arxiv: v1 [math.pr] 13 Jul 2010
|
|
- Μένθη Ζαφειρόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 L Soluo of Bacward Sochac Dffereal quao wh Jum Sog Yao arv:17.6v1 mah.pr 13 Jul 1 Abrac I h aer, we udy a mul-dmeoal bacward ochac dffereal equao wh jum BSDJ ha ha o-lchz geeraor ad ubouded radom me horzo. or ay 1,, we how ha he BSDJ wh a -egrable ermal codo adm a uque L -ye oluo. Keyword: Bacward ochac dffereal equao wh jum, L oluo, o-lchz geeraor. 1 Iroduco he bacward ochac equaobsd wa aed by Bmu 1973 ad laer develoed by Pardoux ad Peg 199 o a fully olear vero. I ha ce grow radly heory ad bee aled o varou area, uch a mahemacal face, ochac omal corol, ochac dffereal game ad ec ee he referece l Karou e al or Cvać e al ag ad L 1994 added o he BSD a jum erm ha drve by a Poo radom meaure deede of he Browa moo. Praccally eag, for examle, f he Browa moo ad for he oe from he facal mare, he he Poo radom meaure ca be erreed a he radome of he urace clam. he auhor obaed he exece ad uquee of a oluo o uch a BSDJ whe he ermal codo quare egrable ad he geeraor Lchz couou varable y, z ad u. he Pardoux 1997 relaxed he Lchz codo o varable y by aumg a mooocy codo a well a a lear growh codo o varable y ead. Laer, Rog 1997 ad Y ad Mao 8 eve degeeraed he mooocy codo o a weaer vero o a o remove he Lchz codo o varable z. he ubouded radom me horzo wa codered boh Pardoux 1997 ad Y ad Mao 8. Amog hoe effor o geeralze he heory of BSD, ome were devoed o weaeg he quare egrably of he ermal codo. l Karou e al demoraed ha for ay -egrable ermal codo wh 1,, he BSD wh Lchz couou geeraor adm a uque oluo, whch alo -egrable. he Brad ad Carmoa reduced he Lchz codo o varable y by a rog mooocy codo a well a olyomal growh codo o varable y. Laer, Brad e al. 3 foud ha he olyomal growh codo o eceary f oe ue he mooocy codo mlar o ha of Pardoux I he ree aer, we aalyze he BSDJ wh ubouded radom me horzo ad uder a o-lchz geeraor codo whch lghly more geeral ha ha of Y ad Mao 8. We how he exece ad uquee of a L oluo of he BSDJ gve a -egrable ermal codo wo cae 1, ad,. he layou of h aer mle. Seco deal wh cae 1,. Gve he fe me horzo, we ar by emag he L orm of ayoluo of he BSDJ erm ofhe L orm ofhe ermal codo ad of he coeffce he mooocy codo, ee Prooo.1. Nex, we derve a ably-le reul Prooo., whch clam ha a equece of oluo of BSDJ a Cauchy equece L orm whe he equece of her ermal codo o ad whe he oluo afy a aymoc mooocy codo. he he Dearme of Mahemac, Uvery of Mchga, A Arbor, MI 4819; emal: ogyao@umch.edu.
2 L Soluo of BSD wh Jum uquee drecly follow, ee heorem.1. or he exece, we fr how he exece for a bouded ermal codo by alyg a mehod from Rog 1997 ha aroxmae he o-lchz geeraor by a equece of Lchz geeraor va covoluo moohg, ee Prooo.3. A o a -egrable ermal codo, we rucae a a bouded oe ad ue Prooo.3 ogeher wh Prooo. o oba he geeral exece reul. veually, he fe me horzo ca ealy bee relaced by ay uboud radom oe, ee Corollary.1. I eco 3, we regh he mooocy codo order o aly he cocluo of eco o ge he exece ad uquee reul for cae,, ee heorem 3.1 ad Corollary Noao ad Prelmare hroughou h aer we coder a comlee robably ace Ω,, P o whch a d-dmeoal Browa moo B defed. Gve a meaurable ace, B, le be a -valued Poo o roce o Ω,,P ha deede of B. Recall ha he coug meaure N d,dx of o, ha he comeaor N d,dx dxd for ome σ-fe meaure o, B. or ay,, we defe σ-feld σ,, B σ B, ad augme σ B by all P-ull e of. Clearly, he flrao { }, afe he uual hyohee cf. e.g., Proer 199. Le P deoe he -rogrevely meaurable σ-feld o, Ω. I addo, we e σ ad { } { },., Le H deoe a geerc real Hlber ace wh er roduc, H ad he duced orm x H x,xh, x H. or ay r,, we defe he followg wo fuco o H: 1 Dx 1 {x } 1 x H x ad π r x Gve l N, he followg ace of fuco wll be ued he equel: r r x H x, x H. 1 Le L 1, be he ace of all fuco ψ :,, wh ψd <, ad le L, be he ace of all fuco ψ :,, wh ψ d <. Le L L, B,;R l be he ace of all R l -valued, B-meaurable fuco u wh ux dx <. Clearly, L a real Hlber ace wh he er roduc u1,u L u1 x,u x dx, u 1,u L. or ay u L, duced orm u L { ux dx 3 or ay ub-σ-feld G of, le L G be he ace of all real-valued o-egave G-meaurable radom varable; { L G {ξ L G : ξ L G } ξ } 1 < for all 1, ; { } L G ξ L G : ξ L G eu ξω < ; ω Ω L G be he ace of all R l -valued, G-meaurable radom varable; { { L G ξ L G : ξ L G } ξ } 1 < for all 1, ; { } L G ξ L G : ξ L G eu ξω <. ω Ω 1 See Lemma A.5 ad Lemma A.6 for roere of fuco D ad π r. } 1.
3 1. BSD wh Jum 3 4 Le D be he ace of all Rl -valued, -adaed RCLL rocee wh D ω eu ω <. 5 or ay 1,, we le eu,ω, Ω ω Ω u, D be he ace of all Rl -valued, -adaed RCLL rocee wh D M H be he ace of all H-valued, -redcably meaurable rocee wh { } 1 M H H d < ; S D M Rl d M L. { u, } 1 I h aer, we ue he coveo f{ } ad le c deoe a geerc coa deedg oly o arcular, c ad for a geerc coa deedg o ohg, whoe form may vary from le o le. 1. BSD wh Jum Aarameerarξ,f coofaradomvarableξ L ad afuco f :, Ω R l R l d L R l uch ha f P B R l B R l d B L /BR l -meaurable. Defo 1.1. Gve a arameer ar ξ,f, a rle Y,Z,U called a oluo of he bacward ochac dffereal equao wh jum ha ha ermal codo ξ ad geeraor f BSDJξ,f for hor f he followg hold: Y a R l -valued, -adaed RCLL roce, Z a R l d -valued, -rogrevely meaurable rocee, ad U a L -valued, -rogrevely meaurable rocee uch ha f,y,z,u Z U d <, P-a..; 1.1 L hold P-a.. ha Y ξ f,y,z,u d Z db U xñd,dx,,. 1., { Here, Ñ d,dx } N d,dx dxd. Oe ow ha, Ψ xñd,dx a margale for ay L -valued, -rogrevely meaurable rocee Ψ wh Ψ L d <., Remar he wo ochac egral 1. are well-oed. o ee h, we e M Z,, ad defe -og me } τ f {, : Z d >, N. < ; Z db, } or ay N, ce {M Z a uformly egrable margale, here ex a P-ull e N τ uch ha 3, lm MZ τ ω ω ex for ay ω Nc. By 1.1, oe ca fd a P-ull e N uch ha for ay ω N, c τ ω for ome ω N. Hece, for ay ω N {} Nc, lm MZ ω lm MZ τ ω ω ex. Pu aoher way, he lm Z db lm rgh-couou, wh lm from he lef 3 See, e.g., heorem II.3.1 of Revuz ad Yor Z db ex P-a..
4 L Soluo of BSD wh Jum 4 Smlarly, he lm, he oe ca deduce from 1. ha U xñd,dx lm U xñd,dx ex P-a.., Y lm Y ξ, P-a We ed he roduco by recallg Lemma. of Y ad Su 3, a exece ad uquee reul of BSDJ Lchz cae. Lemma 1.1. Le ξ,f be a arameer ar uch ha ξ L ad f,,, d < ; or ome φ 1 L 1, ad φ L,, hold d dp-a.e. ha f,ω,y1,z 1,u 1 f,ω,y,z,u φ 1 y 1 y φ z 1 z u 1 u L, y 1,z 1,u 1,y,z,u R l R l d L. 1.4 he he BSDJξ,f adm a uque oluo Y,Z,U S. Cae 1: 1, We ar wh a a ror emae. Prooo.1. Le ξ,f be a arameer ar wh ξ L. Suoe ha Y,Z,U a oluo of BSDJξ, f ha afe Y,f,Y,Z,U f Y a Y l Z U, d dp-a.e..1 L for wo o-egave -rogrevely meaurable rocee {f },, {a }, ad for ome coa l, 1. Se A a d,,. If A <, P-a.. ad u, he here ex a coa c,l deedg oly o ad l uch ha u, e A Y c,l e A ξ e A Z d e A Y <,. e A U Ld e A f d..3 Proof: or ay N, we defe -og me τ f {, : A f,y,z,u Z } U d >..4 L Gve,, he fuco ϕ,x x e 1,,x, R l ha he followg dervave of -h ower: ad D ϕ,x e ϕ,x, D ϕ,x ϕ,xx, {1,,l}, Dj ϕ,x ϕ,xδ j ϕ 4,xx x j,,j {1,,l}..5
5 . Cae 1: 1, 5 Now fx < <. or ay, ad N, alyg Iô formula 4 o e A ϕ,y over he erval τ, τ yeld ha τ e A τ ϕ τ,y τ 1 e A race Z Z D ϕ,y d τ { e A ϕ,y ϕ,y Dϕ },Y, Y τ, τ e A τ ϕ τ,y τ τ τ τ τ e A ϕ,y d e A ϕ,y Y,f,Y,Z,U a ϕ,y d M, M,, M, M, P-a..,.6 where Mr, r τ e A ϕ,y Y,Z db ad for ay r,. I follow from.5 ha M, r,r τ ϕ ea,y Y,U x Ñd,dx race Z Z D ϕ,y ϕ,y Z ϕ 4,Y ϕ O he oher had, aylor xao heorem mle ha τ, τ l d YZ j 1,Y Z ϕ 4,Y Y Z 1ϕ,Y Z..7 e A { ϕ,y ϕ,y Dϕ,Y, Y } τ, τ τ, τ e A 1 α Y,D ϕ,y α Y dα 1 e A 1 α τ, τ τ, τ τ, τ ϕ 1 e A Y 1 αϕ j1,y α Y ϕ 4,Y α dα e A Y Y Y e 1 le Y α Y α Y,Y α Y,Y α dα e A Y Y e 1 U x N d,dx..8 I he la equaly we ued he fac ha Y α 1 αy αy Y Y. Sce all rocee.6 are RCLL oe, luggg.7,.8 ad.1 o.6 yeld ha P-a.. e A τ ϕ 1 τ τ,y τ l τ 1 τ, τ η l τ τ e A ϕ,y Z d e A Y Y e 1 U x N d,dx e A ϕ,y U M Ld, M,, M where η η, e A τ ϕ τ,y τ τ e A f ϕ 1,Y d 4 ee e.g. Ieda ad Waaabe 1981, heorem II.5.1 or Proer 199, heorem II.3 τ, M,,,.9 e A ϕ,y d.
6 L Soluo of BSD wh Jum 6 he Burholder-Dav-Gudy equaly,.4, Lemma A.1 ad. mly ha τ u M, u M, c e A ϕ 4,, c e c e u ϕ,y, τ u,,y Y Z ϕ 4,Y Y U d L c e e A Y 1 u Y 1, τ <, whch mle ha boh M,, ad M are uformly egrable margale. A a RCLL roce, Y jum couably may me alog P-a.. ah, more recely, {, : Y ω Y ω Y ω } a couable e for P-a.. ω Ω..1 Hece oe ca deduce ha e A Y Y e 1 U x N d,dx, τ τ e A Y Y e 1 he leg ad ag execao.9 yeld ha Le Y, τ e A ϕ,y Z U d L u e A ϕ,y,,. I follow from.9 ha, Y, τ τ ηl e A ϕ,y U L d τ U x dxd e A ϕ,y U.11 L d. 1 1 l η..1 u, he Burholder-Dav-Gudy equaly mle ha u M, u M, M c,,m, 1 M,, M,1,, 1 τ c c e A ϕ 4,Y Y Z d { Y τ, τ 1 Y, τ τ c { e A ϕ,y Z d 1 Y, τ τ c e A ϕ,y where we ued.1 he la equaly. 1, τ, τ M, u M,,..13 e A ϕ 4,Y Y U x N d,dx τ e A ϕ,y Z d e A ϕ,y Z U L e A ϕ,y U x N d,dx U x dxd 1 } 1 d,.14 Now, le c,l deoe a geerc coa deedg oly o ad l, whoe form may vary from le o le. Lemma A.1,.4 ad. mly ha Y, τ e A Y e <. u, }
7 . Cae 1: 1, 7 he luggg.1 ad.14 o.13, we ca deduce from Youg Iequaly ad Lemma A.1 ha Y, τ c,l η c,l e A τ Y τ Y, τ τ 1 τ e A f d e A d c,l J 1 Y, τ,.15 where J J, e A τ Y τ e A f d e. I he ecod equaly above we ued he fac ha ϕ,y e 1,,ω, Ω. he follow from.15 ha u e A Y Y, τ c,l J,.16, τ ad ha η c,l J 1 Y, τ c,l J..17 I lgh of Youg Iequaly, we ca deduce from.1,.16 ad.17 ha { τ } e A Z d Y, τ τ e A ϕ,y Z d Y, τ τ e A ϕ,y Z d Y, 1 τ η c,l J l { τ Smlarly, we ca deduce ha e A U d } c L,l J. Summg u wh.16 ad.18 a well a leg yeld ha u, τ e A Y τ c,l e A τ Y τ τ e A Z d e A U L d e A f d..19 We ow from.1 ad. ha for P-a.. ω Ω, τ ω for ome ω N. I follow ha lm Y τ Y, P-a..,. alhough he roce Y may o be lef-couou. herefore, leg ad he leg.19, we ca deduce.3 from he Moooe Covergece heorem, he Domaed Covergece heorem,., 1.3, ad.. 1 I he re of h eco, we le θ :,, be a creag cocave fuco wh d. θ Our goal of h eco he followg exece ad uquee reul of BSDJ for cae 1,. heorem.1. Le ξ,f be a arameer ar uch ha ξ L ad ha for each,ω, Ω, H1 he mag f,ω,,,u couou for ay u L. he he BSDJξ,f adm a uque oluo Y,Z,U S f he geeraor f afe he followg codo for d dp-a.e.,ω, Ω: H f,ω,y,z, 1 y β c z, y,z R l R l d ; H3 f,ω,y,z,u 1 f,ω,y,z,u c u 1 u L, y,z,u 1,u R l R l d L L ; H4 y 1 y 1 Dy 1 y,f,ω,y 1,z 1,u 1 f,ω,y,z,u λθ y1 y Λ y 1 y Λ y 1 y 1 z 1 z u 1 u L, y1,z 1,u 1,y,z,u R l R l d L ; 1
8 L Soluo of BSD wh Jum 8 where h1 c L 1, L, ad λ L1,, h β, Λ ad Λ are hree o-egave -rogrevely meaurable rocee uch ha Λ d } L, ad ha he roof of heorem.1 rele o he followg wo reul. Λ d Λ d < for ome,. { β d, Λ d, Prooo.. Le { ξ,f } N be arameer ar uch ha {ξ } N a Cauchy equece L. Aume ha for ay N, he BSDJξ,f ha a oluo Y,Z,U S, ad ha for ay N wh m >, Y,Z,U Y m Y,Z m Z,U m U afe where Y 1 DY,f m,y m,z m,u m λθ Y f,y,z,u δ Λ Y Λ Y 1 Z U L η, d dp-a.e..1 λ L 1,, Λ ad Λ are wo o-egave -rogrevely meaurable rocee uch ha Λ d } L, { Λ d, δ L a o-egave radom varable, ad η a o-egave roce uch ha lm η d.. u m> If λ o-rval.e. λd >, we furher aume ha u Y D Z M N Rl d U M L uδ < ad lm δ..3 N he { Y,Z,U } N a Cauchy equece S. Proof: Le a Λ 1 Λ ad A a d,,. I ealy follow from h ha A L wh κ A A L Λ d L 1 -og me τ τ { f, : Λ d L x, N wh m >. We defe a. Z U L } d >..4 x < <. Smlar o.6-.8, alyg Iô formula o e A ϕ,y overhe erval τ, τ yeld ha e A τ ϕ τ,y τ τ 1 e A ϕ,y Z d τ 1 e A Y Y e 1 U x N d,dx τ, τ e A τ ϕ τ,y τ τ τ τ,y d a e A ϕ τ M, M,, M e A ϕ τ τ M,,Y e A ϕ Y,f m,y m,zm,um f,y,z,u d,y d, P-a..,.5
9 . Cae 1: 1, 9 where M, r ad M, r r τ,r τ e A ϕ,y Y,Z db e A ϕ,y Y,U x Ñ d,dx for ay r,. Oe ca deduce from.1 ha d dp-a.e. ϕ A ϕ,y Y Y ϕ,y λθ Y,f m,y m,z m,u m f,y,z,u Y 1 DY,f m,y m,z m,u m f,y,z,u δ Λ Y Λ Y 1 Z U L η λθ Y δ Λ ϕ λθ Y,Y Λ ϕ 1 δ a ϕ,y 1 4 ϕ,y,y,y e 1,,ω, Ω, hold P-a.. ha τ τ e A ϕ Z U L η U Z L η..6,y d e κ A e d e κ A..7 Sce all rocee.5 are RCLL oe, luggg.6 ad.7 o.5 yeld ha P-a.. e A τ ϕ τ,y τ 4 1 τ 1 τ, τ g 4 1 τ where g g τ τ e A ϕ,y e A Y Y e e A ϕ,y U Ld e κa ϕ τ,y τ Z 1 U M, d x N d,dx M, M, λθ Y δ d η d he Burholder-Dav-Gudy equaly,.4, Lemma A.1 ad Hölder equaly mly ha u, M, u M,, τ c e A c e κa whch mle ha boh M, ad from.1 ha for ay, ϕ 4,Y Y u ϕ,y, τ M, e A Y Y e τ, τ he ag execao.8 yeld ha τ τ e A ϕ,y Z dϕ 4,Y Y c e κa Y 1 <, D M,,,,.8. U L d are uformly egrable margale. Smlar o.11, oe ca deduce Z 1 U U x N d,dx L d τ τ e A ϕ,y U Ld. 4 1 g,,..9
10 L Soluo of BSD wh Jum 1 By.8, hold P-a.. ha Ỹ, u e A ϕ,y u e A τϕ τ,y τ τ, τ, g 4 1 τ u, τ M, e A ϕ M,,Y u, U Ld M,, M Smlar o.14, oe ca deduce from he Burholder-Dav-Gudy equaly ha M, M, u M,, M u, c Ỹ, Ỹ, τ τ τ, τ, e A ϕ 1 Ỹ, τ c τ,y Z e A ϕ,y d U e A ϕ,y 1 x N d,dx Z U,,..3 1 L d,,..31 Sce Ỹ, e κ AY e D κa < by Lemma A.1, ag execao.3, we ca deduce from.9 ad.31 ha Smlar o.18, Youg Iequaly,.3 ad.9 mly ha { τ } e A Z Ỹ τ, d τ τ Smlarly, we ca deduce ha Ỹ, τ τ M { τ τ Ỹ, c g,,..3 e A ϕ e A U Ld A Z,U Rl d M L, we ee ha P-a.. ω Ω, τ ω for ome ω N, whch mle ha e A ϕ,y Z d,y Z d c g,,..33 } c g,,..34 Z U lm ϕ τ,y τ ϕ,y, P-a.., alhough he roce Y may o be lef-couou. A Y D, Lemma A.1 how ha u, ϕ,y u, he he Domaed Covergece heorem ad 1.3 mly ha lm ϕ τ,y τ ϕ L d <, P-a.. hu for Y L 1..35,Y ad lm ϕ,y ξm ξ.
11 . Cae 1: 1, 11 Addg u.3-.34, leg ad he leg, we ca deduce from he Moooe Covergece heorem ha ξm Ξ c e κa ξ λθ Ξ δ d η d,,, where Ξ u Y Z d U L, d ub heorem, he cocavy of θ ad Jee Iequaly ha Ξ c e κa ξm ξ c e κa ξm ξ Hece, hold for ay N ad, ha ξm uξ c e u κa ξ m> m> λ θ Ξ λθ Ξ δ d λθ Sce {ξ } N a Cauchy equece L, oe ha u m>. he leg, oe ca deduce from δ d η d η d,,. Ξ δ d u m> η d..36 ξm lm u ξ..37 m> If λ rval,.e. λd, he λθ.36, we ee from.37 ad. ha u m> lm u u m> Ξ Ξ m> O he oher had, we aume ha λ o-rval. Sce λ L 1, ad ce { } Ξ δ u Y D Z M U N Rl d M L by.3, aou Lemma, he mooocy ad he couy of θ 5 mly ha lm λθ u m> Ξ δ d δ d. ag ad leg..38 λ lm θ u m> λθ lm u δ <,,, N.39 N Ξ u Ξ m> Leg.36, we ca deduce from.37,. ad.4 ha lm Ξ c e κa λθ lm Ξ d,,. u m> u m> δ d d,,..4 A θ :,, a creag cocave fuco, eay o ee ha eher θ or θ > for ay >. Moreover, oe ca deduce from.39 ha he fuco µ lm he Lemma A.3 ad.39 mly ha lm u Ξ m> how ha { Y,Z,U } N a Cauchy equece S. u Ξ m>,, bouded.,,. herefore,.38 alway hold, whch Prooo.3. Le ξ,f be a arameer ar uch ha ξ L. If he geeraor f afe H1 for each,ω, Ω ad afe H-H4 for d dp-a.e.,ω, Ω, he he BSDJξ,f ha a oluo Y,Z,U D M Rl d M L. 5 I ow ha ay R-valued cocave fuco alo a couou fuco.
12 L Soluo of BSD wh Jum 1 Proof: We mae he followg eg fr: le ψ : R l,1 be a mooh fuco ha equal o 1 re. whe x R 1 re. x R, where { R ex β d L } c c d ξ L β d L cd. Le ρ : R ll d R be a mooh fuco ha vahe oude he u oe ball B 1 of R ll d ad afe ρxdx 1. or ay r,, we e ρ R ll d r x r l1d ρrx, x R ll d. } Le { O 1, N be aro6 of B 1 uch ha O O1 1 O1 hold for each O. or ay N ad 1,,, we c u a y,z O wh y Rl, ad le O deoe he volume of O. 1 x N. Clearly, β he fuco e e β,, a -rogrevely meaurable roce, whch mle ha f,ω,y,z,u β ωψyf,ω,y,π z,π u,,ω,y,z,u, Ω R l R l d L P B R l B R l d B L /BR l -meaurable. he we fx,ω,y,z,u, Ω R l R l d L ad defe f,ω,y,z,u f,ω,,,u ρ y,z. By H1, he couy of mag f,ω,,,u mle ha of mag f,ω,,,u. Hece, f,ω,y,z,u deed a Rema egral: f,ω,y,z,u lm f ỹ, z 1 f m1,ω,y 1 ỹ,z 1 z,u ρỹ, zdỹd z.41,ω,y 1 y,z 1 z,u ρy,z O, from whch oe ca deduce ha f alo P B R l B R l d B L /BR l -meaurable. Le c 1 Re c,,. Clearly, c L 1, L,. I follow from H ad H3 ha d dp-a.e. f,y,z,u β ψy f,y,π z,π u f,y,π z,π u f,y,π z, β ψy f,y,π z, c π u L β ψy 1 y β c π z c, y,z,u R l R l d L, whch mle ha d dp-a.e. 1 y1 f,y 1,z 1,u f,y,z,u y,z 1 z, ρ yα ỹ,z α z dα f,ỹ, z,udỹd z R ll d 1 c y1 y,z 1 z ρ yα ỹ,z α z dỹd zdα R ll d κ ρ c y 1 y z 1 z, y 1,z 1,y,z R l R l d, u L,.4 where y α αy1 1 αy, z α αz1 1 αz, α,1, ad κ ρ deermed by ρ ad. R ll d ρ x dx < a coa 6 We ay ha { O } m 1 a aro of he u cloed ball B 1 of R ll d f O, 1,,m are gle-coeced, oe ube of B 1 ha are arwely djo, ad f m 1 O B 1.
13 . Cae 1: 1, 13 Moreover,.41, H3 ad Lemma A.5 mly ha d dp-a.e. f,y,z,u 1 f,y,z,u β y ψ 1 ỹ, z 1 ỹ f,y f 1 ỹ,π z z 1,π u 1 ỹ, z 1,y 1 ỹ,π z z 1,π u 1 f,y 1 ỹ,π z z 1 f,y 1 ỹ,π z z 1,π u ρỹ, zdỹd z c π u 1 π u L c u1 u L, y,z R l R l d, u 1,u L,,π u ρỹ, zdỹd z whch ogeher wh.4 how ha f afe 1.4 wh φ 1 κ ρ c ad φ φ 1 c,,. Moreover, by.41 ad H, hold d dp-a.e. ha f,,, β, f 1 ỹ, z 1 ỹ,π z 1, ρỹ, zdỹd z β 1 1 ỹ β c π 1 ρỹ, zdỹd z ỹ, z 1 z 1e 1 c ρỹ, zdỹd z 1e 1 c. ỹ, z 1 whch mle ha f,,, d 1 1 cd <. herefore, we ow from Lemma 1.1 ha he BSDJξ,f ha a uque oluo Y,Z,U S. Now, we defe a 4β c4c ad A a d,,. I ealy follow from h1 ad h ha A L wh κ A A L 4 β d L c4c d. x N ad < <. Alyg Iô formula o e A Y over he erval, yeld ha e A Y e A Z d e A U x N d,dx, e A Y e A Y,f,Y,Z,U d a e A Y d M M M M, P-a..,.43 r where M r Y ea,z db ad M r Y,r ea,u x Ñd,dx, r,. Oe ca deduce from H ad H3 ha d dp-a.e. Y,f,Y,Z,U y,z <1 β ψ Y 1 y Y,f,Y 1 y,π Z 1 z,π U ρy,zdydz Y 1 Y β 1 y,z <1 y c π Z c 1 z π U L ρy,zdydz Y Y β c 1 Z U L β ca Y 1 Z 1 U.44 L. Moreover, Burholder-Dav-Gudy equaly ad Hölder equaly mly ha 1 u M u M c e A Y Z d,, c e κa u Y, Z d 1 e A Y U L d u Y, c e κa Y D Z M R l d U M L <, 1 U Ld 1
14 L Soluo of BSD wh Jum 14 whch how ha boh M ad M are uformly egrable margale. Hece, ag codoal execao.43, we ca deduce from.44 ha P-a.. e A Y 1 e Z A U d L e κa Y β d cd,.45 L where we ued he fac ha e A U x N d,dx, Sce Y D, he Domaed Covergece heorem mle ha e A U x dxd e A U Ld, P-a.. lm Y Y ξ ξ, P-a.. L Hece, a.45, he Moooe Covergece heorem gve ha e A Y 1 e A Z U d L ξ e κa L β d cd R, P-a.., L whch ogeher wh he rgh-couy of Y mle ha Y D R ad Z M Rl d U M L R, N xce o a d dp-ull e Ñ1 of, Ω, We may aume ha H-H4 hold ad ha Y R, N. x,ω Ñc 1 ad fx m, N wh m >. By.41, Y 1 DY,f m,y m,z m,um f,y,z,u ỹ, z <1 Y 1 DY,β m h m ỹ, z β h ỹ, z ρỹ, zdỹd z,.47 where h ỹ, z f,y ỹ,π 1 Z z,π 1 U. Nex, fx ỹ, z R l R l d wh ỹ, z < 1. We e ỹ, z 1 m ỹ, 1 1 m 1 z ad coder he followg decomoo: Y 1 DY,β m h m ỹ, z β h ỹ, z β m Y ỹ 1 D Y ỹ,h m ỹ, z h ỹ, z Y 1 D Y Y ỹ 1 D Y β m Y I follow from H4 ha I 1 ỹ, z λθ Y ỹ,h m ỹ, z h ỹ, z 1 D Y,β m β h ỹ, z I 1 ỹ, zi ỹ, zi3 ỹ, z. ỹ Λ Y ỹ Λ Y ỹ 1 π m Z m m z π 1 Z z 1 πm U m π U L..48 Alyg Lemma A. wh a Y ad Y ỹ ad b Y yeld ha ỹ 1 Y 1 ỹ 1 Y Y ỹ Y 1 Y ỹ ỹ Y δ.5
15 . Cae 1: 1, 15 wh δ R 3 1. Moreover, Lemma A.5 how ha πm Z m 1 m z π Z 1 z πm Z m 1 m z π mz 1 z πm Z 1 z π Z 1 z Z z 1 { Z z >} Z 1 1 z Z 1 { Z > 1} Z..51 Smlarly, we have πm U m π U L U L 1 { U L > } U L..5 Pug bac o.48, we ca deduce from he mooocy of fuco θ ha I 1 ỹ, z λθ Y where Ψ λθ Y Λ Y δ Λ Y δ Λ Y 1 1 Ψ Z U L δ Λ Y δ Λ 1R 4 1 Λ Ψ 1 Z U L 1 1 Λ Z U 1 { Z > 1} Z 1 { U L > } U L. O he oher had, oe ca deduce from H ad H3 ha L,.53 h ỹ, z 1 Y 1 ỹ β c π Z 1 z c π U L Rβ c 1 Z U L,.54 whch ogeher wh Lemma A.6 yeld ha Iỹ, z 1 D Y Y Y ỹ 1 D Y ỹ h m ỹ, z h ỹ, z Rβ c Z m Z U m L U L Ĩ..55 Sce < β βm 1,,,.54 alo mle ha I 3 ỹ, z R β Rβ c 1 Z U L Ĩ Pluggg.53,.55 ad.56 bac o.47 how ha.1 afed wh δ R 3 1 ad η δ Λ 1R 4 1 Λ Ψ 1 1 Λ Z U Hölder Iequaly ad.46 gve re o he followg four emae: 1. u η d δ Λ d 1R 4 1 m> L 1 1. Λ Ψ d C1 Λ C Λ C1 Λ C 1 Λ Λ d L 8R L 1 1 { Z > 1} Z 1 d Z C1 Λ C 1 R, Λ M Rl d U Ĩ Ĩ3,,. M L Λ Ψ d Ĩ Ĩ3 d { U L >} U 1 L d 1
16 L Soluo of BSD wh Jum 16 where C 1 Λ { Λ d ad C } 1 Λ Λ d. I he la equaly, we aled Lemma A.1 wh q, 1, a 1 Z M Rl d ad a U M L. 3. Ĩ d 1 1 R 1 β d cc d L 1 Z m Z U m U M Rl d M Rl d M L M L 1 1 R 1 β d cc dr. L 4. Ĩ 3 d R 4 1 R β Rβ c d Z M R l d U M L { 1 β Rβ c dr { c 1 β d } 1 c 1 β d J. Becaue β e e β / ր 1 a,,, he Domaed Covergeceheorem gve ha lm J. hu, leg.57 verfe he codo.. Moreover, ce D D, M Rl d M R l d ad M L M L by Hölder equaly, we ee from.46 ha.3 alo hold. he Prooo. how ha { Y,Z,U } N a Cauchy equece S. Le Y,Z,U be lm S. 4 Sce lm Y Y D lm lm Z Z lm M Rl d lm U U M Lad lm, } 1 u Y Y,.58 Z Z d U U d L we ca exrac a ubequece { } N from N uch ha Z 1 Z M Rl d U 1 U M L, N ad ha P-a.. lm u Y Y lm Z Z d lm U U d, L,.59,.6, hu lm u Y Y lm, Z Z d lm U U d..61 L By.46, hold P-a.. ha u Y u Y Y u,,, Y u, Y Y Y D u, Y Y R, N. Leg, we ee from.61 ha u Y R, P-a.., whch mle ha Y D R., or ay N, we defe wo real-valued, -redcably meaurable rocee Z Z Z j Z j 1 ad U j1 U L U j U j 1 L,, j1
17 . Cae 1: 1, 17 wh Z Z ad U U. Oe ca ealy deduce ha Z M R wh Z M R Z M Rl d j1 A { Z } N a creag equece, we e Z Moooe Covergece heorem how ha for ay ω Ω Z ω d lm Z j Z j 1 M Rl d 1 Z M Rl d Z 1 Z M Z ω d, hu lm Z Z Rl d..6 Z j Z j 1,,. he j1 Z ω d lm Z ω d. Alyg he Moooe Covergece heorem oce aga, we ca deduce from.6 ad Lemma A.1 ha Z d Z d whch mle ha lm Smlarly, he roce U lm U U L Z d <, hu Z M Rl d Z 1 Z <,.63 M Rl d Z d <, P-a...64 U j U j 1 L,, afe j1 U d <, hu x N. We defe a -og me τ f {, : Z Z U U d τ L Sce τ Covergece heorem ad.61 how ha lm τ Hece, here ex a ubequece { 5 Nex, le u how ha lm lm Z Z d lm 1 { τ } τ } N of { } U d <, P-a...65 } Z U d >..66 Z U d τ Z U d, ω Ω, he Bouded τ N Z Z lm U U L d..67 uch ha for d dp-a.e.,ω, Ω 1 { τ } By.41 ad.46, hold for ay N ha τ f,y,z,u f,y,z,u d τ β f,y 1 ỹ,π Z 1 z,π ỹ, z <1 U U L..68 f,y,z,u f,y,z,u d..69 U f,y,z,u ρỹ, zdỹd zd..7
18 L Soluo of BSD wh Jum 18 xce o a d dp-ull e Ñ of, Ω, We may aume ha H, H3 ad.68 hold; Y lm Y by.61; Y R ad Y R, N. x,ω Ñc wh τ ω, ad fx ỹ, z R l R l d wh ỹ, z < 1. I follow from.68 ha U lm Z lm L U..71 Z Wh hel of Lemma A.5, oe ca emae a follow: e1 Y 1 ỹ Y 1 Y Y, a ; e π Z 1 π z Z Z 1 z π Z Z π Z Z Z, a ; e3 π U L U π U L π U π L U U 1 a. Sce he mag f,,,u couou by H1 ad ce lm ha Moreover, H3 how ha β f lm β f,y 1 ỹ,π Z 1 z,π Z π Z Z 1 π z Z Z Z β U L L U π U U, 1, we ca deduce from e1 ad e,y 1 ỹ,π Z 1 z,u f,y,z,u..7 U whch ogeher wh.7 ad e3 mle ha lm β β f β f,y 1 ỹ,π Z 1 z,y 1 ỹ,π Z 1 z,π U,U c π U U L, f,y,z,u..73 or ay N, ce Z Z Z ad U L U U, oe ca deduce from H ad H3 ha f,y 1 ỹ,π Z 1 z,π U f,y,z,u f,y 1 Y 1 ỹ Y R 1β c 1 ỹ,π Z 1 z Z,π U U f,y,z,u Alyg Holder equaly, we ee from.63 ad.65 ha τ τ h ρỹ, zdỹd zd h d h d ỹ, z <1 π β c Z z 1 Z π U L U L Z U L L R 1β c 1Z Z U U L h. 1 { C c 1 d Zd 1 Z 1 } d U 1 d U L d 1 C c d Z M R Z M U Rl d M R U M L <.74
19 . Cae 1: 1, 19 wh C R 1 β d L cd. Hece, he Domaed Covergece heorem ad.73 how ha τ lm β ỹ, z <1 f whch ogeher wh.7 lead o.69.,y 1 ỹ,π Z 1 z,π U f,y,z,u ρỹ, zdỹd zd 6 Sce 7 τ,τ,τ, τ,,. he Burholder-Dav-Gudy equaly ad Hölder equaly mly ha u U x U x Ñ d,dx u U x U x Ñ d,dx, c c { τ,τ {,τ τ U x U x N d,dx } 1, c {, τ,τ, U x U x }1 N d,dx }1 U U, a,.75 Ld ad ha u, τ Z Z db τ u, τ Z Z db c τ 1 Z Z d Z c M Z, a..76 Rl d I lgh of.61,.69,.75 ad.76, here ex a ubequece { } ñ of { } N uch ha exce o N a P-ull e N1 lm Sce { u, Y ñ τ Y u, τ,τ fñ,y ñ,zñ,uñ ñ U x U x Ñ d,dx f,y,z,u d u, τ ñ Z Z db }. τ Y ñ,z ñ,u ñ olve BSDJ for ay N, hold exce o a P-ull e N ξ,fñ ha Y ñ τ 1 {τ < }Y ñ τ 1 {τ }ξ τ,τ τ τ fñ τ,y ñ,zñ,uñ d Zñ db τ Uñ xñd,dx,,, N..77 or ay ω Ω N 1 c N c ad ay,, leg.77, we oba ha over Ω τ Y τ 1 {τ < }Y τ 1 {τ }ξ f,y,z,u d Z db τ τ U xñd,dx,,..78 τ,τ ha o.64 ad.65, oe ca fd a P-ull e N 3 uch ha for ay ω N3 c, τ ω for ome ω N. veually, for ay ω Ω Ω N3 c N c 1 N c N3 c ad ay,, N N N leg.78 how ha 1. hold over Ω. o w, Y,Z,U a oluo of BSDJξ,f. 7 τ,τ ad for, ad,τ deoe, whe τ. τ
20 L Soluo of BSD wh Jum Proof of heorem.1: Uquee Suoe ha Y,Z,U S ad Y,Z,U S he BSDJξ,f. or ay N, we e are wo oluo of ξ,f ξ,f ad Y,Z,U { Y,Z,U f odd, Y,Z,U f eve. or ay N wh m >, H4 how ha.1 hold wh δ ad η. hu, eay o ee ha.ad.3arebohafed. heprooo.howha { Y,Z,U } N acauchyequeces, whch mle ha Y,Z,U Y,Z,U he ee ha Y Y D Z Z M Rl d U U M L. xece or ay N, we defe ξ π ξ. ha o Prooo.3, he BSDJξ,f ha a oluo Y,Z,U D M Rl d M L. or ay m, N wh m >, H4 how ha d dp-a.e. Y 1 D Y,f,Y m,z m,u m f,y,z,u λθ Y Λ Y Λ Y 1 Z U L. Hece,.1 hold wh f f, δ ad η. Clearly,. auomacally afed. Suoe ha λd >. We ca deduce from H ad H3 ha d dp-a.e. Y,f,Y,Z,U Y f,y,z, f,y,z,u f,y,z, Y 1 Y β c Z U L Y 1 4 β Y β 1 c hu.1 afed wh f β, a β 1 c, l 1 4. Sce wh κ A A L β d L 1 u, c d, Prooo.1 gve ha Y Z D M Rl d U M L c e A ξ c e κa ξ Z U L. e A Y e κa Y D e A β d β d L <, whchmle.3. heprooo.howha { Y,Z,U } N acauchyequece S. Le Y,Z,U be lm S. he re of roof mlar o ha of Prooo.3 cf. ar 4-6 here. By.58-.6, we ca fd a ubequece { } N from N uch ha Y 1 Y D Z 1 Z M Rl d U 1 U M L, N ad ha.61 hold P-a.. or ay N, we e η u Y, u j1, Y j wh Y Y. Oe ca ealy deduce ha η L wh ηl u Y, L u Y D j1 j1, Y j Y j 1 D Y j 1 Y j Y j 1 1 Y D L <, Y 1 Y D..79
21 . Cae 1: 1, 1 A { η } N a creag equece, we e η lm η u Y, u j1, Y j Y j 1. Alyg he Moooe Covergece heorem oce aga, we ca deduce from.79 ad Lemma A.1 ha η η lm η L Y Y D 1 Y <..8 D We have ee he roof of Prooo.3 ha he wo real-valued, -redcably meaurable rocee Z Z Z j Z j 1 ad U U L U j U j 1 L,,, j1 wh Z Z ad U U, afy hu Z d < ad U d <, P-a.. j1 Z d U d <..81 x N. We ll defe he -og me τ a.66. ha o.67, oe ca exrac a ubequece { } N of { } uch ha.68 hold for d dp-a.e.,ω, Ω. xce o a d dp-ull e Ñ of N Y, Ω, We may aume ha H, H3 ad.68 hold, a well a ha lm Y by.61. x,ω Ñc wh τ ω. We ll have.71 by.68. he he couy of he mag f,,,u how ha lm f,y,z,u f,y,z,u..8 Moreover, H3 how ha f,y,z,u f,y,z U,U c L U, whch ogeher wh.8 mle ha lm f,y,z,u f,y,z,u..83 or ay N, ce u Y u Y,, u j1, oe ca deduce from H ad H3 ha f,y,z,u Y j f,y,z,u Y j 1 η η, Z Z ad U L U, Y Z Y β c Z η u Y, U β c Z Z U U L. U L L Alyg Holder equaly, we ee from.8 ha τ η u Y β d η u Y β d,, η Y L D β d <. L
22 L Soluo of BSD wh Jum Smlar o.74, Holder equaly ad.81 yeld ha τ c 1 Z Z U U L d c d Z M R Z M U Rl d M R U M L <. herefore, he Domaed Covergece heorem how ha lm τ f,y,z,u f,y,z,u d..84 he wo lm.75 ad.76 ll hold. he ug he mlar argume o hoe ha lead o 1. ad ug he fac ha lm ξ ξ, we ca coclude ha Y,Z,U a oluo of BSDJξ,f. Now, le γ be a -og me ha may ae he fe value. ha o heorem.1, he BSDJ wh radom me horzo γ alo well-oed for ay ermal codo ξ L γ uder hyohee H1-H4. Corollary.1. Le ξ,f be a arameer ar uch ha ξ L γ. If he geeraor f afe H1 for each,ω,γ 8 ad afe H-H4 for d dp-a.e.,ω,γ, he he followg BSDJ γ γ Y γ ξ f,y,z,u d Z db U xñd,dx,, ; P-a...85 γ γ γ,γ { Y adm a uque oluo ω,z ω,u ω } } {Y uch ha γ,1 { γ} Z,1 { γ} U,ω,γ, S. Proof: Oe ca chec ha f,ω,y,z,u 1 { γω} f,ω,y,z,u,,ω,y,z,u, Ω R l R l d L defe a P B R l B R l d B L /BR l -meaurable fuco ha afe H1 for each,ω, Ω ad afe H-H4 for d dp-a.e.,ω, Ω. heorem.1 he how ha he BSDJ ξ, f adm a uque oluo Y,Z,U S. So hold exce o a P-ull e N 1 ha Y ξ f,y,z,u d x, ad N. We defe a -og me By.86, hold o N c 1 ha τ f {, : Z db U xñd,dx,,..86, τ Y γ τ Y τ f,y,z,u d γ τ τ Y τ Z db γ τ Z } U d >..87 L Z db γ τ U xñd,dx. τ γ τ, τ γ τ, τ ag codoal execao γ τ ad mullyg 1{γ τ } o boh de yeld ha U xñd,dx 1 {γ τ }Y γ 1 {γ τ }Y γ τ 1 {γ τ } Y τ γ τ 1{γ τ } Y τ γ, P-a...88 A Z,U M Rl d M L, we ee ha Z U d <, P-a.. hu for P-a.. ω Ω, L τ ω for ome ω N, whch mle ha lm Y τ Y, P-a.. alhough he roce Y may o be 8 he ochac erval,γ defed by {,ω, Ω : γω}.
23 3. Cae :, 3 lef-couou. Sce ad 1.3 mly ha u, Y Y D < by Hölder equaly, he Domaed Covergece heorem lm Y τ γ Y γ, ad lm Y γ ξ γ ξ, P-a.. I clear ha lm 1 {γ τ } 1 {γ } ad ha lm 1 {γ } 1 {γ< }. hu, leg ad he leg.88 gve ha 1 {γ< } Y γ 1 {γ< } ξ, P-a.., whch ogeher wh 1.3 mle ha Y γ ξ hold exce o a P-ull e N. Le N N 1 N. I he hold o N c ha f,y,z,u d Z db U xñd,dx Y γ ξ. γ herefore, oe ca deduce from.86 ha o N c Y γ ξ ξ γ γ γ γ f,y,z,u d f,y,z,u d γ γ γ γ, Z db Z db γ, γ,γ U xñ d,dx U xñd,dx,,, { Y whch how ha ω,z ω,u ω } a oluo of.85. Moreover, ce Y,Z,U,ω,γ S, we ealy } ee ha {Y γ,1 { γ} Z,1 { γ} U belog o, S a well. { Ohe oherhad, f Ỹ ω, Z ω,ũω } aoheroluoof.85 uchha {Ỹ γ,1 { γ} Z,,ω,γ 1 { γ} Ũ }, S, he hold P-a.. ha γ Ỹ γ ξ ξ ξ γ γ f,ỹ, Z,Ũd Z db γ 1 { γ} f,ỹ, Z,Ũd f,ỹ γ,1 { γ} Z,1 { γ} Ũ d γ,γ 1 { γ} Z db Ũ xñd,dx, 1 { γ} Z db 1 { γ}, Ũ xñd,dx 1 { γ} Ũ xñd,dx,,, } whch how ha {Ỹ γ,1 { γ} Z,1 { γ} Ũ alo olve BSDJ ξ, f. Hece, he uquee of he, oluo of BSDJ ξ, f S eal ha u Y Ỹ γ Z 1 { γ} Z d U 1 { γ} Ũ d L, Y γ Ỹ Z Z γ d U Ũ d, whch mle ha u,γ { Y ω,z ω,u ω },ω,γ he uque oluo of.85 uch ha { Y γ,1 { γ} Z, 1 { γ} U }, S. L 3 Cae :, heorem 3.1. Le ξ,f be a arameer ar uch ha ξ L ad ha H1 hold for each,ω, Ω. he he BSDJξ,f adm a uque oluo Y,Z,U D M Rl d M L f he geeraor f afe H, H3 a well a he followg codo H4 for d dp-a.e.,ω, Ω:
24 L Soluo of BSD wh Jum 4 H4 y 1 y,f,ω,y 1,z 1,u 1 f,y,z,u, Λ y 1 y Λ y 1 y z 1 z u 1 u L, y1,z 1,u 1,y,z,u R l R l d L, where Λ ad Λ are wo o-egave -rogrevely meaurable rocee defed h. Proof: A ξ L L, alyg heorem.1 wh ad λ, we ow ha he BSDJξ,f adm a uque oluo Y,Z,U S. So uffce o how ha Y D D. More recely, we ee from he roof of heorem.1 ha Y,Z,U he lm of {Y,Z,U } N S, where Y,Z,U he uque oluo of he BSDJξ,f wh ξ π ξ uch ha Y D. Le u defe a Λ 3 1 Λ ad A a d,,. I ealy follow from h ha A L wh κ A A L Λ d L 3 1 Λ d. x, N wh m >. We ll e L Y,Z,U Y m Y,Z m Z,U m U ad defe he -og me τ τ fuco x, x R l ha dervave: a.4. he D x x x, {1,,l}, ad D j x x δ j 1 {x } x 4 x x j,,j {1,,l}. 3.1 x < <. Smlar o.6, alyg Iô formula o e A Y over he erval τ, τ yeld ha e A τ where Y τ 1 { e A τ, τ e A τ Y M τ τ Y e A race Z Z Y D Y τ τ M τ M r ad M r M e A Y M r τ,r τ for ay r,. I follow from 3.1 ha race Z Z D Y Y D Y d }, Y Y,f,Y m,z m,u m f,y,z,u a Y d, P-a.. 3. e A Y Y,Z db e A Y Y,U x Ñd,dx Z 1 {Y } Y 4 l d 1 j1 Y Z j Y Z. 3.3 O he oher had, aylor xao heorem ad lemma A.4 mly ha { e A Y Y D Y, Y } τ, τ τ, τ τ, τ τ, τ 3 1 τ, τ 1 e A 1 α Y,D Y,α Y dα 1 Y e A,α 1 α Y 1 {Y,α 1 e A Y 1 α Y,α dα 3 1 le Y,α Y } α Y Y,α 4 Y τ, τ e A Y Y,Y,α. dα e A Y U x N d,dx. 3.4
25 3. Cae :, 5 Moreover, H4 how ha d dp-a.e. Y,f,Y m,zm,um f,y,z,u Λ Y Λ Y Z U L a Y 31 Z U. 3.5 L Sce all rocee 3. are RCLL oe, Pluggg o 3. yeld ha P-a.. e A τ Y 3 1 τ τ e A Y Z d3 1 e A Y e A τ τ Y τ 3 1 M M M where we ued he fac ha 1 > 31. τ τ M e A Y τ, τ U Ld he Burholder-Dav-Gudy equaly ad.4 mly ha u M u M τ c e A,, whch how ha boh M from.1 ha, τ e A Y ad M U U x N d,dx,,, 3.6 c e κa Y D Y Z Y U <, L d are uformly egrable margale. Smlar o.11, oe ca deduce τ x N d,dx Hece, leg 3.6 ad he ag execao, we oba τ e A Y I alo follow from 3.6 ha u e A Y, τ Y e κa τ 31 u, Z U u, τ e A τ Y τ e A Y L e A Y U Ld. d Y 3 1 e κa τ. 3.7 U Ld Smlar o.14, he Burholder-Dav-Gudy equaly mle ha M u M, Sce τ c 1 u, τ u, τ e A Y e A Y e A Y Z d c 1 τ e κa Y D u Y, τ u, τ, τ e A Y u, M u, M e A Y U x N d,dx Z U L d. 3.9 <, ug 3.9 o 3.8, we ca deduce from 3.7 ha e A Y c e κa Y τ. 3.1
26 L Soluo of BSD wh Jum 6 Sce Z,U M R l d M L, we ee ha Z U d <, P-a.. hu for L P-a.. ω Ω, τ ω for ome ω N, whch lead o ha lm Y τ Y, P-a.. alhough he roce Y may o be lef-couou. A Y D, he Bouded Covergece heorem mle ha lm Y τ Y ad lm Y ξ m ξ. herefore, leg ad he leg 3.1, we ca deduce from he Moooe Covergece heorem ha Y D Y ξm c e κa ξ c e κa ξm ξ L u, Sce lm ξ ξ, he Domaed Covergece heorem mle ha lm ξ ξ,.e., ξ coverge o ξ L. Hece, we ee from 3.11 ha { Y } N a Cauchy equece D. Le Ỹ be lm D. A D D, { Y } N coverge o Ỹ alo D. he he uquee of he lm of { Y } N D how ha Y ad Ỹ are dguhable9, whch mle ha Y D. Smlar o Corollary.1, we ca deduce from heorem 3.1 he followg exece ad uquee reul of BSDJ wh radom me horzo γ for cae,. Corollary 3.1. Le ξ,f be a arameer ar uch ha ξ L γ. If he geeraor f afe H1 for each,ω,γ ad afe { H, H3 a well a H4 for d dp-a.e.,ω,γ, he he BSDJ.85 Y adm a uque oluo ω,z ω,u ω } } {Y uch ha γ,1 { γ} Z,1 { γ} U,ω,γ, D M Rl d M L. A Aedx Lemma A.1. Le {a } N,. or ay, ad N wh, we have 1 1 a a 1 1 a A.1 Proof: Suoe ha 1, fr. or ay b c <, oe ca deduce ha bc c bc c 1 d bc c b 1 d b b, or equvale, bc b c. hu, a 1 a a 1 a. Whe 3, alyg A. coecuvely, we oba a a 1 a a 1 a a a a a. 1 A. A.3 Now, le m be he coug robably meaure o S {1,,} wh m 1 for each S. Jee Iequaly mle ha a a m d a m a d S S. 1 Mullyg o boh de, we ee from A.3 ha 1 9.e., P Y Ỹ,, 1. a a 1 a A.4
27 A. Aedx 7 Clearly, he cae 1 rval. So rema o how A.1 for,1: Alyg A.4 wh 1 ad ã a, S yeld ha a 1 ã ã ag -h ower o boh equale above, we oba a 1 1 ã 1 1 a a a 1 1 a. Lemma A.. or ay b,c,, we have { b c b c, f,1, b c 1 b c, f 1,. 1 A.5 Proof: I rval whe b c. Sce b ad c ae he ymmerc role A.5, we oly eed o aume b < c whou lo of geeraly. Whe,1,alygLemmaA.1wha 1 bada c byeldhac a 1 a a 1 a b c b, whch mle ha b c c b c b b c ; Whe 1,, oe ca deduce ha c b c b 1 d c b c 1 d c 1 c b, whch lead o ha b c c b c 1 c b b c 1 b c. Lemma A.3. Le θ,ζ,µ :,, be hree fuco uch ha eher θ or θ > for ay > ; θ creag ad afe 1 1 θ d ; ζ egrable ad µ bouded. If µ θ µ ζd for ay, he µ. Proof: he cae θ rval. So we oly aume ha θ > for ay > by. I follow from ha φ θκ µ ζd < wh κ µ u µ. hu, φ θ µ ζd,,,. defe a couou ad decreag fuco. Sce θ creag, dffereag fuco φ yeld ha φ θ µ ζ θ φ ζ,,. A.6 Aume φ >. he f{, : φ }, ad clear ha lm φ. A he couou ad decreag fuco φ mage, oo, φ, Chagg of varable gve ha φ 1 θ d 1 θ φ dφ φ θ φ d ζd ζd <, where we ued A.6 ad. or ay < a < b <, oe ca deduce from he mooocy of fuco θ ha b 1 a θ d b 1 b a a θa d θa <, whch ogeher wh A.7 mle ha 1 1 θ d <. h reul a coradco o aumo. herefore, φ, whch force φ. A a coequece, µ. Lemma A.4. Le, ad le B be a geerc real Baach ace wh orm B. or ay x,y B, 1 1 α xαy B dα 3 1 x B. A.7
28 L Soluo of BSD wh Jum 8 Proof: If y, oe mly ha 1 1 α x B dα 1 x B. So le u aume y ad e α x B 3 y B. Sce hold for ay α,α α, ha 1 3 x B x B α y B xαy B, we ca dcu by hree cae: 1 Whe 1 α : 1 1 α xαy B dα 1 3 x B 1 1 αdα x B ; Whe 1 α < 1 : 1 1 α xαy B dα 1 1 α xαy B dα 1 3 Whe α < 1 : 1 1 α xαy B dα 1 3 x B 1 3 x B { α 1 } α 1 αdα 1 3 x 3 B α α 1 1 αdα x B ; or he ex wo lemma, we aume ha H a geerc real Hlber ace wh er roduc, H x B. Lemma A.5. or ay x,y H, we have πr x π r y H x y H, r,. A.8 Coequely, x y H x H y H Dx Dy H. A.9 Proof: Whou lo of geeraly, we aume ha x H y H. o ee A.8, le u dcu by hree cae: 1 Whe r y H : Sce π r x x ad π r y y, oe mly ha πr x π r y H x y H ; Whe x H r < y H : Le u e κ x, Dy H ad ŷ κdy. Sce x ŷ, Dy, hold for ay H α R ha x αdy H x ŷ α κdy H x ŷ H α κdy H x ŷ H α κ. Hece, follow ha πr x π r y H x rdy H x ŷ H r κ x ŷ H y H κ x y where we ued he fac ha κ x, Dy H x H r < y H, ha o he Schwarz equaly. 3 Whe r < x H : We ow from ha x y H π x H x π x H y H x x H Dy H x H Dx Dy H r Dx Dy H πr x π r y H. H. If x, A.9 hold auomacally. Oherwe, alyg A.8 wh r x H gve re o A.9. Lemma A.6. Le,1. or ay x,y H, we have x H Dx y H Dy H 1 x y H. Proof: he cae 1 rval ce x H Dx y H Dy x y H. or,1, we aume whou lo H of geeraly ha x H y H ad dcu by hree cae: 1 Whe x : y H Dy H y H ; Whe < x H x y H : x H Dx y H Dy H x H Dx H y H Dy H x H y H x H x H x y H 1 x y H ; 3 Whe x H > x y H : x H Dx y H Dy H x HDx Dy x H y H x 1 H x y H x H H y H < x y H, where we ued A.9 ad Lemma A. he ecod equaly.
29 Referece 9 Referece J.-M. Bmu. Cojugae covex fuco omal ochac corol. J. Mah. Aal. Al., 44:384 44, ISSN -47x. P. Brad ad R. Carmoa. BSD wh olyomal growh geeraor. J. Al. Mah. Sochac Aal., 133: 7 38,. ISSN P. Brad, B. Delyo, Y. Hu,. Pardoux, ad L. Soca. L oluo of bacward ochac dffereal equao. Sochac Proce. Al., 181:19 19, 3. ISSN do: 1.116/S J. Cvać, I. Karaza, ad H. M. Soer. Bacward ochac dffereal equao wh cora o he ga-roce. A. Probab., 64: , ISSN do: 1.114/ao/ N. l Karou, S. Peg, ad M. C. Queez. Bacward ochac dffereal equao face. Mah. ace, 7 1:1 71, ISSN N. Ieda ad S. Waaabe. Sochac dffereal equao ad dffuo rocee, volume 4 of Norh-Hollad Mahemacal Lbrary. Norh-Hollad Publhg Co., Amerdam, ISBN Pardoux. Geeralzed dcouou bacward ochac dffereal equao. I Bacward ochac dffereal equao Par, , volume 364 of Pma Re. Noe Mah. Ser., age Logma, Harlow, É. Pardoux ad S. G. Peg. Adaed oluo of a bacward ochac dffereal equao. Syem Corol Le., 141:55 61, 199. ISSN P. Proer. Sochac egrao ad dffereal equao, volume 1 of Alcao of Mahemac New Yor. Srger-Verlag, Berl, 199. ISBN A ew aroach. D. Revuz ad M. Yor. Couou margale ad Browa moo, volume 93 of Grudlehre der Mahemache Wechafe udameal Prcle of Mahemacal Scece. Srger-Verlag, Berl, hrd edo, ISBN S. Rog. O oluo of bacward ochac dffereal equao wh jum ad alcao. Sochac Proce. Al., 66:9 36, ISSN do: 1.116/S S. J. ag ad. J. L. Neceary codo for omal corol of ochac yem wh radom jum. SIAM J. Corol Om., 35: , ISSN J. Y ad. Mao. he adaed oluo ad comaro heorem for bacward ochac dffereal equao wh Poo jum ad alcao. J. Mah. Aal. Al., 346: , 8. ISSN -47. do: 1.116/j.jmaa J. Y ad R. Su. O oluo of forward-bacward ochac dffereal equao wh Poo jum. Sochac Aal. Al., 16: , 3. ISSN do: 1.181/SAP
Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B
Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&
A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION
TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example
On Zero-Sum Stochastic Differential Games
O Zeo-Sum Sochac Dffeeal Game Eha Bayaka, Sog Yao Abac We geealze he eul of Flemg ad Sougad 13 o zeo-um ochac dffeeal game o he cae whe he cool ae ubouded. We do h by povg a dyamc pogammg pcple ug a coveg
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
Approximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur
Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A
α ]0,1[ of Trigonometric Fourier Series and its Conjugate
aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Υπόδειγµα Προεξόφλησης
Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Iterative Learning Control with a Forgetting Factor for Consensus Tracking in Multi-Agent Systems
33 E-mal: hxx@zju.edu.c :... : Ierave Learg Corol wh a Forgeg Facor for Cosesus racg Mul-Age Sysems Jgy Zheg Xogxog He Ymg Wu Zhehua Q College of Iformao Egeerg Zhejag Uversy of echology Hagzhou 33 Cha
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
Chapter 3 Diode and Thyristor Rectifiers
Cher Doe Thyror Recfer Dewe(D) Xu De. of Elecrcl & Comuer Egeerg Ryero Uery Coe Sgle-he hree-he oe recfer Hrmoc oro New efo of ower fcor Dlceme fcor oro fcor Sgle-he hree-he SCR recfer Mcroroceor corol
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
On homeomorphisms and C 1 maps
arxv:1804.10691v1 [mah.gm] 7 Apr 018 On homeomorphsms and C 1 maps Nkolaos E. Sofronds Deparmen of Economcs, Unversy of Ioannna, Ioannna 45110, Greece. nsofron@oene.gr, nsofron@cc.uo.gr Absrac Our purpose
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa
Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao
arxiv: v3 [math.pr] 23 Nov 2009
Opimal Soppig or Dyamic Covex Rik Meaure Erha Bayrakar, Ioai Karaza, Sog Yao arxiv:0909.4948v3 mah.pr 23 Nov 2009 Abrac We ue marigale ad ochaic aalyi echique o udy a coiuou-ime opimal oppig problem, i
) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +
Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Cycles and Multiple Equilibria in the Market for Durable Lemons
Cyce Mue Equbr he Mre for Durbe Leo Mre C W Je Eru Uery Roer Vr Kryche Tberge Iue Roer Jury Abrc: We ege he ure of re fure yc ero of Aerof 97 where ec cohor of urbe goo eer he re oer e I he yc oe equbr
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC
Pulrik A. D. Diribui, Del Fuci The Hbk f Frmul Tble fr Sigl Prceig. E. Aleer D. Pulrik Bc R: CRC Pre LLC, 999 5 Diribui, Del Fuci 5. Te Fuci 5. Diribui 5.3 Oe-Dimeil Del Fuci 5.4 Emple 5.5 Tw-Dimeil Del
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Παράγωγα Τιμολόγηση. },P). Όπου (Ω,F,P) είναι ο χώρος πιθανοτήτων και { F n
Παράγωγα Τιμολόγηση Αναφέρουμε μερικά εισαγωγικά τα οποία θα χρησιμοποιηθούν μέσω των μαθηματικών εργαλείων σαν υπάρχουσα γνώση για την τιμολόγηση των παραγώγων. Flered pace (Φιλτραρισμένοι Χώροι) Ένας
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Chapter 15 Identifying Failure & Repair Distributions
Chape 5 Idefyg Falue & Repa Dsbuos Paamee Esmao maxmum lkelhood esmao C. Ebelg, Io o Relably & Maaably Chape 5 Egeeg, d ed. Wavelad Pess, Ic. Copygh 00 Maxmum Lkelhood Esmao (MLE) Fd esmaes fo he dsbuo
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat
Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
FORMULAE SHEET for STATISTICS II
Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
ECE145a / 218a Tuned Amplifier Design -basic gain relationships
ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
ZZ (*) 4l. H γ γ. Covered by LEP GeV
: 33 9! " 5< 687 235 # #) " " &( $ # $!" K I K T S R N \ N \ ] N ^ K V 63 7 "" ` 2 9 a C C E D # C B A @ " "? > H N OQP N M Y WX U V H O ( N O_P b i h i h h 63 7 "" ` C C E D # C B A @ " "? > b d e f f
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
Note: Please use the actual date you accessed this material in your citation.
MIT OpeCueWae hp://cw.m.eu 6.13/ESD.13J Elecmagec a pplca, Fall 5 Pleae ue he llwg ca ma: Maku Zah, Ech Ippe, a Dav Sael, 6.13/ESD.13J Elecmagec a pplca, Fall 5. (Maachue Iue Techlgy: MIT OpeCueWae). hp://cw.m.eu
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
MATRICES WITH CONVOLUTIONS OF BINOMIAL FUNCTIONS, THEIR DETERMINANTS, AND SOME EXAMPLES
Journl of Alger umer Teor: Avne n Applon Volume umer 9 Pge -7 MATRICES WITH COVOLUTIOS OF BIOMIAL FUCTIOS THEIR DETERMIATS AD SOME EXAMPLES ORMA C SEVERO n PAUL J SCHILLO Meove Lne Wllmvlle Y USA e-ml:
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
8. The Normalized Least-Squares Estimator with Exponential Forgetting
Lecure 5 8. he Normalized Leas-Squares Esimaor wih Expoeial Forgeig his secio is devoed o he mehod of Leas-Squares wih expoeial forgeig ad ormalizaio. Expoeial forgeig of daa is a very useful echique i
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities
6.64, Continuum Electromechnics, Fll 4 Prof. Mrus Zhn Lecture 8: Electrohydrodynmic nd Ferrohydrodynmic Instilities I. Mgnetic Field Norml Instility Courtesy of MIT Press. Used with permission. A. Equilirium
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Generalized Normal Type-2. Triangular Fuzzy Number
pped Mahemaca Scence, Vo. 7, 203, no. 45, 2239 2252 HIKRI Ld, www.m-hkar.com Generazed orma Type-2 Trangar Fzzy mber bd. Faah Wahab Deparmen of Mahemac, Facy of Scence and Technoogy, Unver Maaya Terenggan,
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής
ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό
1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.
ECE 3 Mh le Sprig, 997. Fucio d Operor, (. ic( i( π (. ( β,, π (.3 Im, Re (.4 δ(, ; δ( d, < (.5 u( 5., (.6 rec u( + 5. u( 5., > rc( β /, π + rc( β /,
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ