η : RR. έναντι της εναλλακτικής υπόθεσης Η 0 : log RR = 0 Η : log RR 0. έναντι της εναλλακτικής υπόθεσης δεν απορρίπτουμε την Η 0 τα ποσοστά θνησιμότητας δεν αλλάζουν για τα άτομα που συνέχισαν να καπνίζουν σε σχέση με τα άτομα που σταμάτησαν το κάπνισμα

60 α) Λόγος πιθανοτήτων Παράδειγμα 95% διάστημα εμπιστοσύνης του λογαρίθμου

61 Παράδειγμα Η 0 : ΟR = Η : ΟR. έναντι της εναλλακτικής υπόθεσης Η 0 : log ΟR = 0 Η : log ΟR 0. έναντι της εναλλακτικής υπόθεσης δεν απορρίπτουμε την Η 0 η σχετική πιθανότητα θανάτου δεν διαφοροποιείται σημαντικά για τα άτομα που συνέχισαν να καπνίζουν σε σχέση με τα άτομα που σταμάτησαν το κάπνισμα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ. Βιοστατική ΙΙ

ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ. Βιοστατική ΙΙ 1 Κεφάλαιο 3: είκτες Νοσηρότητας, Μέτρα Κινδύνου και ιαγνωστικού Ελέγχου 3 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ Βιοστατική ΙΙ Ενότητα 3 είκτες Νοσηρότητας, Μέτρα

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ. Βιοστατική ΙΙ

ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ. Βιοστατική ΙΙ Κεφάλαιο 3: είκτες Νοσηρότητας, Μέτρα Κινδύνου και ιαγνωστικού Ελέγχου 42 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ Βιοστατική ΙΙ Ενότητα 3 είκτες Νοσηρότητας, Μέτρα

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική //9 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ ο Θέμα Μονάδες Από τα ασθενή ζώα μιας κτηνοτροφικής μονάδας, ποσοστό % έχει προσβληθεί από την ασθένεια Α, % από

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Κλινική Επιδηµιολογία. Μέτρα κινδύνου Αιτιολογική συσχέτιση

Κλινική Επιδηµιολογία. Μέτρα κινδύνου Αιτιολογική συσχέτιση Κλινική Επιδηµιολογία Μέτρα κινδύνου Αιτιολογική συσχέτιση Μέτρα κινδύνου Αιτιολογική συσχέτιση Σύγκριση µεταξύ διαφορετικών πληθυσµών ως προς την έκθεση (exposure) Σύγκριση της κατανοµής της συχνότητας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Κριτήρια επιλογής μέτρων συνάφειας

Κριτήρια επιλογής μέτρων συνάφειας Κριτήρια επιλογής μέτρων συνάφειας Ο όρος συνάφεια προέρχεται από τον Pearso (1904) όπου ορίζεται για ένα πίνακα IJ ως ένα μέτρο της συνολικής απόκλισης της ταξινόμησης από την ανεξάρτητη πιθανότητα. Από

Διαβάστε περισσότερα

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ Α. Περίπτωση Ενός Πληθυσμού Έστω ότι μελετάμε μια ακολουθία ανεξαρτήτων δοκιμών κάθε μία από τις οποίες οδηγεί είτε σε επιτυχία είτε σε αποτυχία με σταθερή

Διαβάστε περισσότερα

Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ. Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ

Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ. Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ Τεκµηριωµένη Ιατρική 2011-12 ΒΛΑΒΗ Βασίλης Κ. Λιακόπουλος Λέκτορας Νεφρολογίας ΑΠΘ Αναλογία Λόγος Πηλίκο Αναλογία Proportion Αναλογία (Proportion) Ο αριθµητής ΣΥΜΠΕΡΙΛΑΜΒΑΝΕΤΑΙ ΑΠΑΡΑΙΤΗΤΩΣ στον παρανοµαστή

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Κλινική Επιδηµιολογία

Κλινική Επιδηµιολογία Κλινική Επιδηµιολογία Ρυθµιστικοί παράγοντες Συγχυτικοί παράγοντες Ενδιάµεσοι παράγοντες Πρέπει να πιστέψουµε τις µετρήσεις µας; Κάπνισµα Καρκίνος Πνεύµονα OR = 9.1 Πραγµατική σχέση αιτιολογική µη-αιτιολογική

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

Μελέτες αναλυτικής επιδημιολογίας στηδιερεύνησηεπιδημιών

Μελέτες αναλυτικής επιδημιολογίας στηδιερεύνησηεπιδημιών Μελέτες αναλυτικής επιδημιολογίας στηδιερεύνησηεπιδημιών Μελέτες ασθενών-μαρτύρων (case-control studies) Πρόγραμμα εκπαίδευσης στην επιδημιολογική επιτήρηση και διερεύνηση επιδημιών ΕΣΔΥ ΚΕΕΛΠΝΟ, 2010

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 00 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΘΕΜΑ Α Α. Έστω t,t,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν,

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

Μέτρα σχέσης. Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία

Μέτρα σχέσης. Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία Μέτρα σχέσης Ιωάννα Τζουλάκη Λέκτορας Επιδημιολογίας Υγιεινή και Επιδημιολογία Στο τέλος...(learning outcomes) Να γνωρίζετε τα κυριότερα μέτρα σχέσης που χρησιμοποιούνται για μετρήσουμε μια συσχέτηση μεταξύ

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής

Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ενότητα 2 Διαστήματα εμπιστοσύνης, εκτίμηση ακρίβειας μέσης τιμής Ένας από τους βασικούς σκοπούς της Στατιστικής είναι η εκτίμηση των χαρακτηριστικών ενός πληθυσμού βάσει της πληροφορίας από ένα δείγμα.

Διαβάστε περισσότερα

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Εργαστήριο Μαθηματικών & Στατιστικής 2. ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Ας θεωρήσουμε ότι είναι γνωστό από στοιχεία της Παγκόσμιας Οργάνωσης Υγείας ότι οι τιμές χοληστερίνης στον πληθυσμό έχουν

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics)

Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Μέρος II. Στατιστική Συμπερασματολογία (Inferential Statistics) Τυχαίο δείγμα και στατιστική συνάρτηση Χ={x 1, x,, x n } τυχαίο δείγμα μεγέθους n προερχόμενο από μια (παραμετρική) κατανομή με σ.π.π. f(x;θ).

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Ιατρικά Μαθηματικά & Βιοστατιστική

Ιατρικά Μαθηματικά & Βιοστατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Στατιστικοί έλεγχοι για συνεχή και κατηγορικά δεδομένα Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ

ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Γ. ΑΓΓΕΛΟΥ ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΓΙΑ ΕΠΙΛΕΓΜΕΝΟ ΕΚΘΕΤΙΚΟ ΠΛΗΘΥΣΜΟ ΑΠΟ k ΠΛΗΘΥΣΜΟΥΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ

ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΕΙΣΑΓΩΓΗ Οι δυό βασικές κατευθύνσεις της ανάλυσης των δεδοµένων της έρευνας, επιχειρούν ανιχνεύοντας τους παράγοντες που προσδιορίζουν την πρόσβαση στις υπηρεσίες υγείας,

Διαβάστε περισσότερα

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ).

Δισδιάστατη ανάλυση. Για παράδειγμα, έστω ότι 11 άτομα δήλωσαν ότι είναι άγαμοι (Α), 26 έγγαμοι (Ε), 12 χήροι (Χ) και 9 διαζευγμένοι (Δ). Δισδιάστατη ανάλυση Πίνακες διπλής εισόδου Σε πολλές περιπτώσεις μελετάμε περισσότερες από μία μεταβλητές ταυτόχρονα. Π.χ. μία έρευνα που έγινε σε ένα δείγμα 58 ατόμων περιείχε τις ερωτήσεις «ποια είναι

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Μπεττίνα Χάιδιτς. Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail:

Μπεττίνα Χάιδιτς. Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail: Μπεττίνα Χάιδιτς Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail: haidich@med.auth.gr Υπολογισμός μεγέθους δείγματος Πιο πολλές επιδημιολογικές μελέτες έχουν ως στόχο να εκτιμηθεί κάποιο χαρακτηριστικό

Διαβάστε περισσότερα

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80.

ΣΑΣΙΣΙΚΗ. Ακαδ. Έτος Βασίλης ΚΟΤΣΡΑ. Διδάσκων: Διδάσκων επί Συμβάσει Π.Δ 407/80. ΠΑΝΕΠΙΣΗΜΙΟ ΑΙΓΑΙΟΤ ΧΟΛΗ ΕΠΙΣΗΜΩΝ ΣΗ ΔΙΟΙΚΗΗ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΔΙΟΙΚΗΗ ΣΑΣΙΣΙΚΗ Ακαδ. Έτος -3 Διδάσκων: Βασίλης ΚΟΤΣΡΑ Διδάσκων επί Συμβάσει Π.Δ 47/8 v.kouras@fμe.aegea.gr Σηλ: 735457 Διωνυμικό

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ www.ifospoudes.gr ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ Δ.Α.Π.-Ν.Δ.Φ.Κ. ΤΜΗΜΑΤΟΣ ΟΡΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ www.dap-pape.gr www.ifospoudes.gr S.O.S

Διαβάστε περισσότερα

Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ. Ροβίθης Μ. 2006

Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ. Ροβίθης Μ. 2006 Επιδημιολογία 3 ΣΧΕΔΙΑΣΜΟΣ ΜΕΛΕΤΩΝ Ροβίθης Μ. 2006 1 Τα στάδια της επιδημιολογικής έρευνας ταξινομούνται με μια λογική σειρά στην οποία κάθε φάση εξαρτάται από την προηγούμενη. Μια εκτεταμένη λίστα είναι

Διαβάστε περισσότερα

MEΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ

MEΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ MEΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΜΕΘΟΔΟΙ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΕ ΑΝΑΔΡΟΜΙΚΕΣ- ΠΡΟΟΔΕΥΤΙΚΕΣ ΜΕΛΕΤΕΣ Β. ΚΑΡΑΓΙΑΝΝΗ 17/2/2015 Β. ΚΑΡΑΓΙΑΝΝΗ 1 ΟΡΙΣΜΕΝΕΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός (population). Eίναι

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

Περιεχόµενα ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1.2 Παράδειγµα 1 δύο χηµειοθεραπείες. 1.1 Ανάλυση δίτιµων κατηγορικών µεταβλητών σε εξαρτηµένα δείγµατα

Περιεχόµενα ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1.2 Παράδειγµα 1 δύο χηµειοθεραπείες. 1.1 Ανάλυση δίτιµων κατηγορικών µεταβλητών σε εξαρτηµένα δείγµατα ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 7 ΑΝΑΛΥΣΗ ΜΕΤΑΒΛΗΤΩΝ ΓΙΑ 2 ΕΞΑΡΤΗΜΕΝΑ ΕΙΓΜΑΤΑ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ

Διαβάστε περισσότερα