ΙΔΑΝΙΚΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΙΔΑΝΙΚΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ"

Transcript

1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. ΙΔΑΝΙΚΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ 109

2 ΙΔΑΝΙΚΑ (ΤΕΛΕΙΑ) ΑΕΡΙΑ Το αέριο που οι συγκρούσεις των μορίων του είναι τελείως ελαστικές και ισχύει η διατήρηση της ορμής και κινητικής ενέργειας κατά τη σύγκρουση των μορίων, δηλαδή υπάρχει μηδενική αλληλεπίδραση μεταξύ των μορίων. Προϋποθέσεις Μικρά μόρια (H 2, He, Ο 2 κλπ) Χαμηλές πιέσεις Υψηλές θερμοκρασίες 110

3 ΝΟΜΟΣ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ O νόμος των τελείων αερίων συνδέει τις ιδιότητες ενός τελείου αερίου σε μια συγκεκριμένη κατάσταση (καταστατική εξίσωση) PV=nRT P: V: Τ: n: Απόλυτη πίεση Όγκος Απόλυτη θερμοκρασία Αριθμός mol Άλλες μορφές της καταστατικής εξίσωσης P V = ṅ R T Pv=RT v = L/mol=22.4 (ΚΣ) P ΜΒ = d R Τ d: πυκνότητα R: παγκόσμια σταθερά αερίων cal/(mol)(ok) J/(mol)(oK) (L)(atm)/(mol)(oK) Btu/(lb mol)(or) (psi)(ft3)/(lb mol)(or) Κανονικές συνθήκες (ΚΣ-STP) T = 0oC (ή 273 οκ) P = 1 atm 111

4 ΜΕΤΑΤΡΟΠΕΣ ΜΟΝΑΔΩΝ ΜΟΝΑΔΕΣ ΜΗΚΟΥΣ ΜΟΝΑΔΕΣ ΟΓΚΟΥ 112

5 ΠΙΕΣΗ ΜΟΝΑΔΕΣ ΠΙΕΣΗΣ Πίεση= δύναμη / επιφάνεια Μονάδα SI : Pascal (Pa) = N/m 2 Μονάδα AES: lb/in 2 (psi) Συνήθεις μονάδες: 1 atm = Pa = bar = 760 mm Hg = 14.7 psi 113

6 ΑΣΚΗΣΕΙΣ 100 g N 2 βρίσκονται σε θερμοκρασία 23 ο C και σχετική πίεση 3 psi. Ποιος είναι ο όγκος του; Βουτάνιο (C 4 H 10 ) στους 360 ο C και (απόλυτη) πίεση 3 atm ρέει προς τον αντιδραστήρα με ρυθμό 1100 kg/h. Πόση είναι η ογκομετρική παροχή στις παραπάνω συνθήκες; Πόση είναι η ογκομετρική παροχή σε κανονικές συνθήκες; 10 ft 3 /h αέρα στους 70 ο F και 1 atm τροφοδοτούνται σε συμπιεστή όπου θερμαίνονται στους 610 o F και συμπιέζονται στις 2.5 atm. Πόση είναι η ροή του αέρα στην έξοδο του συμπιεστή; 114

7 ΜΙΓΜΑΤΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Ένα μίγμα ιδανικών αερίων αποτελείται από δύο ή περισσότερα ιδανικά αέρια (έστω Α, Β, Ν) και συμπεριφέρεται και το ίδιο ως τέλειο αέριο. Μερική πίεση συστατικού Α: Η πίεση P A που θα εξασκούσε το Α αν υπήρχε μόνο του στο χώρο που καταλαμβάνει το μίγμα στην ίδια θερμοκρασία Τ. Μερικός όγκος συστατικού Α: Ο όγκος V A που θα κατελάμβανε το συστατικό Α αν υπήρχε μόνο του υπό την ίδια πίεση και θερμοκρασία που ισχύει για το μίγμα. Νόμος Dalton P A + P B + + P N = P Νόμος Amagat V A + V B + + V N = V 115

8 ΑΣΚΗΣΗ Υγρή ακετόνη (C 3 H 6 O) πυκνότητας g/cm 3 τροφοδοτείται με ρυθμό 400 L/min σε εξατμιστήρα, όπου εξατμίζεται σε ρεύμα αζώτου. Το αέριο που εξέρχεται από τον θερμαντήρα αραιώνεται από ρεύμα αζώτου με παροχή 419 m 3 (STP)/min. Τα αέρια αυτά ακολούθως εισάγονται σε συμπιεστή, όπου συμπιέζονται σε σχετική (μανομετρική) πίεση P=6.13 atm σε θερμοκρασία 325 o C. Η μερική πίεση της ακετόνης σε αυτό το ρεύμα είναι P ac =501 mm Hg. H ατμοσφαιρική πίεση είναι 763 mm Hg. (α) Υπολογίστε τη μολαρική σύσταση στην έξοδο του συμπιεστή. (β) Υπολογίστε την ογκομετρική παροχή εισόδου του αζώτου στον εξατμιστήρα, αν η θερμοκρασία και η πίεση του ρεύματος αζώτου είναι 27 ο C και 475 mm Hg σχετική (μανομετρική) πίεση. 116

9 ΑΣΚΗΣΗ 1 m 3 /min N 2 ṅ 1 mol/min N 2 27 o C, 475 mm Hg gauge 400 L/min C 3 H 6 O (l) ṅ 2 mol/min C 3 H 6 O ΕΞΑΤΜΙΣΤΗΡΑΣ ΣΥΜΠΙΕΣΤΗΣ ṅ 4 mol/min C 3 H 6 O y 4 mol C 3 H 6 O/mol (1-y 4 ) mol N 2 /mol 325 o C, 6.3 atm gauge P ac =501 mm Hg 419 m 3 (STP)/min N 2 ṅ 3 mol/min N 2 117

10 ΑΣΚΗΣΗ 550 m 3 /min N mol/min N 2 27 o C, 475 mm Hg gauge 400 L/min C 3 H 6 O (l) 5450 mol/min C 3 H 6 O ΕΞΑΤΜΙΣΤΗΡΑΣ ΣΥΜΠΙΕΣΤΗΣ mol/min C 3 H 6 O mol C 3 H 6 O/mol mol N 2 /mol 325 o C, 6.3 atm gauge P ac =501 mm Hg 419 m 3 (STP)/min N mol/min N 2 118

11 ΠΡΑΓΜΑΤΙΚΑ (ΜΗ ΙΔΑΝΙΚΑ) ΑΕΡΙΑ Τα αέρια των οποίων οι ιδιότητες δεν μπορούν να περιγραφούν από το νόμο των ιδανικών αερίων. 119

12 ΚΡΙΣΙΜΗ ΚΑΤΑΣΤΑΣΗ Ως κρίσιμη κατάσταση για μια ουσία ορίζεται η κατάσταση εκείνη στην οποία δεν είναι διακριτές δυο φάσεις (υγρό αέριο) αλλά υπάρχει μια ενιαία φάση (fluid ρευστό). Για κάποια ουσία, ως κρίσιμη θερμοκρασία (Τ c ) ορίζεται η μέγιστη θερμοκρασία στην οποία είναι διακριτές οι δύο φάσεις (υγρό, αέριο). Ως κρίσιμη πίεση (P c ) ορίζεται η αντίστοιχη πίεση. Οι P c και Τ c για τις σημαντικότερες ουσίες υπάρχουν σε πίνακες (παράρτημα Ζ, Πίνακας Ζ1, σ.712, Himmelblau & Riggs, 8 η έκδοση) πχ: CO 2, P c =72.9 atm, Τ c =304 Κ. Για H 2 και Ηe: Τ c = T c + 8 K και P c = P c + 8 atm (διορθώσεις Newton). Αρχή των αντίστοιχων καταστάσεων: όσο πλησιάζουμε την κρίσιμη κατάσταση οι φυσικές ιδιότητες των αερίων γίνονται παρόμοιες, ανεξάρτητα από τις ουσίες. Ανηγμένη πίεση (P r ): P r = P / P c Ανηγμένη θερμοκρασία(t r ): Τ r = T / T c Ανηγμένος γραμμομοριακός όγκος v r =v/v c, όπου v c =RT c /P c 120

13 ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ CO 2 Η 2 Ο 121

14 ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 122

15 ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ Συντελεστής συμπιεστότητας z : μέτρο της μη ιδανικότητας των αερίων. Γενικευμένη καταστατική εξίσωση: P V = z n R T z=f(p,t) και είναι διαφορετικό για κάθε ουσία. 123

16 ΔΙΑΓΡΑΜΜΑ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ (χαμηλές πιέσεις) 124

17 ΔΙΑΓΡΑΜΜΑ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ (μέσες πιέσεις) 125

18 ΔΙΑΓΡΑΜΜΑ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ (υψηλές πιέσεις) 126

19 100 kmol N 2 θερμοκρασίας ο C περιέχονται σε δεξαμενή 5 m 3. Ποια είναι η πίεση στη δεξαμενή; ΑΣΚΗΣΗ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ (Online tool) sibility+factor 127

20 Μέθοδος Kay ΑΕΡΙΑ ΜΙΓΜΑΤΑ Υπολογίζονται οι ψευδοκρίσιμες συνθήκες του μίγματος (Pc, Tc ) ως οι σταθμισμένοι (σύμφωνα με τα μοριακά κλάσματα) μέσοι όροι των αντίστοιχων κρίσιμων μεγεθών των επιμέρους συστατικών: Έστω μίγμα των αερίων Α, Β και Γ, μοριακής σύστασης y A, y B και y Γ και κρίσιμης πίεσης και θερμοκρασίας P cα, P cβ, P cγ και T cα, T cβ, T cγ αντίστοιχα. Ισχύει: P c = y A P ca + y B P cb + y Γ P cγ T c = y A T ca + y B T cb + y Γ T cγ Εφαρμόζεται κανονικά η μεθοδολογία με το γενικευμένο συντελεστή συμπιεστότητας και υπολογίζεται ο συντελεστής συμπιεστότητας του μίγματος z m. 128

21 ΑΣΚΗΣΕΙΣ Μίγμα 75% Η 2 και 25% Ν 2 (σε mol) βρίσκονται σε δεξαμενή και σε συνθήκες πίεσης 800 atm και θερμοκρασίας -70 ο C. Υπολογίστε τον γραμμομοριακό όγκο (L/mol) του μίγματος (μέθοδος Kay). Τι δεξαμενή απαιτείται για αποθήκευση 500 kmol μίγματος; Αέριο μίγμα έχει σύσταση (σε mol) C 2 H 4 57%, Ar 40%, He 3%, πίεση 120 atm και θερμοκρασία 25 ο C. Ο γραμμομοριακός όγκος προσδιορίσθηκε πειραματικά σε 0.14 L/mol. Υπολογίστε τον γραμμομοριακό όγκο (L/mol) του μίγματος με τη μέθοδο Kay και σχολιάστε το αποτέλεσμα. Είστε υπεύθυνος μονάδας εμφιάλωσης αερίων και θα εμφιαλώσετε 8.5 m 3 μίγματος (σε mol) 60% αιθυλένιο (C 2 H 4 ) και 40% αργό (Ar) πίεσης 100 atm και θερμοκρασίας 150 ο C. Πόσες φιάλες χωρητικότητας 30 kg απαιτούνται ; 129

22 ΑΣΚΗΣΗ Μεθανόλη παράγεται από αντίδραση CO και Η 2 στους 644 Κ με χρήση καταλύτη ZnO-Cr 2 O 3. Μίγμα H 2 /CO=2/1 τροφοδοτείται σε καταλυτική κλίνη στους 644 Κ και σε απόλυτη πίεση 34.5 MPa, όπου επιτυγχάνεται μετατροπή 25% (απλό πέρασμα). Ο λόγος της ογκομετρικής παροχής της τροφοδοσίας προς τον όγκο του καταλύτη είναι m 3 /h ανά 1 m 3 καταλύτη. Τα προϊόντα διοχετεύονται σε συμπυκνωτή όπου η μεθανόλη υγροποιείται και διαχωρίζεται πλήρως από τα υπόλοιπα αέρια. (α) Να προσδιορίσετε την ογκομετρική παροχή στην είσοδο του συμπυκνωτή και τον όγκο του καταλύτη, αν ο αντιδραστήρας έχει σχεδιαστεί για παραγωγή 54.5 Kmol/h μεθανόλης. (β) Αν τα αέρια του συμπυκνωτή ανακυκλώνονται προς τον αντιδραστήρα και στον συμπυκνωτή, προσδιορίστε την ογκομετρική παροχή στον συμπυκνωτή. 130

23 ΑΣΚΗΣΗ (χωρίς ανακύκλωση) m 3 /h (CO+H 2 ) ṅ 1 kmol/h CO 2ṅ 1 kmol/h H Κ, 34.5 MPa ΑΝΤΙΔΡΑΣΤΗΡΑΣ V cat (m 3 ) ΣΥΜΠΙΕΣΤΗΣ 54.5 kmol/h CH 3 OH (l) ṅ 2 mol/min CO 2ṅ 2 mol/min H 2 131

24 ΑΣΚΗΣΗ (χωρίς ανακύκλωση) 120 m 3 /h (CO+H 2 ) 218 kmol/h CO 436 kmol/h H Κ, 34.5 MPa ΑΝΤΙΔΡΑΣΤΗΡΑΣ m 3 catal. ΣΥΜΠΙΕΣΤΗΣ 54.5 kmol/h CH 3 OH (l) mol/min CO mol/min H 2 132

25 ΑΣΚΗΣΗ (με ανακύκλωση) m 3 /h (CO+H 2 ) ṅ 1 kmol/h CO 2ṅ 1 kmol/h H Κ, 34.5 MPa ΑΝΤΙΔΡΑΣΤΗΡΑΣ m 3 catal. ΣΥΜΠΙΕΣΤΗΣ 54.5 kmol/h CH 3 OH (l) ṅ 2 mol/min CO 2ṅ 2 mol/min H 2 133

26 ΑΣΚΗΣΗ (με ανακύκλωση) 29.9 m 3 /h (CO+H 2 ) 54.5 kmol/h CO kmol/h H Κ, 34.5 MPa ΑΝΤΙΔΡΑΣΤΗΡΑΣ m 3 catal. ΣΥΜΠΙΕΣΤΗΣ 54.5 kmol/h CH 3 OH (l) mol/min CO mol/min H 2 134

ΑΕΡΙΑ ΙΔΑΝΙΚΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ

ΑΕΡΙΑ ΙΔΑΝΙΚΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΑΕΡΙΑ ΙΔΑΝΙΚΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΝΟΜΟΣ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ O νόμος των τελείων αερίων συνδέει τις ιδιότητες ενός τελείου αερίου σε μια συγκεκριμένη κατάσταση (καταστατική εξίσωση) P V = n R T P: Απόλυτη πίεση

Διαβάστε περισσότερα

Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 7 η : Αέρια Ιδιότητες & συμπεριφορά. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.

Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 7 η : Αέρια Ιδιότητες & συμπεριφορά. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής. Τμήμα Τεχνολογίας Τροφίμων Ανόργανη Χημεία Ενότητα 7 η : Αέρια Ιδιότητες & συμπεριφορά Οκτώβριος 2018 Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής Αέρια & Πίεση Αερίων 2 Ο αέρας είναι ένα τυπικό αέριο

Διαβάστε περισσότερα

2.2 ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΕΡΙΩΝ

2.2 ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΕΡΙΩΝ 2.2 ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΕΡΙΩΝ Έστω ότι μια ποσότητα αερίου έχει όγκο V, πίεση P και απόλυτη θερμοκρασία Τ. Διατηρώντας σταθερή τη θερμοκρασία Τ του αερίου, μεταβάλλουμε τον όγκο μέχρι την τιμή V,

Διαβάστε περισσότερα

ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ

ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ . ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ 67 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ Από τη χημική αντίδραση προκύπτουν ποιοτικές και ποσοτικές πληροφορίες

Διαβάστε περισσότερα

ΠΟΛΥΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΟΛΥΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ 135 ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ 1 2 3 4 1 στερεό (solid) 2 υγρό (liquid) 3 ατμός (vapor) 4 αέριο (gas) A 1+2+3

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ . ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ Παραδόσεις μαθήματος, Ακ. Έτος 2018-19 1 ΒΑΣΙΚΕΣ ΔΙΑΣΤΑΣΕΙΣ ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ Διάσταση Μήκος

Διαβάστε περισσότερα

Καταστατική εξίσωση ιδανικών αερίων

Καταστατική εξίσωση ιδανικών αερίων Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση

Διαβάστε περισσότερα

Ε. Παυλάτου, 2017 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ

Ε. Παυλάτου, 2017 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 1 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 2 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ Βασικές έννοιες Στοιχειομετρία-Στοιχειομετρικοί συντελεστές-στοιχειομετρική αναλογία Περιοριστικό αντιδρών Αντιδρών σε περίσσεια Μετατροπή (κλάσμα,

Διαβάστε περισσότερα

Ε. Παυλάτου, 2019 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ. Σκοπός : κοινή ορολογία στη μέτρηση των διαστάσεων. SI CGS American Engineering System - UK

Ε. Παυλάτου, 2019 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ. Σκοπός : κοινή ορολογία στη μέτρηση των διαστάσεων. SI CGS American Engineering System - UK ΔΙΑΣΤΑΣΕΙΣ- ΜΟΝΑΔΕΣ Ε. Παυλάτου, 2019 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 2 Σκοπός : κοινή ορολογία στη μέτρηση των διαστάσεων SI CGS American Engineering System - UK ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΑΕΡΙΩΝ

ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΑΕΡΙΩΝ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΑΕΡΙΩΝ Στην αέρια φυσική κατάσταση όλες οι καθαρές ουσίες ακολουθούν μια παρόμοια συμπεριφορά. Δηλαδή, εάν παρατηρηθεί ο μοριακός τους όγκος στους 0 ο C και 1 ατμ., 1 mol του κάθε αερίου

Διαβάστε περισσότερα

2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ

2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2 ΣΗΜΑΝΤΙΚΟΙ ΟΡΟΙ Αδιαβατικό σύστημα Ισοβαρές σύστημα Ισόχωρο σύστημα Ισοθερμοκρασιακό σύστημα Μεταβλητή διαδρομής (συνάρτηση μετάβασης) Καταστατική μεταβολή (σημειακή

Διαβάστε περισσότερα

ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΤΑΣΗ ΑΤΜΩΝ

ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΤΑΣΗ ΑΤΜΩΝ ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΚΑΙ ΤΑΣΗ ΑΤΜΩΝ 2 Διεργασίες Πολυφασικών συστημάτων Πολλές διεργασίες στη Χημική Μηχανική στηρίζονται στη μεταφορά μάζας μεταξύ διαφορετικών φάσεων (αέρια, υγρή, στερεή) Εξάτμιση-Εξάχνωση

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

P 1 V 1 = σταθ. P 2 V 2 = σταθ.

P 1 V 1 = σταθ. P 2 V 2 = σταθ. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ 83 Την κατάσταση ενός αερίου μέσα σε ένα δοχείο μπορούμε να την κατανοήσουμε, άρα και να την περιγράψουμε πλήρως, αν γνωρίζουμε τις τιμές των παραμέτρων εκείνων που επηρεάζουν την συμπεριφορά

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ

ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ 2 ΠΟΡΕΙΑ ΠΡΟΒΛΗΜΑΤΟΣ 3 4 5 6 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ dh dt = q e A h t = h 0 e kt A 7 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ 8 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ q = Kh h t = h 0 e kt A 9 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ

Διαβάστε περισσότερα

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο [1] Να βρεθεί ο αριθμός των ατόμων του αέρα σε ένα κυβικό μικρόμετρο (κανονικές συνθήκες και ιδανική συμπεριφορά) (Τ=300 Κ και P= 1 atm) (1atm=1.01x10 5 Ν/m =1.01x10 5 Pa). [] Να υπολογισθεί η απόσταση

Διαβάστε περισσότερα

Γραµµοµοριακός όγκος. Ο Νόµος του Avogadro

Γραµµοµοριακός όγκος. Ο Νόµος του Avogadro ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Γραµµοµοριακός όγκος Ο Νόµος του Avogadro Ελένη ανίλη, Χηµικός, Msc., Ph.D 2 Η ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥ MOL ΣΤΑ ΑΕΡΙΑ Όπως ήδη ξέρεις τα αέρια είναι πολύ ελαφρά. Είναι δύσκολο να τα ζυγίσουµε όµως

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ 2015-2016 2 Ο ΕΞΑΜΗΝΟ Ε. ΠΑΥΛΑΤΟΥ ΑΝ. ΚΑΘΗΓΗΤΡΙΑ ΕΜΠ ΜΟΝΑΔΕΣ ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 3 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 4 ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 5 Επιφάνεια

Διαβάστε περισσότερα

ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ

ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ ΔΙΕΡΓΑΣΙΕΣ ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ Στη χημική μηχανική έχουμε να κάνουμε με διεργασίες. Διεργασία: περιγράφει μετατροπή της ύλης (φυσική ή χημική ή βιολογική). Στις διεργασίες περιγράφονται τα εισερχόμενα ρεύματα

Διαβάστε περισσότερα

3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ)

3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ) Σχετική ατομική μάζα Σχετική ήμ μοριακή μάζα Mole Αριθμός Avogadro Γραμμομοριακός όγκος Νόμοι των αερίων Ατομική μονάδα μάζας (amu): Σχετική ατομική μάζα (ar): Σχετική Μοριακή μάζα (Μr): Υπολογισμός

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ . ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ Παραδόσεις μαθήματος, Ακ. Έτος 2019-20 1 ΒΑΣΙΚΕΣ ΔΙΑΣΤΑΣΕΙΣ - ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ Διάσταση Μήκος

Διαβάστε περισσότερα

ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ

ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 1 2 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ Βασικές έννοιες Στοιχειομετρία-Στοιχειομετρικοί συντελεστές-στοιχειομετρική αναλογία Περιοριστικό αντιδρών Αντιδρών σε περίσσεια Μετατροπή (κλάσμα,

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr Χημική Ισορροπία 61 Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 62 Τι ονομάζεται κλειστό χημικό σύστημα; Παναγιώτης Αθανασόπουλος Κλειστό ονομάζεται το

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ

ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ 2 ΠΟΡΕΙΑ ΠΡΟΒΛΗΜΑΤΟΣ Ε. Παυλάτου, 2016 3 4 5 6 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ dh dt = q e A h t = h 0 e kt A 7 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ 8 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ q = Kh h t = h 0 e kt

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Σχολικό Έτος 016-017 67 ΚΕΦΑΛΑΙΟ Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΕΡΙΑ 1. Σχετικές Ατομικές και Μοριακές Μάζες Σχετική Ατομική Μάζα (Α r) του ατόμου ενός στοιχείου, ονομάζεται ο αριθμός

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ . ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ 169 ΜΕΤΑΤΡΟΠΕΣ ΜΟΝΑΔΩΝ ΜΟΝΑΔΕΣ ΘΕΡΜΟΤΗΤΑΣ, ΕΝΕΡΓΕΙΑΣ ή ΕΡΓΟΥ ΜΟΝΑΔΕΣ ΙΣΧΥΟΣ 170 ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 171

Διαβάστε περισσότερα

Μηχανική Τροφίμων. Θεμελιώδεις Έννοιες Μηχανικής. Μέρος 1 ο. Συστήματα μονάδων

Μηχανική Τροφίμων. Θεμελιώδεις Έννοιες Μηχανικής. Μέρος 1 ο. Συστήματα μονάδων Μηχανική Τροφίμων Θεμελιώδεις Έννοιες Μηχανικής Μέρος 1 ο Συστήματα μονάδων Διεθνές σύστημα (S.I). Έχει υιοθετηθεί αποκλειστικά στην μηχανική και τις επιστήμες. Οι τρεις βασικές μονάδες είναι το μέτρο

Διαβάστε περισσότερα

Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα

Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Μηχανική Βιομηχανικών Αντιδραστήρων Υπολογιστικό θέμα Μάθημα κατεύθυνσης 8 ου εξαμήνου

Διαβάστε περισσότερα

Print to PDF without this message by purchasing novapdf (http://www.novapdf.com/)

Print to PDF without this message by purchasing novapdf (http://www.novapdf.com/) ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΓΙΑ ΤΟΥΣ ΧΗΜΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ ΘΕΩΡΙΑ 1 Μol μιας ουσίας (στοιχείου ή ενώσεως) είναι η ποσότητα ύλης που αποτελείται από N A = 6,0220453 x 10 23 σωματίδια. O αριθμός N A = 6,0220453 x 10

Διαβάστε περισσότερα

ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ

ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 2 ΕΝΘΑΛΠΙΑ ΣΧΗΜΑΤΙΣΜΟΥ ΕΝΩΣΗΣ Ο θερμοτονισμός ή η θερμότητα της αντίδρασης εκφράζει τη μεταβολή ενέργειας λόγω της χημικής αντίδρασης Η απαιτούμενη ενέργεια για το σχηματισμό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 1 η ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1): Διάκριση μεταξύ ιδανικών και

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Μέρος 1 ο : Εισαγωγικά (διαστ., πυκν., θερμ., πίεση, κτλ.) Μέρος 2 ο : Ισοζύγια μάζας Μέρος 3 ο : 7 ο μάθημα Εκτός ύλης ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών

Διαβάστε περισσότερα

Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης

Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης Παράδειγμα 2-1. Διαχωρισμός νερού- αιθανόλης Μια αποστακτική στήλη που λειτουργεί σε πίεση 101,3 kpa, διαχωρίζει ένα μίγμα νερούαιθανόλης. Η σύσταση του μίγματος αποτελείται 40 mol% αιθανόλη και η τροφοδοσία

Διαβάστε περισσότερα

Μεθοδολογία Προβλημάτων

Μεθοδολογία Προβλημάτων Μεθοδολογία Προβλημάτων 39 Α. Προβλήματα εύρεσης του Μοριακού Τύπου χημικής ένωσης Ο Μοριακός τύπος μιας ένωσης μας δίνει το είδος των ατόμων που περιέχονται στο μόριο της ένωσης, αλλά και τον ακριβή τους

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 82 ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1. Η πίεση του αέρα στα λάστιχα ενός ακίνητου αυτοκινήτου με θερμοκρασία θ 1 =7 ο C είναι P 1 =3 atm. Κατά την

Διαβάστε περισσότερα

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Μέρος ο : Εισαγωγικά (διαστ., πυκν., θερμ., πίεση, κτλ.) Μέρος 2 ο : Ισοζύγια μάζας Μέρος 3 ο : 9 ο μάθημα Εκτός ύλης ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ

ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΙΔΑΝΙΚΩΝ ΑΝΤΙΔΡΑΣΤΗΡΩΝ Εισαγωγή Διαδικασία σχεδιασμού αντιδραστήρα: Καθορισμός του τύπου του αντιδραστήρα και των συνθηκών λειτουργίας. Εκτίμηση των χαρακτηριστικών για την ομαλή λειτουργία του αντιδραστήρα. μέγεθος σύσταση

Διαβάστε περισσότερα

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 29. 2 o Ιδιότητες υγρών Αέρια - Νόµος µερικών πιέσεων Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ιδιότητες υγρών α. Ιξώδες: Ιξώδες ενός υγρού είναι η αντίσταση του υγρού στη ροή. Το ιξώδες εξαρτάται: 1. από τη θερµοκρασία:

Διαβάστε περισσότερα

Ε. Παυλάτου, 2017 ΔΙΕΡΓΑΣΙΕΣ

Ε. Παυλάτου, 2017 ΔΙΕΡΓΑΣΙΕΣ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ 2 ΔΙΕΡΓΑΣΙΕΣ Διεργασία: περιγράφει μετατροπή της ύλης (φυσική ή χημική ή βιολογική) Στις διεργασίες περιγράφονται τα εισερχόμενα ρεύματα (τροφοδοσία) και εξερχόμενα ρεύματα (προϊόντα) Διάγραμμα

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ

ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ Παράγοντας Αποτελεσματικότητας Ειδικά για αντίδραση πρώτης τάξης, ο παράγοντας αποτελεσματικότητας ισούται προς ε = C

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ 1. Να υπολογιστεί η πυκνότητα του αέρα σε πίεση 0,1 MPa και θερμοκρασία 20 ο C. (R air =0,287 kj/kgk) 2. Ποσότητα αέρα 1 kg εκτελεί τις παρακάτω διεργασίες: Διεργασία 1-2: Αδιαβατική

Διαβάστε περισσότερα

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km)

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km) ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>1 km) Οι αποστάσεις μεταξύ των μορίων είναι πολύ μεγάλες σχετικά με τον όγκο που κατέχουν Οι συγκρούσεις μεταξύ τους

Διαβάστε περισσότερα

V P P. [3] (α) Να δειχθεί ότι για ένα υδροστατικό σύστημα ισχύει: P V

V P P. [3] (α) Να δειχθεί ότι για ένα υδροστατικό σύστημα ισχύει: P V ΘΕΡΜΟΔΥΝΑΜΙΚΗ (ΦΥΣΙΚΗ I) 1 [1] Θεωρώντας την εσωτερική ενέργεια ενός υδροστατικού συστήματος σα συνάρτηση των Τ και, αποδείξτε τις παρακάτω εξισώσεις: d d dq (1) β () β κ ) ( κ () [] Θεωρώντας την εσωτερική

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ ΥΔΡΟΓΟΝΟ - ΑΣΚΗΣΕΙΣ

ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ ΥΔΡΟΓΟΝΟ - ΑΣΚΗΣΕΙΣ ΕΙΔΙΚΑ ΚΕΦΑΛΑΙΑ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ ΥΔΡΟΓΟΝΟ - ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1: Ποιες από τις παρακάτω διεργασίες παραγωγής ισχύος έχει το υψηλότερο CO 2 αποτύπωμα A) Καύση μεθανίου για παραγόμενη ισχύ 1 MW B) Καύση

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΟΙ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝ ΓΕΝΕΙ, ΟΛΕΣ ΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΟΣ ΑΠΛΟΥ, ΔΟΜΙΚΑ ΟΜΟΙΟΜΟΡΦΟΥ ΥΛΙΚΟΥ (ΔΗΛΑΔΗ ΟΤΑΝ ΟΛΗ

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 3: Ιδανικά Αέρια, συντελεστής συμπιεστότητας, ειδικές θερμότητες Χατζηαθανασίου Βασίλειος Καδή Στυλιανή

Διαβάστε περισσότερα

Πρόρρηση. Φυσικών Ιδιοτήτων Μιγμάτων

Πρόρρηση. Φυσικών Ιδιοτήτων Μιγμάτων Πρόρρηση Φυσικών Ιδιοτήτων Μιγμάτων Συντελεστής συμπιεστότητας, Ζ Αρχή Αντιστοίχων Καταστάσεων Τριών παραμέτρων Ptzer : z z (0) + ω z (1) Lee-Kesler: z (0), z (1) f(t r,p r ) Εξίσωση Ptzer Κανόνες Ανάμειξης

Διαβάστε περισσότερα

Σ Τ Ο Ι Χ Ε Ι Ο Μ Ε Τ Ρ Ι Α

Σ Τ Ο Ι Χ Ε Ι Ο Μ Ε Τ Ρ Ι Α 71 Σ Τ Ο Ι Χ Ε Ι Ο Μ Ε Τ Ρ Ι Α Οι μάζες των ατόμων και των μορίων είναι πολύ μικρές και δεν ενδείκνυται για τον υπολογισμό τους η χρήση των συνηθισμένων μονάδων μάζας ( Kg ή g ) γιατί προκύπτουν αριθμοί

Διαβάστε περισσότερα

Πρόρρηση Ισορροπίας Φάσεων. Υψηλές Πιέσεις

Πρόρρηση Ισορροπίας Φάσεων. Υψηλές Πιέσεις Πρόρρηση Ισορροπίας Φάσεων Υψηλές Πιέσεις 1 Ισορροπία Φάσεων Η βασική εξίσωση για όλους τους υπολογισμούς ισορροπίας φάσεων ατμού-υγρού είτε σε υψηλές είτε σε χαμηλές πιέσεις είναι η ισότητα των τάσεων

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ 2016-2017 2 Ο ΕΞΑΜΗΝΟ Ε. ΠΑΥΛΑΤΟΥ ΑΝΑΠΛ. ΚΑΘΗΓΗΤΡΙΑ ΕΜΠ 2 ΣΚΟΠΟΣ ΜΑΘΗΜΑΤΟΣ Ε. Παυλάτου, 2017 ΓΝΩΣΤΙΚΟ ΕΠΙΠΕΔΟ Η διδασκαλία και εμπέδωση θεμελιακών εννοιών που σχετίζονται

Διαβάστε περισσότερα

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών Φυσική- Κεφάλαιο Μηχανικής των Ρευστών 1 Νοεµβρίου 2013 Το κεφάλαιο αυτό είναι επηρεασµένο από τους [3], [4], [2], [1]. Στερεά Υγρά Αέρια Καταστάσεις Υλης Βασική δοµική µονάδα: το Μόριο. καθορίζει χηµικές

Διαβάστε περισσότερα

P. kpa T, C v, m 3 /kg u, kj/kg Περιγραφή κατάστασης και ποιότητα (αν εφαρμόζεται) , ,0 101,

P. kpa T, C v, m 3 /kg u, kj/kg Περιγραφή κατάστασης και ποιότητα (αν εφαρμόζεται) , ,0 101, Ασκήσεις Άσκηση 1 Να συμπληρώσετε τα κενά κελιά στον επόμενο πίνακα των ιδιοτήτων του νερού εάν παρέχονται επαρκή δεδομένα. Στην τελευταία στήλη να περιγράψετε την κατάσταση του νερού ως υπόψυκτο υγρό,

Διαβάστε περισσότερα

Φάσεις μιας καθαρής ουσίας

Φάσεις μιας καθαρής ουσίας Αντικείμενο μαθήματος: ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΚΑΘΑΡΕΣ ΟΥΣΙΕΣ. Διαδικασίες αλλαγής φάσης. P-v, T-v, και P-T διαγράμματα ιδιοτήτων και επιφάνειες P-v-T Καθαρών ουσιών. Υπολογισμός θερμοδυναμικών ιδιοτήτων από πίνακες

Διαβάστε περισσότερα

Σχέσεις ποσοτήτων χημικών σωματιδίων

Σχέσεις ποσοτήτων χημικών σωματιδίων Σχέσεις ποσοτήτων χημικών σωματιδίων 20-1. Σχέση mol Ar (για άτομα) και mol Mr (για μόρια) To 1 mol ατόμων ζυγίζει Ar g Tα n mol ατόμων ζυγίζουν m g n m m 1 Ar Ar To 1 mol μορίων ζυγίζει Μr g Tα n mol

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 1. ΝΟΜΟΣ OYLE-MRIOTTE = σταθ. (όταν Τ = σταθ.) (1) Ο νόμος των oyle Mariotte εφαρμόζεται σε ισόθερμη μεταβολή (Τ = σταθ.) π.χ. στην μεταβολή Α T 1

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

ΕΤΚΛ ΕΜΠ. Τεχνολογία Πετρελαίου και Και Λιπαντικών ΕΜΠ

ΕΤΚΛ ΕΜΠ. Τεχνολογία Πετρελαίου και Και Λιπαντικών ΕΜΠ Φυσικού Αερίου Κοιτάσματα Κάθε κοίτασμα φυσικού αερίου περιέχει και βαρύτερους υδρογονάνθρακες σε υγρή μορφή, οι οποίοι κατά την εξόρυξη ξη συλλέγονται για να αποτελέσουν τα λεγόμενα υγρά φυσικού αερίου

Διαβάστε περισσότερα

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης

Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης 2. Ενέργεια Ενεργοποίησης Χημική Κινητική Γενικές Υποδείξεις 1. Τάξη Αντίδρασης Γενικά, όταν έχουμε δεδομένα συγκέντρωσης-χρόνου και θέλουμε να βρούμε την τάξη μιας αντίδρασης, προσπαθούμε να προσαρμόσουμε τα δεδομένα σε εξισώσεις

Διαβάστε περισσότερα

(1 mol οποιουδήποτε αερίου σε συνθήκες STP καταλαμβάνει όγκο 22,4 L, κατά συνέπεια V mol =22,4 L)

(1 mol οποιουδήποτε αερίου σε συνθήκες STP καταλαμβάνει όγκο 22,4 L, κατά συνέπεια V mol =22,4 L) ΑΠΑΝΤΗΣΕΙΣ σε ol ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ) Πόσα ol είναι τα 4,48 L αέριας NH 3 τα οποία μετρήθηκαν σε συνθήκες ST; n= n= 4,48 n= 0, ol ol,4 ( ol οποιουδήποτε αερίου σε συνθήκες ST καταλαμβάνει όγκο,4 L, κατά

Διαβάστε περισσότερα

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Χημικών Μηχανικών Τομέας ΙΙ Μονάδα Μηχανικής Διεργασιών Υδρογονανθράκων και Βιοκαυσίμων ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΤΩΝ ΡΥΘΜΩΝ ΤΩΝ ΧΗΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ

ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΤΩΝ ΡΥΘΜΩΝ ΤΩΝ ΧΗΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΥΡΕΣΗΣ ΤΩΝ ΡΥΘΜΩΝ ΤΩΝ ΧΗΜΙΚΩΝ ΑΝΤΙΔΡΑΣΕΩΝ Οποιοδήποτε είδος αντιδραστήρα με γνωστό τρόπο ανάμειξης, μπορεί να χρησιμοποιηθεί για τη διερεύνηση της κινητικής καταλυτικών αντιδράσεων.

Διαβάστε περισσότερα

1 mol μορίων μιας χημικής ουσίας έχει μάζα τόσα γραμμάρια (g), όση είναι η σχετική μοριακή μάζα (Μr) της ουσίας.

1 mol μορίων μιας χημικής ουσίας έχει μάζα τόσα γραμμάρια (g), όση είναι η σχετική μοριακή μάζα (Μr) της ουσίας. ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ, 2 o 3 ο ΚΕΦΑΛΑΙΟ 1. Επανάληψη σε βασικές έννοιες Τι είναι το 1 mol μιας χημικής ουσίας; 1 mol μορίων μιας χημικής ουσίας έχει μάζα τόσα γραμμάρια (g), όση είναι η σχετική

Διαβάστε περισσότερα

AquaTec Φυσική των Καταδύσεων

AquaTec Φυσική των Καταδύσεων Σημειώσεις για τα σχολεία Τεχνικής Κατάδυσης 1.1 AquaTec Φυσική των Καταδύσεων Βασικές έννοιες και Αρχές Νίκος Καρατζάς www.aquatec.gr Προειδοποίηση: Το υλικό που παρουσιάζεται παρακάτω δεν πρέπει να θεωρηθεί

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. ΘΕΜΑ A Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. ΘΕΜΑ A Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 04/11/1 ΛΥΣΕΙΣ ΘΕΜΑ A Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ 2 Ογκομέτρηση προχοϊδα διάλυμα HCl ΕΔΩ ακριβώς μετράμε τον όγκο ( στην εφαπτομένη της καμπύλης

Διαβάστε περισσότερα

Απλά διαγράμματα τάσης ατμών-σύστασηςιδανικών διαλυματων

Απλά διαγράμματα τάσης ατμών-σύστασηςιδανικών διαλυματων Φυσικοχημεία II, Διαλύματα Απλά διαγράμματα τάσης ατμών-σύστασηςιδανικών διαλυματων o P = N P P = A A A N P o B B B PA + PB = P ολ Τ=const P = Ν ολ P + N P o o A A B B Ν Α + Ν =1 o o o P = P + A N ( ολ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Ιδιότητες των ρευστών του ταµιευτήρα

ΚΕΦΑΛΑΙΟ 4. Ιδιότητες των ρευστών του ταµιευτήρα ΚΕΦΑΛΑΙΟ 4 Ιδιότητες των ρευστών του ταµιευτήρα 4.1 Ογκοµετρική Συµπεριφορά και Φάσεις Συστηµάτων Υδρογονανθράκων Όπως αναφέρθηκε στο Κεφάλαιο 2, στον ταµιευτήρα απαντώνται µίγµατα υδρογονανθράκων η σύσταση

Διαβάστε περισσότερα

Συναρτήσει πάλι των x και ψ μπορούμε να υπολογίσουμε τον όγκο του μίγματος σε STP.

Συναρτήσει πάλι των x και ψ μπορούμε να υπολογίσουμε τον όγκο του μίγματος σε STP. Παράδειγμα 4.7 Αέριο μίγμα περιέχει CO και SO. Το μίγμα αυτό ζυγίζει 7,6 g, ενώ ο όγκος του σε STP συνθήκες είναι 3,36 L. α. Πόσα ol κάθε αερίου περιέχει το μίγμα; β. Ποια είναι η μάζα του CO στο μίγμα;

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα 1η ενότητα 1. Εναλλάκτης σχεδιάζεται ώστε να θερμαίνει 2kg/s νερού από τους 20 στους 60 C. Το θερμό ρευστό είναι επίσης νερό με θερμοκρασία εισόδου 95 C. Οι συντελεστές συναγωγής στους αυλούς και το κέλυφος

Διαβάστε περισσότερα

Θερμοδυναμική Ενότητα 4:

Θερμοδυναμική Ενότητα 4: Θερμοδυναμική Ενότητα 4: Ισοζύγια Ενέργειας και Μάζας σε ανοικτά συστήματα Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

v = 1 ρ. (2) website:

v = 1 ρ. (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα

Διαβάστε περισσότερα

ΧΗΜΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ I (Ar, Mr, mol, N A, V m, νόμοι αερίων)

ΧΗΜΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ I (Ar, Mr, mol, N A, V m, νόμοι αερίων) ΧΗΜΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ I (Ar, Mr, mol, N A, V m, νόμοι αερίων) 1. Να εξηγήσετε ποιες από τις παρακάτω προτάσεις είναι σωστές. i. H σχετική ατομική μάζα μετριέται σε γραμμάρια. ii. H σχετική ατομική μάζα είναι

Διαβάστε περισσότερα

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων

Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου Κεφάλαιο Πρώτο Ενότητα: Νόμοι των αερίων ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1.1. Νόμος του Boyle (ισόθερμη μεταβολή) Η πίεση ορισμένης ποσότητας αερίου, του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 4. Για την αντίδραση 2Α + Β Γ βρέθηκαν τα παρακάτω πειραματικά δεδομένα:

ΑΣΚΗΣΕΙΣ. 4. Για την αντίδραση 2Α + Β Γ βρέθηκαν τα παρακάτω πειραματικά δεδομένα: ΑΣΚΗΣΕΙΣ 1. Αν είναι γνωστό ότι οι παρακάτω αντιδράσεις είναι απλές (ενός μόνον σταδίου), να βρεθεί η τάξη καθεμίας από αυτές, καθώς επίσης οι διαστάσεις (μονάδες) της σταθεράς της ταχύτητας. α) Α Π β)

Διαβάστε περισσότερα

Στοιχειομετρικοί Υπολογισμοί στη Χημεία

Στοιχειομετρικοί Υπολογισμοί στη Χημεία Στοιχειομετρικοί Υπολογισμοί στη Χημεία Δομικές μονάδες της ύλης ΑΤΟΜΑ ΜΟΡΙΑ ΣΤΟΙΧΕΙΑ ΕΝΩΣΕΙΣ Αριθμός Avogadro N A = 6,02 10 23 mol -1 Δηλαδή αυτός ο αριθμός παριστάνει την ποσότητα μιας ουσίας που περιέχει

Διαβάστε περισσότερα

Φυσικοχημεία (ΒΙΟΛ-256)

Φυσικοχημεία (ΒΙΟΛ-256) Φυσικοχημεία (ΒΙΟΛ-256) Υποχρεωτικό μάθημα Δ εξαμήνου για την κατεύθυνση Βιομοριακών Επιστημών και Βιοτεχνολογίας Μονάδες ECTS: 6 26 διαλέξεις κάθε Δευτέρα και Παρασκευή 15.00-17.00 (Αμφιθέατρο Β) Διδάσκων:

Διαβάστε περισσότερα

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες Ιδιότητες Μιγμάτων Μερικές Μολαρικές Ιδιότητες ΙΔΑΝΙΚΟ ΔΙΑΛΥΜΑ = ή διαιρεμένη διά του = x όπου όλα τα προσδιορίζονται στην ίδια T και P. = Όπου ή διαιρεμένη διά του : = x ορίζεται η μερική μολαρική ιδιότητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες

ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες ΚΕΦΑΛΑΙΟ 1: Διαμοριακές Δυνάμεις-Καταστάσεις της ύλης-προσθετικές ιδιότητες 1. Η τάση ατμών ενός υγρού εξαρτάται: i. Από την ποσότητα του υγρού ii. Τη θερμοκρασία iii. Τον όγκο του δοχείου iv. Την εξωτερική

Διαβάστε περισσότερα

ÖñïíôéóôÞñéï Ì.Å ÅÐÉËÏÃÇ ÊÁËÁÌÁÔÁ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1

ÖñïíôéóôÞñéï Ì.Å ÅÐÉËÏÃÇ ÊÁËÁÌÁÔÁ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 ΘΕΜΑ 1 Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΧΗΜΕΙΑ Για τις ερωτήσεις 1.1 1. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Αδιαβατικές μεταβολές στην ατμόσφαιρα - Ασκήσεις Αδιαβατικών μεταβολών (2ο φυλλάδιο) Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

Η πυκνότητα του νερού σε θερμοκρασία 4 C και ατμοσφαιρική πίεση (1 atm) είναι ίση με 1g/mL.

Η πυκνότητα του νερού σε θερμοκρασία 4 C και ατμοσφαιρική πίεση (1 atm) είναι ίση με 1g/mL. Πυκνότητα Πυκνότητα ορίζεται το φυσικό μέγεθος που δίνεται από το πηλίκο της μάζας του σώματος προς τον αντίστοιχο όγκο που καταλαμβάνει σε σταθερές συνθήκες πίεσης (όταν πρόκειται για αέριο). Ο Συμβολισμός,

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA. Άσκηση 1 Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο διάγραμμα p V του σχήματος. (α) Αν δίνονται Q ΑΒΓ = 30J και W BΓ = 20J, να βρεθεί η μεταβολή της εσωτερικής

Διαβάστε περισσότερα

ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ

ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ Έργο - Θερμότητα ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΞΩΤΕΡΙΚΗ (Κινητική, Δυναμική) ΕΣΩΤΕΡΙΚΗ (Εσωτερική [U], Ενθαλπία [Η]) Χαρακτηριστικά και Σύμβαση

Διαβάστε περισσότερα

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΣΕ ΒΙΟΝΤΙΖΕΛ. Μονάδα Μηχανικής ιεργασιών Υδρογονανθράκων και Βιοκαυσίµων

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΣΕ ΒΙΟΝΤΙΖΕΛ. Μονάδα Μηχανικής ιεργασιών Υδρογονανθράκων και Βιοκαυσίµων Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Χηµικών Μηχανικών Τοµέας ΙΙ Μονάδα Μηχανικής ιεργασιών Υδρογονανθράκων και Βιοκαυσίµων ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ

ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 6-ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 1. Σε δοχείο σταθερού όγκου και σε σταθερή θερμοκρασία, εισάγονται κάποιες ποσότητες των αερίων Η 2(g) και Ι 2(g) τα οποία αντιδρούν σύμφωνα με

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΥΠΟΛΟΓΙΣΜΟΙ ΠΑΡΑΜΕΤΡΩΝ ΑΕΡΙΩΝ ΡΕΥΜΑΤΩΝ Σε πολλά εργοστάσια είναι σύνηθες ένα σύστημα ελέγχου ρύπανσης να εξυπηρετεί πολλές πηγές εκπομπών. Σε τέτοιες καταστάσεις, οι παράμετροι των

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ

ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΣΤΑΘΕΡΑ ΧΗΜΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΕΡΩΤΗΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ 5.1. Έστω η ισορροπία: 2NOCl(g) 2NO(g) + Cl 2 (g). Για την ισορροπία αυτή ισχύει ότι: Α) Κ c = [NO] [Cl 2 ]/[NOCl] 2 Β) η K c έχει μονάδες

Διαβάστε περισσότερα

ΑΝΤΙΡΡΥΠΑΝΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΑΙΩΡΟΥΜΕΝΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΑΝΤΙΡΡΥΠΑΝΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΑΙΩΡΟΥΜΕΝΩΝ ΣΩΜΑΤΙΔΙΩΝ ΑΝΤΙΡΡΥΠΑΝΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΑΙΩΡΟΥΜΕΝΩΝ ΣΩΜΑΤΙΔΙΩΝ Ενότητα 1: Βασικές έννοιες Αν. Καθ. Δρ Μαρία Α. Γούλα Τμήμα Μηχανικών Περιβάλλοντος & Μηχανικών Αντιρρύπανσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Εργαστηριακές Ασκήσεις Διδάσκων: Α.

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Καθηγητές Γ Λυκείου XHMEIA Γ Λυκείου Οργανική-Οξειδοαναγωγή- Θερμοχημεία-Χημική κινητική Δημητρακόπουλος Θοδωρής Τζελέπη Αναστασία ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13,

Διαβάστε περισσότερα

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ 3 Η ΣΕΙΡΑ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΔΙΕΡΓΑΣΙΩΝ - PC-LAB ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 23.12.2015 ΑΣΚΗΣΗ 1 ΠΡΟΣΟΜΟΙΩΣΗ ΜΟΝΑΔΑΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ Ένα τυπικό φυσικό αέριο έχει την ακόλουθη σύσταση σε % mol: 0.5% Ν 2,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 3 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα