Α. ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ
|
|
- Ναβαδίας Αθανασίου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΜΑΘΗΜΑ 4 Κεφάλαιο 1o : Οι Φυσικοί Αριθµοί Υποενότητα 1.4: Ευκλείδεια ιαίρεση - ιαιρετότητα Θεµατικές Ενότητες: 1. Ευκλείδεια ιαίρεση Α. ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΟΡΙΣΜΟΙ Όταν δοθούν δυο φυσικοί αριθµοί και δ (δ 0) υπάρχουν ακριβώς δύο άλλοι φυσικοί αριθµοί π και υ, έτσι ώστε να ισχύει = δ π + υ, µε 0 υ < δ. Ο αριθµός λέγεται διαιρετέος, ο αριθµός δ διαιρέτης, ο αριθµός π πηλίκο και ο αριθµός υ υπόλοιπο της διαίρεσης. Η ισότητα = δ π + υ µε 0 υ < δ λέγεται Ευκλείδεια ιαίρεση. Αν υ = 0, δηλαδή = δ π, η διαίρεση λέγεται τέλεια. Αν υ 0, τότε η διαίρεση λέγεται ατελής. Σηµειώνουµε ότι: στους φυσικούς αριθµούς η τέλεια διαίρεση είναι η αντίστροφη πράξη του πολλαπλασιασµού φυσικών αριθµών. ηλαδή, αν = δ π, τότε : δ = π και αντίστροφα: αν : δ = π, τότε = δ π. Έτσι: Επειδή: 12= 3 4 είναι 12 : 4=3 και 12 : 3=4, Επειδή: 12 : 4=3 και 12 : 3=4 είναι 12=3 4. Παπαδόπουλος Μαρίνος-Μαθηµατικός
2 ΠΡΟΣΟΧΗ: Ο διαιρέτης µιας διαίρεσης δεν είναι ποτέ 0, δεν ορίζεται δηλαδή η διαίρεση δια το 0. Αν = δ, τότε π = 1 και υ=0. Αν δ = 1, τότε π = και υ=0. Αν = 0, τότε π = 0 και υ=0. Αν < δ, τότε π = 0 και υ =. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ (Σ) ΛΑΘΟΥΣ (Λ) Να χαρακτηρίσετε ως Σωστή (Σ) ή Λανθασµένη (Λ) καθεµιά από τις παρακάτω προτάσεις: i. Σε µια Ευκλείδεια ιαίρεση το πηλίκο πρέπει να είναι πάντοτε µικρότερο από το διαιρέτη. ii. iii. iv. Σε µια Ευκλείδεια ιαίρεση ο διαιρετέος πρέπει να είναι µικρότερος από το διαιρέτη. Όταν ο διαιρετέος είναι 0, η Ευκλείδεια ιαίρεση είναι πάντοτε τέλεια. Η ισότητα 80 = δεν προκύπτει από Ευκλείδεια ιαίρεση. v. Η ισότητα 173 = δεν προκύπτει από Ευκλείδεια ιαίρεση. vi. Αν σήµερα είναι ευτέρα µετά από 116 ηµέρες θα είναι Παρασκευή. vii. Η ισότητα 13 = 4 2,5 + 3 προκύπτει από Ευκλείδεια ιαίρεση. Παπαδόπουλος Μαρίνος-Μαθηµατικός
3 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Να επιλέξετε τη σωστή απάντηση σε καθεµιά από τις επόµενες ερωτήσεις: i. Η ισότητα 28 = έχει προκύψει από µια Ευκλείδεια ιαίρεση. Ο διαιρέτης της διαίρεσης είναι: Α. 4 Β. 6 Γ. 28 ii. iii. Σε µια Ευκλείδεια ιαίρεση ο διαιρέτης είναι 3. Το υπόλοιπο µπορεί να πάρει τις τιµές: Α. 0 ή 1 Β. 1 ή 2 ή 3 Γ. 0 ή 1 ή 2 Σε µια Ευκλείδεια ιαίρεση το υπόλοιπο είναι 3. Η µικρότερη τιµή που µπορεί να πάρει ο διαιρέτης είναι: Α. 4 Β. 3 Γ. 5 iv. Σε µια Ευκλείδεια ιαίρεση ο διαιρέτης είναι το 3 και το πηλίκο το 2. Ο διαιρετέος µπορεί να πάρει τιµές: Α. 3 ή 4 ή 5 Β. 4 ή 5 ή 6 Γ. 6 ή 7 ή 8 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τους φυσικούς αριθµούς που όταν διαιρεθούν µε το 5 δίνουν πηλίκο 2. Λύση. Το υπόλοιπο της διαίρεσης είναι σίγουρα µικρότερο του διαιρέτη άρα υ<5. Εποµένως: υ = 0 ή υ = 1 ή υ = 2 ή υ = 3 ή υ = 4. Ισχύει = δ π + υ, άρα: αν υ = 0, τότε: = = 10, αν υ = 1, τότε: = = 11, αν υ = 2, τότε: = = 12, αν υ = 3, τότε: = = 13, αν υ = 4, τότε: = = 14. Παπαδόπουλος Μαρίνος-Μαθηµατικός
4 2. Να κάνετε τις παρακάτω διαιρέσεις i. 8 : 0 ii. 8 :8 iii. 8 :1 iv. 0 :8 Λύση. i. Στη διαίρεση 8:0, ο διαιρέτης είναι δ=0. Η διαίρεση αυτή δεν µπορεί να γίνει. ii. iii. iv. Στη διαίρεση 8:8, ο διαιρέτης είναι ίσος µε τον διαιρετέο. Άρα ισχύει: 8:8=1 Στη διαίρεση 8:1, o διαιρέτης είναι δ=1.άρα ισχύει: 8:1=8 Στη διαίρεση 0:8, ο διαιρετέος είναι =0.Άρα ισχύει: 0:8=0 3. Να εξετάσετε ποιες από τις παρακάτω ισότητες εκφράζουν Ευκλείδεια ιαίρεση: i. 19= ii. 26= iii. 34= iv. 20= Λύση. i. Στην ισότητα19= , ο αριθµός 4 είναι µικρότερος από το 5, αλλά είναι µεγαλύτερος από το 3. Έτσι η ισότητα αυτή εκφράζει την Ευκλείδεια διαίρεση του =19 µε τον δ=5, η οποία έχει πηλίκο π=3 και υπόλοιπο υ=4. Η ισότητα 19=5.3+4 δεν εκφράζει την Ευκλείδεια διαίρεση του =19 µε τον δ=3, γιατί τότε το υπόλοιπο υ=4 θα ήταν µεγαλύτερο από τον διαιρέτη δ=3. ii. Στην ισότητα = +, ο αριθµός 6 είναι µεγαλύτερος και από το 4 και από το 5. Άρα η ισότητα αυτή δεν εκφράζει Ευκλείδεια διαίρεση. Παπαδόπουλος Μαρίνος-Μαθηµατικός
5 iii. Στην ισότητα 34= , ο αριθµός 4 είναι µικρότερος και από το 5 και από το 6. Άρα η ισότητα αυτή εκφράζει την Ευκλείδεια διαίρεση: µε =34, δ=5, π=6 και υ=4 µε =34, δ=6, π=5 και υ=4 iv. Στην ισότητα 20= , ο αριθµός 5 δεν είναι µικρότερος ούτε από το 3, ούτε από το 5. Άρα η ισότητα αυτή δεν εκφράζει Ευκλείδεια διαίρεση. ΕΡΩΤΗΣΕΙΣ ΠΛΗΡΟΥΣ ΑΝΑΠΤΥΞΗΣ - ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις παρακάτω ευκλείδειες διαιρέσεις µε τις δοκιµές τους: α) 96 : 8 δ) 2 : 4 ζ) : 54 β) 85 : 5 ε) 246 : 8 η) : 224 γ) 84 : 7 στ) 142 : 5 θ) : Να βρείτε ποιες από τις παρακάτω ισότητες προκύπτουν από Ευκλείδειες ιαιρέσεις και να σηµειώσετε το αντίστοιχο πηλίκο: α) 26 = β) 30 = γ) 63 = δ) 19 = ε) 0 = 4 0 στ) 5 = 5 1 ζ) 2721 = η) = Να βρείτε το υπόλοιπο της διαίρεσης του αριθµού α = µε το Να βρείτε τους φυσικούς αριθµούς οι οποίοι: α) Όταν διαιρεθούν µε το 4 δίνουν πηλίκο 5. β) Όταν διαιρεθούν µε το 3 δίνουν πηλίκο 4. γ) Όταν διαιρεθούν µε το 2 δίνουν πηλίκο Να κάνετε τις παρακάτω πράξεις: α) 4 2 : 2 + (15 + 5) : : 3 2 β) (16 : 2 + 4) (25 32 : 2) : 6 γ) 4 2 : 2 3 (6 4) + (15 + 5) : : 3 2 Παπαδόπουλος Μαρίνος-Μαθηµατικός
6 δ) (14 : 2 + 3) ( ) : 2 ε) 2 3 ( : 5) (2 3 5) 7 +4 ( ) στ) 3 ( ) ( ) ( ) 0 ζ) 2 5 : ( ) + (2 2 3) 2 : ( ) : 2 2 η) (3 4 4) 2 : ( ) + 4 (2 3 3) : ( ) (5 2 4) : 10 θ) (4 2 7) : ( ) ι) 2 [10 ( ) 2 ] : ( ) : [ ( )] ια) ( ) : ( ) + ( ) : ( ) ( ) 0 ιβ) 2 3 [4 2 3 ( )] 10 [3 2 4 ( ) 2 ]: 5 2 ιγ) 3 {3 2 2 [ ( )] } + ( ) : : ( ) ιδ) ( ): {2 3 5 [ ( )] } : ( ) ιε) 2 5 : ( ) + (2 2 3) 2 : ( ) : 2 2 ιστ) (3 4 4) 2 : ( ) + 4 (2 3 3) : ( ) (5 2 4) : 10 ιζ) ( ) : 9 +3 {2 4 4 [1+3 ( ) 0 ] + 3 [3 2 4 ( ) 2 ] 2 : 5 2 }: 3 6. Αν x = ( ) : 5 και y = ( ) : 2 να υπολογίσετε τις τιµές των παραστάσεων: α) A = (x 2 y + xy 2 ) : (x 2 y xy 2 ) β) B = (x 2 y + xy 2 ) (x 2 y xy 2 ) γ) Γ = (x y-2 y x-3 ) : (x y-3 y x-4 ) 7. Αν α = 12, β = 6 και γ = 2, να υπολογίσετε την αριθµητική τιµή των παραστάσεων: Α = (α : β γ) 2 + (α : γ + β : γ) + (α β) 2 : 3 2. Β = (α + β γ) : γ 2 (β γ) 3 : 8 + (α γ) 2 : 5 2 Γ = (α + β + γ) 2 : 2 (α 2 + β 2 + γ 2 ) : 4 + (α : β + β : γ) 2 8. Αν x = 1+0,5 (9 : 3 1) 3 +(4 3 : ) : (1 0,5) και y + z = (8 2 2) 2,5 : ( ) 5 ( ), να υπολογίσετε την αριθµητική τιµή της παράστασης: Α = 2 (x+y)+3 (x+z) z. 9. Ο κύριος Βαγγέλης αγόρασε ένα αυτοκίνητο αξίας Έδωσε προκαταβολή και το υπόλοιπο ποσό θα το εξοφλήσει σε 36 ισόποσες, άτοκες µηνιαίες δόσεις. Ποιο είναι το ποσό της κάθε δόσης; 10. Η Ανδροµάχη κάνει δίαιτα. Γνωρίζει ότι πρέπει κάθε ηµέρα να καταναλώνει το πολύ θερµίδες. Αν γνωρίζει ότι ένα µήλο έχει 82 θερµίδες, ένα παγωτό 337 θερµίδες και µια τυρόπιτα 280 θερµίδες κι έχει ήδη καταναλώσει 1 τυρόπιτα και 3 µήλα, πόσα παγωτά µπορεί να φάει; Παπαδόπουλος Μαρίνος-Μαθηµατικός
7 11. Η Πένυ προκειµένου να τακτοποιήσει το δωµάτιό της τοποθέτησε εξίσου τις 43 κούκλες της σε 9 κούτες και τις υπόλοιπες τις χάρισε στην αδερφή της ήµητρα. Πόσες κούκλες έβαλε σε κάθε κούτα και πόσες κούκλες έδωσε στη ήµητρα; 12. α) Για µια πορτοκαλάδα και δυο πίτσες πληρώσαµε 5, ενώ για µια πορτοκαλάδα και 5 πίτσες πληρώσαµε 11 στο ίδιο κατάστηµα. Πόσο κοστίζει η πορτοκαλάδα και πόσο η πίτσα; β) Για τρεις πορτοκαλάδες και πέντε πίτσες πληρώσαµε 18, ενώ για έξι πορτοκαλάδες και 14 πίτσες πληρώσαµε 48 στο ίδιο κατάστηµα. Πόσο κοστίζει η πορτοκαλάδα και πόσο η πίτσα; 13. Να αντικαταστήσετε τα κενά τετράγωνα µε τα ψηφία που λείπουν: Παπαδόπουλος Μαρίνος-Μαθηµατικός
1.4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ
1 4 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ Ισότητα Ευκλείδειας διαίρεσης : Αν, δ φυσικοί αριθµοί µε δ 0, τότε υπάρχουν δύο άλλοι φυσικοί αριθµοί π και υ έτσι ώστε να ισχύει = δ π + υ όπου υ < δ Η διαίρεση
Διαβάστε περισσότερα2.2 ιαίρεση Πολυωνύμων
. ιαίρεση Πολυωνύμων 1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Η διαίρεση δύο πολυωνύμων στηρίζεται στο παρακάτω θεώρημα: «Για κάθε ζεύγος Δ ( x) και δ ( x) με δ ( x)
Διαβάστε περισσότεραΑ. ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΜΕ ΚΟΙΝΟ ΠΑΡΟΝΟΜΑΣΤΗ
ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Πράξεις Ρητών Παραστάσεων. Θεµατικές Ενότητες:. Πρόσθεση - Αφαίρεση Ρητών Παραστάσεων µε Κοινό Παρονοµαστή.. Πρόσθεση - Αφαίρεση Ρητών Παραστάσεων
Διαβάστε περισσότεραΑ. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
ΜΑΘΗΜΑ 9 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.9: Ρητές Αλγεβρικές Παραστάσεις. Θεµατικές Ενότητες:. Ρητές Αλγεβρικές Παραστάσεις. Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Ρητή αλγεβρική παράσταση
Διαβάστε περισσότεραΑρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών
Διαβάστε περισσότερα4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ
14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,
Διαβάστε περισσότεραΑ. για να βρω το διαιρετέο
Μαθηματικά Κεφάλαιο 29 Εξισώσεις στις οποίες ο άγνωστος είναι διαιρετέος ή διαιρέτης Όνομα: Ημερομηνία: / / Θεωρία Εξίσωση στην οποία ο άγνωστος είναι διαιρετέος ΘΥΜΑΜΑΙ: Σε κάθε τέλεια διαίρεση έχουμε:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
Διαβάστε περισσότεραΑ. ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΩΝ
ΜΑΘΗΜΑ 8 Κεφάλαιο 2o : Τα Κλάσµατα Υποενότητα 2.3: Σύγκριση Κλασµάτων Θεµατικές Ενότητες: 1. Σύγκριση Κλασµάτων. Α. ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΩΝ ΚΑΝΟΝΕΣ ΣΥΓΚΡΙΣΗΣ ΚΛΑΣΜΑΤΩΝ Μεταξύ οµωνύµων κλασµάτων µεγαλύτερο είναι
Διαβάστε περισσότεραΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ
ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 4. ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤH Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ Εάν ζητείται να δειχθεί ισότητα ή ανίσωση
Διαβάστε περισσότεραΛέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.
Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο
Διαβάστε περισσότεραΟι φυσικοί αριθμοί. Παράδειγμα
Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς
Διαβάστε περισσότεραΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :
ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω
Διαβάστε περισσότεραMAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ
A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις
Διαβάστε περισσότερα1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο : ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Η ιδιότητα α+ β = β+ α λέγεται.. 2. Η ιδιότητα α ( β γ) ( ) + + = α+ β + γ λέγεται. 3. Ο αριθμός 0 είναι το..της πρόσθεσης φυσικών αριθμών αφού ισχύει:
Διαβάστε περισσότερα1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945
Διαβάστε περισσότερα(x) = δ(x) π(x) + υ(x)
Μάθηµα 12 Κεφάλαιο 4ο: Πολυώνυµα Πολυωνυµικές Εξισώσεις Θεµατικές Ενότητες: Α. ιαίρεση Πολυωνύµων Β. Σχήµα Horner Η ταυτότητα της Ευκλείδειας διαίρεσης Αν ( χ), δ ( χ) δύο πολυώνυµα µε δ ( χ) 0 και βαθµούς
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποιες είναι οι ιδιότητες της πρόσθεσης; Ποιες είναι οι ιδιότητες του πολλαπλασιασμού; Τι ονομάζουμε νιοστή δύναμη του άλφα; Ποια είναι η βάση και ποιος ο εκθέτης; Ποια είναι η προτεραιότητα των πράξεων
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
Διαβάστε περισσότεραΜαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος
Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος Κεφάλαιο 1o : Οι Φυσικοί Αριθµοί ΜΑΘΗΜΑ 1 Υποενότητα 1.1: Φυσικοί Αριθµοί ιάταξη Φυσικών - Στρογγυλοποίηση Θεµατικές Ενότητες: 1. Φυσικοί Αριθµοί - ιάταξη Φυσικών
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΑ. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β)
ΜΑΘΗΜΑ 5 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Κλασµατικές Εξισώσεις Θεµατικές Ενότητες:. Κλασµατικές Εξισώσεις (Μέρος Β). Α. ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (ΜΕΡΟΣ Β) ΟΡΙΣΜΟΙ Κλασµατική εξίσωση λέγεται
Διαβάστε περισσότεραΤις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών.
Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών. Ερωτήσεις «Σωστού - Λάθους» 1) Για όλους τους πραγματικούς α, β ισχύει: ( ) ( ) 3 3 ) Για όλους τους
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.2 Μονώνυμα-Πράξεις με Μονώνυμα 1 1.2 Μονώνυμα-Πράξεις με Μονώνυμα Α Άλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές για να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν
Διαβάστε περισσότεραΔ = δπ + υ με υ < δ. (Ταυτότητα της Ευκλείδειας διαίρεσης),
ΜΕΡΟΣ Α 1.7 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 19 1. 7 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Διαίρεση πολυωνύμων Αν έχουμε δύο φυσικούς αριθμούς Δ (διαιρετέος) και δ (διαιρέτης) με δ και κάνουμε τη διαίρεση Δ : δ, τότε βρίσκουμε δύο άλλους
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =
Διαβάστε περισσότερα3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ
1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ - 11 - ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1,
Διαβάστε περισσότερα1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε.
Ερωτήσεις πολλαπλής επιλογής 1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x 2 + 5 είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε. τρίτου βαθµού 2. Αν το πολυώνυµο P (x)
Διαβάστε περισσότερα9 Πολυώνυμα Διαίρεση πολυωνύμων
4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότερα1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.
Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 13 ΔΙΑΙΡΕΣΗ. Αρ2.12 Κατανοούν την προπαίδεια του πολλαπλασιασμού και τη διαίρεση ως αντίστροφη πράξη του πολλαπλασιασμού.
ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης, χρησιμοποιώντας υλικό όπως κύβους Dienes,
Διαβάστε περισσότεραΑ. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότεραΜαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος
Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των
Διαβάστε περισσότεραΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :
ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/05/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,
Διαβάστε περισσότεραΡητοί Αριθμοί - Η ευθεία των αριθμών
ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ρητοί Αριθμοί - Η ευθεία των αριθμών Ρητοί αριθμοί (ℚ ονομάζονται οι αριθμοί οι οποίοι μπορούν να εκφραστούν με ένα κλάσμα με ακέραιους όρους. Με
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις-Μονώνυμα
ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ Β Αλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές στην προσπάθειά μας να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν μόνο
Διαβάστε περισσότεραΝα γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
Διαβάστε περισσότερα2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.
1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες
Διαβάστε περισσότεραΑ.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής
Διαβάστε περισσότεραΗ Ευκλείδεια διαίρεση
1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β
Διαβάστε περισσότεραΑ. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ
ΜΑΘΗΜΑ 22 Κεφάλαιο 5o : Πιθανότητες Υποενότητα 5.1: Σύνολα. Θεµατικές Ενότητες: 1. Σύνολα-Υποσύνολα-Ίσα Σύνολα. 2. ιαγράµµατα Venn. 3. Πράξεις µε Σύνολα. Α. ΣΥΝΟΛΑ-ΥΠΟΣΥΝΟΛΑ-ΙΣΑ ΣΥΝΟΛΑ ΟΡΙΣΜΟΙ Σύνολο είναι
Διαβάστε περισσότεραΑριθμητής = Παρονομαστής
Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα
Διαβάστε περισσότεραΑ. ΕΚΠ ΑΚΕΡΑΙΩΝ ΑΛΓΕΒΡΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΜΑΘΗΜΑ 8 Κεφάλαιο 1o : Αλγεβρικές Παραστάσεις Υποενότητα 1.8: ΕΚΠ και ΜΚ ακεραίων αλγεβρικών παραστάσεων Θεµατικές Ενότητες: 1. ΕΚΠ ακεραίων αλγεβρικών παραστάσεων.. ΜΚ ακεραίων αλγεβρικών παραστάσεων.
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΔΙΑΙΡΕΣΗ ΑΡΙΘΜΟΙ. Υπολογισμοί και εκτίμηση
ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης, χρησιμοποιώντας υλικό όπως κύβους Dienes,
Διαβάστε περισσότεραΑ. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ
13 ιαιρετότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Έστω α,β δυο ακέραιοι µε β 0. Θα λέµε ότι ο β διαιρεί τον α και θα γράφουµε β/α όταν η διαίρεση του α µε τον β είναι τέλεια. ηλαδή όταν υπάρχει ακέραιος
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ
ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και Εκτίμηση Αρ3.12 Εκτιμούν και υπολογίζουν το άθροισμα, τη διαφορά, το γινόμενο και το πηλίκο αριθμών μέχρι το 100 000 και επαληθεύουν
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
Διαβάστε περισσότερα2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με
Διαβάστε περισσότεραΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ
ΡΗΤΟΙ ΑΡΙΘΜΟΙ - ΘΕΩΡΙΑ Α. ΟΡΙΣΜΟΙ Θετικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο το + (πολλές φορές το + παραλείπεται) π.χ. +3, +105, +, + 0,7, 326. Αρνητικοί αριθµοί είναι οι αριθµοί που έχουν πρόσηµο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Διαβάστε περισσότεραΓ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι
Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη
Διαβάστε περισσότερα4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:
Διαβάστε περισσότεραΘΕΜΑΤΑ ΜΑΘ ΜΑΤ ΩΝ Α ΓΥΜΝΑΣ ΟΥ
Ε Δ ΡΑΤ Α ΑΡ Α ΠΕ ΑΣ Δ Ε Θ Σ Δ/Β ΑΣ Ε Π/Σ Σ Γ ΑΣ Ε ΑΠ ΑΤΑ Σ ΕΤ Σ : OMM8- OMM9 Ε ΕΤΑΣΕ Σ ΣΕΠΤΕ ΒΡ Ε ΑΠ ΑΤΑ Σ I 4 / 9 / OMM8 ΑΤΕΠΩ ΑΘ Τ /ΤΡ ΑΣ K ΘΕΜΑΤΑ ΜΑΘ ΜΑΤ ΩΝ Α ΓΥΜΝΑΣ ΟΥ Θέμα N ο ΘΕΩΡ Α (επιλέξτε ένα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο
Διαβάστε περισσότεραΕπαναληπτικές ασκήσεις για το Πάσχα.
Μαθηματικά A Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Μέρος Β - Ασκήσεις. Κεφάλαιο 1 ο. 1. Σε ένα χωράφι καλλιεργούνται 200 δένδρα, ελιές, λεμονιές και πορτοκαλιές. Οι ελιές μαζί με τις λεμονιές
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
Διαβάστε περισσότεραΠολυώνυµα - Πολυωνυµικές εξισώσεις
4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α
Διαβάστε περισσότερααριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η διαίρεση στους φυσικούς αριθμούς
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Η διαίρεση στους φυσικούς αριθμούς 12 Η διαίρεση στους φυσικούς αριθμούς 12 Διερεύηση 1. 1. Έας χώρος στάθμευσης έχει 21 σειρές, καθεμιά από τις οποίες έχει 8 θέσεις.
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ
Διαβάστε περισσότεραΜαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ
Μαθηματικά Γενικής Παιδείας Κεφάλαιο ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, με την οποία κάθε στοιχείο ενός συνόλου Α
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ A ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2016 14 ΙΑΝΟΥΑΡΙΟΥ 2017 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ 1 η ΑΣΚΗΣΗ Τρεις φίλοι, ο Γιώργος, ο Κώστας και ο Δημήτρης συνεννοήθηκαν να πηγαίνουν στο Δημοτικό στάδιο, για τρέξιμο. Λόγω
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 2 Α. 2.1. Όταν ένα μέγεθο ή ένα σύνολο ομοειδών αντικειμένων χωρισθεί σε ν ίσα μέρη, το κάθε ένα
Διαβάστε περισσότεραΧαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων
Χαρακτήρες διαιρετότητας ΜΚΔ ΕΚΠ Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Ορισμός Ευκλείδεια διαίρεση ονομάζεται η πράξη κατά την οποία ένας αριθμός
Διαβάστε περισσότεραΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)
ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
Διαβάστε περισσότεραΑ. ΑΝΙΣΟΤΗΤΕΣ - ΚΑΝΟΝΕΣ ΑΝΙΣΟΤΗΤΩΝ
Κεφάλαιο o : Εξισώσεις - Ανισώσεις ΜΑΘΗΜΑ Υποενότητα.: Ανισώσεις ου Βαθµού Θεµατικές Ενότητες:. Ανισότητες - Κανόνες Ανισοτήτων.. Η έννοια της ανίσωσης.. Τρόπος επίλυσης ανισώσεων ου βαθµού. Α. ΑΝΙΣΟΤΗΤΕΣ
Διαβάστε περισσότεραΟι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών
Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,
Διαβάστε περισσότερα6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ
1 6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ ΘΕΩΡΙΑ 1. Ανάλογα ποσά : ύο ποσά τα λέµε ανάλογα όταν µεταβάλονται µε τέτοιο τρόπο ώστε όταν πολλαπλασιάζεται (διαιρείται) το ένα µε έναν αριθµό να πολλαπλασιάζεται (διαιρείται)
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Α ΘΕΩΡΙΑ ΘΕΜΑ 1 ο : Α. Τι ονομάζουμε απόλυτη τιμή ενός ρητού αριθμού α και πως συμβολίζεται; Β. Πότε δύο αριθμοί λέγονται αντίθετοι; Γ. Να χαρακτηρίσετε
Διαβάστε περισσότεραΤάσος Αρβανίτης Σελίδα 1 από 28
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ Θέμα 1 ο : α) Τι λέμε ταυτότητα; (ορισμό) β) Να συμπληρώσετε τις παρακάτω ταυτότητες i) ( ) ii) ( ) γ) Πως πολλαπλασιάζουμε πολυώνυμο με πολυώνυμο; (ορισμό) Θέμα ο :
Διαβάστε περισσότεραΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ με Απαντήσεις
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ με Απαντήσεις (το υλικό ανανεώνεται συνεχώς) ΓΥΜΝΑΣΙΟ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΣΧΟΛΙΚΟ ΕΤΟΣ:2010-2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ I. ΘΕΩΡΙΑ
Διαβάστε περισσότερα4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της
Διαβάστε περισσότεραΕπιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ
Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος
Διαβάστε περισσότερα4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ
1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 4ο: ΠΟΛΥΩΝΥΜΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ
Διαβάστε περισσότερα