Κινηματική σε 3 διαστάσεις. r = x x + y y +z z P. Η έννοια της παραγώγου στις 3 διαστάσεις
|
|
- Υπάτιος Μακρής
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Κινηματική σε 3 διαστάσεις = + + P παριστάνεται με την επιβατική ακτίνα κάθε σημείο P το χώρο (t τροχιά = Δ Δ (t+ διάνσμα θέσης d v= d μοναδιαία διανύσματα Η έννοια της παραγώγο στις 3 διαστάσεις Μέση ταχύτητα πέρνομε ταχύτητα στιγμιαία ταχύτητα Δ εφαπτομένη Ατό πρακτικά σημαίνει πως κάτω από ένα όριο το ο λόγος Δ θα παραμένει σταθερός πέραν το ορίο της ακρίβειας των μετρήσεων το Δ και και αντιπροσωπεύει την στιγμιαία ταχύτητα
2 v= Δ Δ = Δ + Δ +Δ Δ = Δ + Δ + Δ d = d + d + d v = + + Ότι ισχύει στις εξισώσεις της γραμμικής κίνησης ισχύει και στη περίπτωση των διανσμάτων στις 3 διαστάσεις πχ - ο = v ο t+ (1/2a t 2 v = v ο + a t a =σταθερή Αν γενικά = F(t + g(t +H(t Τότε παραγωγίζοντας παίρνω την ταχύτητα V(t= d = df(t + dg(t +dh(t Πχ Αν = (t+a + (mt 2 +b + c Τι είδος κίνηση έχομε
3 Επιτάχνση εφαπτομένη 2 1 τροχιά 2 1 Δ d a a= = 1 Μέση επιτάχνση Δ Δ πέρνομε a = d στιγμιαία επιτάχνση d
4 v= Δ Δ = Δ + Δ +Δ Δ = Δ + Δ + Δ d = d + d + d v = + + Ότι ισχύει στις εξισώσεις της γραμμικής κίνησης ισχύει και στη περίπτωση των διανσμάτων στις 3 διαστάσεις πχ - ο = v ο t+ (1/2a t 2 v = v ο + a t a =σταθερή Αν γενικά = F(t + g(t +H(t Τότε παραγωγίζοντας παίρνω την ταχύτητα V(t= d = df(t + dg(t +dh(t Πχ Αν = (t+a + (mt 2 +b + c Τι είδος κίνηση έχομε Eπιτάχνση κκλικό τόξο S a = a = d 2 Δ = d 2 2 Ομαλή κκλική κίνηση 1 1 θ = S θ 2 Σε ακτίνια Γι ατό μόνο τα ακτίνια έχον νόημα στη Φσική d Δ a = Δ κκλική τροχιά Δ a Δ 2 = a = 2 μέτρο κεντρομόλο επιτάχνσης Διάνσμα κεντρομόλο επιτάχνσης είναι πάντα κάθετο στην γιατί Δ γίνεται κάθετο στο η επιτάχνση βλέπει προς το εσωτερικό της τροχιάς a 45 τελική Δ = / μεταβολή cs45 ο Δ = = ΔS ω = = γ κ a = Δ όταν = αρχική = ω Έχομε σταθερα μέτρα γραμμικής, γωνιακής ταχύτητας και κεντρομόλο επιτάχνσης Έχομε μεταβαλλόμενο διάνσμα ταχύτητας Και κετρομόλο επιτάχνσης Δ πέρνομε a = d = d = ds ω = = = = ω
5 Μεταβαλλόμενη κκλική κίνηση 3 2 γε3 γολ Έχομε μεταβαλόμενα μέτρα της ταχύτητας, κεντρομόλο και επιτρόχιας επιτάχνσης γε2 γκ2 1 γκ1 γκ3 γε1 Αφορά μέτρο της Διάνσμα επιτρόχιο γ ε = d επιτάχνσης (εφαπτομένη Διάνσμα ολικής επιτάχνσης γ ολ = γ ε + γ ε Έχομε μεταβαλλόμενα διάνσματα ταχύτητας, Κετρομόλο και επιτρόχιας επιτάχνσης Διαφορικό - Ολοκλήρωση γ κ = 2 ω = α = dω Γωνιακή επιτάχνσης Το Διάστημα γίνεται ταχύτητα με παραγώγισή το = Δ αρχ = Δ = 1 = + Δ = = 1 + Δ = πέρνομε τελ : n = n-1 + Δ = n τελ = + Σ i i a = Δ αρχ = Δ = a 1 = + Δ = + a 1 2 = 1 + Δ = + a 1 + a 2 Η ταχύτητα γίνεται επιτάχνση με παραγώγισή της πέρνομε τελ : n = n-1 + Δ = + a 1 + a a n τελ = + Σ i a i V = d διαφορικό d = Η ταχύτητα γίνεται διάστημα με ολοκλήρωσή το αρχ = 1 = + d = = 1 + d = τελ : n = n-1 + d = n τελ = + Σ i i = + (t = + d = + [] = + ( τελ - = τελ t τελ Το άθροισμα γίνεται ολοκλήρωμα διαφορικό V = d d = a Η επιτάχνση γίνεται ταχύτητα με ολοκλήρωση το διαφορικού της αρχ = 1 = + d = + a 1 2 = 1 + d = + a 1 + a 2 τελ : n = n-1 + d = + a 1 + a a n τελ τελ = + Σ i a i = + a(t = + d = + [] = + ( τελ - = τελ t Το άθροισμα γίνεται ολοκλήρωμα τελ Πχ (t=at τελ = + a t = + ½ a ( 2 -t 2 t τελ Το φορτίο γίνεται ηλεκτρικό ρεύμα με παραγώγισή το i = dq διαφορικό dq = i q αρχ = q q 1 = q + dq = q + i 1 q 2 = q 1 + dq = q + i 1 + i 2 Το ηλεκτρικό ρεύμα γίνεται φορτίο με ολοκλήρωση το διαφορικού το q τελ : q n = q n-1 + dq = q + i 1 + i i n q τελ = q + Σ i i i = q + i(t = q + dq = q + [q] = q + (q τελ - q = q τελ t qτελ qτελ
6 Σφαίρα μάζας M με αρχική ταχύτητα ο προσκρούει σε ξύλινη πλάκα πάχος d Αν η αντίσταση πο δέχεται η σφαίρα μέσα στη ξύλινη πλάκα είναι ανάλογη της ταχύτητάς της (: 1 Να βρεθεί τοο ελάχιστο πάχος d min της πλάκας ώστε η σφαίρα να μη διαπεράσει τη πλάκα 2 Να βρεθεί η τελική ταχύτητα με την οποία η σφαίρα διαπερνά τη πλάκα όταν D<d min D F F τελ 2 F = ma = - m d - m = d (t ο d t = - ln m ] ] (t ο = - m t t] ] (t ln = - ο m t (t= e -(/mt 1 = - m d m d = - d = - m d d m d d = - d ο = - m d = - d m m min = d d m d = - d ο U (t= e -(/mt m = - = - m ( = - D m d = = ο e -(/mt d = ο e -(/mt d = ο e -(/mt t = ο m/ (1-e -(/mt tδ Ο χρόνος να διαπέρασει το πάχος D d = = ο e -(/mt d = ο e -(/mt d = ο e -(/mt D = ο m/ (1-e -(/mtδ e -(/mtδ = οm/k - D ο m/ D tδ tδ = m/ ln οm/k - D ο m/ tδ = D - ο m/ εξ = ο e -(/mtδ
7 Μελέτη βολής στη ατμόσφαιρα με αντίσταση Τ=- Ένα σώμα βάλλεται κατακόρφα προς τα επάνω με αρχική ταχύτητα ο Αν η αντίσταση πο δέχεται η σφαίρα μέσα από τον αέρα είναι ανάλογη της ταχύτητάς της (: Να βρεθεί τοο μέγιστο ύψος h ma Καθώς και ο χρόνος t ma πο χρειάζεται για να φθάσει στο ύψος ατό το σώμα m a = ΣF m d = - mg - t ma ΣF = - - mg - mg = m d mg + = - m/ d - /m = d mg/ + t ma - /m = d mg/ + t ma - /m = d(mg/ + mg/ + mg - t ma = m/ [ln(mg/+] = m/ ln( mg + mg + t ma = m/ ln( mg Στη γενική περίπτωση για οποιαδήποτε χρονική στιγμή t και όπο η ταχύτητα είναι και ερίσκεται σε οποιοδήποτε ύψος h κατά τη διάρκεια της ανόδο ή της καθόδο θα έχομε: t d(mg/ + mg + - t ma = m/ [ln(mg/+] = m/ ln( mg + mg + t = m/ ln( mg/ + mg + - /m = mg + ρ ρ mg + = e (m/ t mg + = (mg + e (-m/ t (-m/ t (-m/ t = -mg/+(mg/ + e = - ορ +( ορ + e = - ορ +( ορ + e (-m/ t = ( ορ + e [-m/ t] - ορ = - ορ = ορ (1- e (-m/ t (-m/ t + e h ma d d d d d d - mg = m = m = m = m d d m = - d mg + h d 1 +mg/-mg/ d = d = (1- mg/ d = -/m d mg + ο m mg/ + mg/+ [ -mg/ ln(mg/+ ] = - ο - mg/ [ ln(mg/ ln(mg/+ ο ] = -/m h ma = mg + h ma = m/ [ + mg/ ln( mg ] για μεγάλος χρόνος t>>t αν ο h ma Άρα δεν θα πρέπει να διαπραγματετώ τη κάθοδο ξεχωριστά χρεισιμοποιώντας την άλλη κατάλληλη Διαφ Εξισ m d = mg -
Φυσική σημασία της παραγώγου Γεωμετρική προσέγγιση. υ 2 =
Φσική σημασία της παραγώγο Γεωμετρική προσέγγιση Έστω ότι έχω ένα κνινούμενο σώμα M και καταγράφω με ένα αισθητήρα τη θέση το X i για διάφορες χρονικές στιγμές i με βήμα Δ 1 Δ 1 Δ 1 1 = +Δ 1 Η ταχύτητα
γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών
η εξεταστική περίοδος από 9/0/ έως 6// γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σποδών Τάξη: Β Λκείο Τμήμα: Βαθμός: Ημερομηνία: 09//0 Ύλη: Ονοματεπώνμο: Καθηγητής: Οριζόντια βολή Ομαλή κκλική κίνηση
Βασική θεωρία & μεθοδολογία
Ελεύθερη πτώση Σημειώσεις Φσικής Βασική θεωρία & μεθοδολογία Οριζόντια βολή Αν από κάποιο ύψος h εκτοξεύσομε ένα σώμα με οριζόντια ταχύτητα 0 και κατά τη διάρκεια της κίνησής το δέχεται μόνο το βάρος το,
Κεφάλαιο 3 ο Ενότητα 1 η : Στροφική κίνηση Κύλιση τροχού Θεωρία Γ Λυκείου
Κεφάλαιο 3 ο Ενότητα 1 η : Στροφική κίνηση Κύλιση τροχού Θερία Γ Λκείο Φσική Κατεύθνσης Γ Λκείο: Στροφική κίνηση Κύλιση τροχού Μηχανική Στερεού σώματος Στη μεταφορική κίνηση κάθε στιγμή όλα τα σημεία το
Physics by Chris Simopoulos
ΒΟΛΗ ΣΕ ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΠΟ ΥΨΟΣ. Οι καμπλόγραμμες βολές θεωρούνται σύνθετες κινήσεις. Έτσι κάθε ανσματικό μέγεθος όπως ταχύτητα, επιτάχνση κλ.π θα αναλύεται σε δύο άξονες έναν οριζόντιο
ΘΕΜΑ Α. 2 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π.
ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 15 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ονοματεπώνμο : Κατερίνη 1 Μαΐο 15 ΘΕΜΑ Α (Μονάδες 5x5=5) Α1. Ο
Κριτήριο αξιολόγησης στην οριζόντια βολή- κυκλική κίνηση
Κριτήριο αξιολόγησης στην οριζόντια βολή- κκλική κίνηση (Σε όλα τα παρακάτω θέματα το γήινο βαρτικό πεδίο θεωρείται περίπο ομογενές, γιατί οι βολές γίνονται σε μικρά ύψη και μικρές γεωγραφικές αποκλίσεις.)
2o Επαναληπτικό διαγώνισμα προσομοίωσης Φυσικής Β Λυκείου Θετικού Προσανατολισμού
o Επαναληπτικό διαγώνισμα ομοίωσης Φσικής Β Λκείο Θετικού Προσανατολισμού ΘΕΜΑ Α : (Για τις ερωτήσεις Α. έως και Α.5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί
ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ
ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Στα προβλήματα ατού το κεφαλαίο, το πρώτο πο πρέπει να διακρίνομε είναι αν έχομε ισορροπία, μόνο στροφική κίνηση (δηλαδή γύρω από σταθερό άξονα περιστροφής)
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης
(Με ιδέες και υλικό από ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ε. Στυλιάρης από παλαιότερες διαφάνειες του κ. Καραμπαρμπούνη) ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 5 6 6 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Μέση και Στιγμιαία Ταχύτητα Επιτάχυνση Διαφορικές
w w w.k z a c h a r i a d i s.g r
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 1 ( 1, 1 ) ορθογωνίου συστήματος r1 1 1 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ (, ) ορθογωνίου συστήματος r ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 3 ( 3, 3 ) ορθογωνίου συστήματος r3 3 3 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 4 ( 4, 4
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 Ε_3.ΦλΓΘ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κριακή 19 Απριλίο 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε
13 Γενική Μηχανική 1 Γενικότητες Κινηματική του Υλικού Σημείου 15/9/2014
13 Γενική Μηχανική 1 Γενικότητες Κινηματική το Υλικού Σημείο 15/9/14 Η Φσική της Α Λκείο σε 8.1 sec 1. Γενικότητες Κινηματική το λικού σημείο Μεταβολή & Ρθμός μεταβολής Μεταβολή ενός μεγέθος ονομάζομε
Μ(x 0, y 0 ) r= r = x+ Μ(x 0, y 0 )=Μ(r,θ) = r συνθ
1.8.1. Οµαλή Κκλική Κίνηση. Μ(,) j i j i. α Κ Σχήµα 5. = + Σχήµα 6. 2 2 2 = + Μ(, ) = στα. Μ(, )=Μ(,) Σχήµα 7. = σν = ηµ Όταν ένα κινητό διαγράφει τροχιά κκλική (περιφέρεια κύκλο ) και σε ίσος χρόνος διαγράφει
Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα
Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.
ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 2015
ΦΥΣΙΚΗ (ΠΟΜ 114) ΛΥΣΕΙΣ ΓΙΑ ΤΗΝ ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 15 Ct 1. Η επιτάχυνση ενός σώματος που κινείται σε ευθεία γραμμή είναι a At Be, όπου Α, B, C είναι θετικές ποσότητες. Η αρχική ταχύτητα του σώματος είναι
Physics by Chris Simopoulos
ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Ισχύον ότι έχομε αφέρει στις κινήσεις σωμάτων με τη διαφορά ότι στη θέση της επιτάχνσης α τοποθετούμε την επιτάχνση βαρύτητας..γενικα Οι βολές είναι κινήσεις μεταβαλλόμενες (επιταχνόμενες
Η επιτάχυνση και ο ρόλος της.
Η επιτάχυνση και ο ρόλος της. Το μέγεθος «επιτάχυνση» το συναντήσαμε κατά τη διδασκαλία στην Α Λυκείου, όπου και ορίσθηκε με βάση την εξίσωση: t Όπου η παραπάνω μαθηματική εξίσωση μας λέει ότι η επιτάχυνση:
όµως κινείται εκτρέπεται από την πορεία του, ένδειξη ότι το σωµατίδιο δέχονται δύναµη, από τα στατικά µαγνητικά πεδία. ανάλογη:
Φσικός ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ( Fields) 47 ΥΝΑΜΗ ΠΟΥ ΑΣΚΕΙ ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΣΕ ΚΙΝΟΥΜΕΝΟ ΦΟΡΤΙΟ ύναµη Lorentz Ένα ακίνητο φορτισµένο σωµατίδιο (0) δεν αντιδρά µέσα σε ένα στατικό µαγνητικό πεδίο. ηλαδή δεν
Επανάληψη Θεωρίας και Τυπολόγιο
ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επανάληψη Θεωρίας και Τπολόγιο ΕΞΙΣΩΣΕΙΣ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ Γενικές έννοιες Περιοδική ονομάζεται η κίνηση πο επαναλαμβάνεται κατά τον
ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ- ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΤΜΗΜΑ Α. ΚΑΘΗΓ. ΖΑΧΑΡΙΑΔΟΥ ΚΑΤΕΡΙΝΑ ΓΡΑΦΕΙΟ ΖΒ4 (ΡΑΓΚΟΥΣΗ-ΖΑΧΑΡΙΑΔΟΥ) E-mail: zacaria@niwa.gr Βιβλιογραφία
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.ΦλΘ(α) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανοαρίο 7 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 ΑΠΑΝΤΗΣΗ
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ. Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΑ ΘΕΜΑΤΑ 7 Ε_3.ΦλΘ(α) ΤΑΞΗ: Β ΓΕΝΙΟΥ ΛΥΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανοαρίο 7 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 ΑΠΑΝΤΗΣΗ γ
Κατσαλά Νικολέτα. Φυσικός. Γ Λυκείου. Τυπολόγιο
Κατσαλά Νικολέτα Φσικός Γ Λκείο Τπολόγιο Εθύγραμμη Ομαλή Κίνηση Εθύγραμμη Ομαλά Μεταβαλλόμενη Κίνηση Ολικό Διάστημα και Ολικός Χρόνος στην Ομαλά Επιβραδνόμενη Μεταφορική Κίνηση Δ α, Δ Δ α σταθ, Δ α, Δ
ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης
ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου
Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ
Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 8/6/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Ατοκίνητο μάζας 1 Kg ξεκινώντας με μηδενική ταχύτητα επιταχύνει ομαλά σε οριζόντιο
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 8/6/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Ατοκίνητο μάζας 1 Kg ξεκινώντας με μηδενική ταχύτητα επιταχύνει ομαλά σε οριζόντιο
ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ
Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά
 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z
Οκτώβριος 2017 Ν. Τράκας ΜΑΘΗΜΑΤΙΚΟ ΒΟΗΘΗΜΑ ΔΙΑΝΥΣΜΑΤΑ Διάνυσμα: κατεύθυνση (διεύθυνση και ϕορά) και μέτρο. Συμβολισμός: A ή A. Αναπαράσταση μέσω των συνιστωσών του: A = (A x, A y ) σε 2-διαστάσεις και
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι. Ενδεικτικές Λύσεις. Θέµα Α
1ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Οκτώβρη 2016 Φυσική Προσανατολισµού - Μηχανική - Ι Ενδεικτικές Λύσεις Θέµα Α Α.1 Η εκτόξευση ενός σώµατος µικρών διαστάσεων από ένα ύψος h µε ορι- Ϲόντια
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ
ΤΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΝΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΘΗΜ: ΦΥΣΙΚΗ Ημερομηνία: Σάββατο 19 Ιανουαρίου 19 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜ ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις 1 4 να γράψετε στο τετράδιό σας
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Βασικές Έννοιες Μέχρι στιγμής αντιμετωπίζαμε κάθε σώμα που μελετούσαμε την κίνηση του ως υλικό
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
Φυσική για Μηχανικούς
Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί
Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)
Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση. Θέµα 1ο
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση Ηµεροµηνία : Νοέµβρης 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Οµάδα Β Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες]
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής
Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ ο. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση µόνο
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ημερομηνία: Σάββατο 0 Απριλίο 09 Διάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΗ Α Α Α3 Α4 Α5 ΑΠΑΝΤΗΣΗ γ α δ γ α. Λάθος ΘΕΜΑ Β
2. Στο σύστηµα αξόνων του πιο πάνω σχήµατος, να προσδιορίσετε τις συντεταγµένες. 3. Να βρεθεί το µέτρο της τελικής ταχύτητας υ Τ
ιονύσης Μητρόπολος Β κείο Οριζόντια βολή Άσκηση στην οριζόντια βολή ο (0,0) x Η h Τ φ Μεταλλική σφαίρα µάζας m = 0,4kg εκτοξεύεται οριζόντια από την άκρη της ταράτσας κτιρίο ύψος Η = 0m, µε ταχύτητα µέτρο
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Σάββατο, Απριλίου, 8 Ώρα: : - 4: Προτεινόµενες Λύσεις ΘΕΜΑ ( µονάδες) (Α) Ένα στερεό σώµα είναι σε ισορροπία όταν το διανυσµατικό άθροισµα των
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ 25/11/2018 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται
Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις
Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ 5//08 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ
Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 D (, ) :9 0, 4 0 (, ) :
γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης
η εξεταστική περίοδος από 4/0/5 έως 08//5 γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις
ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2015 ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή: Είναι η κίνηση (παραβολική τροχιά) που κάνει ένα σώμα το οποίο βάλλεται με οριζόντια ταχύτητα U 0 μέσα στο πεδίο βαρύτητας
Physica by Chris Simopoulos
ΜΗΧΑΝΙΚΗ ΕΝΕΡΓΕΙΑ - ΘΜΚΕ Η μηχανική ενέργεια είναι το άθροισμα της κινητικής και της δναμικής ενέργειας το σώματος. Όπως είναι γνωστό οι σχέσεις πο δίνον τις ενέργειες ατές είναι: E = 1.m. (7) και Ε Δ
ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 1-2 7/12/2014
ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 1-2 7/12/2014 ΘΕΜΑ 1 Από τις ερωτήσεις 1-4 να επιλέξετε την σωστή πρόταση: Α1. Σώμα εκτελεί ομαλή κυκλική κίνηση. α) η κεντρομόλος επιτάχυνση
Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Φυσική Β Λυκείου Προσανατολισμού Κεφάλαιο: Οριζόντια βολή Ομαλή κυκλική κίνηση - Ορμή Ονοματεπώνυμο Μαθητή: Ημερομηνία: 30-10-2017 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4,
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 5 Ε_3.ΦλΘ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κριακή 9 Απριλίο 5 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. β Α5. α-σωστο Α. γ β-λαθοσ Α3. δ γ-λαθοσ
2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική. Πρόχειρες Λύσεις. Θέµα Α
2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Πρόχειρες Λύσεις Θέµα Α Α.1 Από ύψος h εκτοξεύονται οριζόντια µε ταχύτητες ίδιου µέτρου υ o δύο σώµατα διαφορετικής
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση. Θέµα 1ο
1ο ιαγώνισµα - Οριζόντια Βολή - Κυκλική Κίνηση Ηµεροµηνία : Νοέµβρης 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Οµάδα Α Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστή απάντηση [4 5 = 20 µονάδες]
1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.
Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική
ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9
ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα
Α. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ 1) Δυο τροχοί με ακτίνες ο πρώτος 100cm και ο δεύτερος 60cm περιστρέφονται ομαλά συνδεδεμένοι μεταξύ τους με ιμάντα. Αν η συχνότητα του πρώτου τροχού είναι 10Hz να βρεθεί
ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,,
ΦΥΣΙΚΗ Ι ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, 06 0 07 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Πολικές Συντεταγμένες Κυλινδρικές Συντεταγμένες Σφαιρικές Συντεταγμένες Στοιχειώδεις Όγκοι ΠΑΡΑΓΩΓΙΣΗ Ιδιότητες
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ
Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να
2ο Γενικό Λύκειο Λευκάδας Άγγελος Σικελιανός 11 Ιουνίου Α1 β, Α2 γ, Α3 α, Α4 γ, Α5 α Λάθος, β Σωστή, γ Λάθος, δ Λάθος, ε Σωστή.
ο Γενικό Λύκειο Λεκάδας Άγγελος Σικελιανός Ιονίο 4 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α β, Α γ, Α3 α, Α4 γ, Α5 α Λάθος, β Σωστ, γ Λάθος, δ Λάθος, ε Σωστ. ΘΕΜΑ Β Β. Σωστ η β. Έστω ΔΤ η αύξηση της θερμοκρασίας
ΣΑΒΒΑΤΟ 09/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9/4/216 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/10/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/10/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; F N
Παράδειγµα roller coaster ΦΥΣ 131 - Διαλ.13 1 Ποια πρέπει να είναι η ελάχιστη ταχύτητα που θα πρέπει να έχει το τρενάκι ώστε να µη χάσει επαφή µε τη τροχιά στο υψηλότερο σηµείο της κίνησης; y-διεύθυνση:
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,
ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ
ΜΑΘΗΜΑ 4: ΚΙΝΗΣΗ ΣΤΟ ΧΩΡΟ ΚΑΙ ΕΞΕΛΙΞΗ ΣΤΟ ΧΩΡΟ-ΧΡΟΝΟ Στη φύση δεν υπάρχει ίσως τίποτε παλαιότερο από την κίνηση και οι φιλόσοφοι έχουν γράψει για αυτήν βιβλία που δεν είναι ούτε λίγα ούτε μικρά ΓΑΛΙΛΑΪΚΟΙ
2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Καμπυλόγραμμες Κινήσεις: Οριζόντια Βολή, Κυκλική Κίνηση
ΣΥΝΘΕΤΕΣ ΚΙΝΗΣΕΙΣ Κεφάλαιο Καμπλόγραμμες Κινήσεις: Οριζόντια ολή, Κκλική Κίνηση ΠΡΔΕΙΓΜ : Μια ενζινάκατος κατά τη φορά ροής ενός ποταμού και σε ένα σημείο προσπερνάει μια σχεδία, την οποία παρασέρνει το
i) Σε κάθε πλήρη περιστροφή το κινητό Α διαγράφει τόξο ίσου µήκους µε το τόξο που διαγράφει το κινητό Β
Φύλλο Εργασίας: ΚΙΝΗΜΑΤΙΚΗ ΟΜΑΛΗΣ ΚΥΚΛΙΚΗΣ ΚΙΝΗΣΗΣ Λίγη γεωµετρία πριν ξεκινήσουµε: Σε κύκλο ακτίνας, η επίκεντρη γωνία Δθ µετρηµένη σε ακτίνια (rad) και το µήκος του τόξου Δs στο οποίο βαίνει, συνδέονται
Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος. Ποιες από τις επόμενες καμπύλες παριστάνουν ευθείες γραμμές; r ( ) 8,, ˆ ˆ r ˆ () i 7 j+ k r ( )
Ασκήσεις στη Κυκλική Κίνηση
1 Ασκήσεις στη Κυκλική Κίνηση 1.Δυο τροχοί ακτινών R 1=40cm και R 2=10cm συνδέονται με ιμάντα και περιστρέφονται ο πρώτος με συχνότητα f 1=4Hz, ο δε δεύτερος με συχνότητα f 2. Να βρεθεί ο αριθμός των στροφών
ΛΥΣΕΙΣ. γ) 1Kg 2 m/s δ) 1Kg m/s 2 (Μονάδες 5)
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: /0/ ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα
Κινηματική της περιστροφικής κίνησης
Κινηματική της περιστροφικής κίνησης Φυσικές ποσότητες που περιγράφουν την κίνηση στερεών σωμάτων γύρο από ακλόνητο άξονα: Γραμμική κίνηση Θέση x Ταχύτητα υ Επιτάχυνση a Περιστροφική κίνηση Γωνιακή θέση
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 17 Ε_3.ΦλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 17 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις
1η Επαναληπτική συνδυαστική άσκηση στη Φυσική της Α Λυκείου.
η Επαναληπτική σνδαστική άσκηση στη Φσική της Α Λκείο. Δύο σώματα με μάζες m = 6Kg και m = 4kg είναι δεμένα στα άκρα αβαρούς και μη εκτατού νήματος το οποίο διέρχεται από το αλάκι τροχαλίας αμελητέας μάζας.
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΒΛ
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΒΛ Θέμα 1 ο Στις ερωτήσεις πολλαπλής επιλογής από 1 εώς 4 να επιλέξετε τη σωστή απάντηση: 1. Μικρή σφαίρα αφήνεται να πέσει από μικρό ύψος h, εκτελώντας ελεύθερη
Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.
ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 2 ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 1. Σώμα μάζας m=15/π Kg εκτελεί ομαλή κυκλική κίνηση ακτίνας R=20/π m με φορά αντίθετη απ τους δείκτες του ρολογιού. Αν το σώμα
Γιάννης Γιάκας. Συστήματα αναφοράς και μονάδες μέτρησης Γραμμικά κινηματικά χαρακτηριστικά Γωνιακά κινηματικά χαρακτηριστικά Βλητική 2/12/2013
Γιάννης Γιάκας Ύλη προόδου Συστήματα αναφοράς και μονάδες μέτρησης Γραμμικά κινηματικά χαρακτηριστικά Γωνιακά κινηματικά χαρακτηριστικά Βλητική 1 Συστήματα Αναφοράς M.K.S. ( m, Kg, sec ) C.G.S. ( cm, gr,
1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1
. Ηλεκτρικό Φορτίο Το ηλεκτρικό φορτίο είναι ένα από τα βασικά χαρακτηριστικά των σωματιδίων από τα οποία οικοδομείται η ύλη. Υπάρχουν δύο είδη φορτίου (θετικό αρνητικό). Κατά την φόρτιση το φορτίο δεν
ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την
φορτισμένου πυκνωτή με διεύθυνση κάθετη στις δυναμικές γραμμές του πεδίου, όπως
Ημερομηνία: 26/04/15 Διάρκεια διαγωνίσματος: 150 Εξεταζόμενο μάθημα: Φυσική Κατ. Β Λυκείου Υπεύθυνος καθηγητής: Μήτρου Ιωάννης ΘΕΜΑ 1 Ο Σωστό Λάθος A)1. Η κεντρομόλος δύναμη είναι η συνισταμένη των δυνάμεων
Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού. Οριζόντια βολή Κυκλικές κινήσεις
Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού Οριζόντια βολή Κυκλικές κινήσεις ~~Διάρκεια 2 ώρες~~ Θέμα Α 1) Δύο μαθητές παρακολουθούν το μάθημα της Φυσικής από τα έδρανα του εργαστηρίου του σχολείου τους.
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 11/10/2015 ΚΙΝΗΣΗ-ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2 ΩΡΕΣ
ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 11/10/2015 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ-ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ-ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2 ΩΡΕΣ ΘΕΜΑ Α Α1. Σημειώστε στην αντίστοιχη
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ 1. Σωστό ή λάθος: Η στιγμιαία ταχύτητα: α. εκφράζει τη μεταβολή της μετατόπισης β. εκφράζει το ρυθμό μεταβολής της θέσης κατά μία δεδομένη χρονική στιγμή γ. αναφέρεται σε μία δεδομένη
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
. Αυτό σηµαίνει ότι το κέντρο µάζας κινείται ευθύγραµµα µε σταθερή επιτάχυνση a! = F!
Οµογενής κυκλικός δίσκος µάζας m και ακτίνας, βρίσκεται πάνω σε λείο οριζόντιο έδαφος µε τον άξονα συµµετρίας του κατα κόρυφο. Εάν σ ένα σηµείο της περιφέρειας του δίσκου εξασκείται συνεχώς µια σταθερή
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ
Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.
Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε
Γενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης
Γενικές εξετάσεις 00 Φσική Γ λκείο θετικής - τεχνολογικής κατεύθνσης Θέμα ο Να γράψετε ο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις - και δίπλα το γράμμα πο αντιοιχεί η σωή απάντηση..
8. Λύση απλών διαφορικών εξισώσεων και εξισώσεων κίνησης
38 Κ Χριστοδολίδης: Μαθηµατικό Σµπλήρµα για τα Εισαγγικά Μαθήµατα Φσικής 8 Λύση απλών διαφορικών εξισώσεν εξισώσεν κίνησης 8 Εξισώσεις κίνησης πο οδηγούν σε διαφορικές εξισώσεις χριζόµενν µεταβλητών Η
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ημερομηνία: Δετέρα 7 Ιανοαρίο 09 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α. δ Α. γ Α3. β Α4. β Α5. α. ΛΑΘΟΣ β. ΛΑΘΟΣ γ. ΛΑΘΟΣ δ. ΣΩΣΤΟ ε. ΛΑΘΟΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β Β. Η σωστή