ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 38 +)
|
|
- Θεόδουλος Ακρίδας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 38 +) Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη ΗΡΑΚΛΕΙΟ - ΚΡΗΤΗ / 15
2 Η ΧΡΟΝΟΑΝΕΞΑΡΤΗΤΗ εξίσωση Schrödinger για ένα σωµατίδιο σε µια διάσταση ] [ 2 d 2 2m dx + V(x) ψ(x) = Eψ(x) 2 (1) ] Ĥ = [ 2 d 2 2m dx + V(x) 2 (2) Ĥψ(x) = Eψ(x) (3) 1 ψ είναι γενικώς µια ΜΙΓΑ ΙΚΗ ΣΥΝΑΡΤΗΣΗ 2 ψ είναι ΣΥΝΕΧΗΣ συνάρτηση 3 ψ έχει ΣΥΝΕΧΕΙΣ παραγώγους (οµαλή συνάρτηση) 4 ψ είναι ΜΟΝΟΤΙΜΟΣ και µε ΠΕΠΕΡΑΣΜΕΝΕΣ τιµές 5 ψ 2 είναι η ΠΥΚΝΟΤΗΤΑ ΠΙΘΑΝΟΤΗΤΑΣ για την εύρεση του σωµατιδίου στο διάστηµα [x, x + dx] 6 ψ είναι ΚΑΝΟΝΙΚΟΠΟΙΗΜΕΝΗ, δηλαδή ψ 2 dx = 1 (4) 2 / 15
3 Η ΧΡΟΝΟΕΞΑΡΤΗΜΕΝΗ εξίσωση Schrödinger για ένα σωµατίδιο σε µια διάσταση Ψ(t, x) i = ĤΨ(t, x), (5) t όπου i = 1. Για τις Ιδιοτιµές και ιδιοενέργειες του ανεξάρτητου από τον χρόνο Χαµιλτωνιανού τελεστή Ĥ (διατηρητικά συστήµατα) και λύσεις της µορφής όπου η χρονοεξαρτηµένη εξίσωση Schrödinger γίνεται Ψ(t, x) = f(t)ψ(x), (6) Ĥψ(x) = Eψ(x) (7) Ψ(t, x) i = EΨ(t, x), (8) t µε λύσεις Ψ(t, x) = exp( iet/ )ψ(x) (9) 3 / 15
4 Η ΧΡΟΝΟΕΞΑΡΤΗΜΕΝΗ εξίσωση Schrödinger για ένα σωµατίδιο σε µια διάσταση Επειδή Ψ(t, x) 2 = exp( iet/ ) 2 ψ(x) 2 = ψ(x) 2, (10) η κανονικοποίηση της Ψ(t, x) είναι ίδια µε της ψ(x) Ψ 2 dx = ψ 2 dx = 1 (11) 4 / 15
5 Ελεύθερο Σωµατίδιο Ελεύθερο Σωµατίδιο σε µια διάσταση Η ΧΡΟΝΟΕΞΑΡΤΗΜΕΝΗ εξίσωση Schrödinger Ψ(t, x) i = 2 2 Ψ(t, x), (12) t 2m x2 ΛΥΣΕΙΣ Ψ(t, x) = exp( iet/ )ψ(x), (13) όπου η ψ(x) είναι λύση της ΧΡΟΝΟΑΝΕΞΑΡΤΗΤΗΣ εξίσωσης Schrödinger η οποία είναι της µορφής Ĥψ(x) = 2 2m d 2 ψ(x) = Eψ(x), (14) dx2 ψ(x) = C exp(ipx/ ), (15) και E = p 2 /2m και C = 1 (2π ) 5 / 15
6 Ελεύθερο Σωµατίδιο Ελεύθερο Σωµατίδιο σε µια διάσταση Αρχή Αβεβαιότητας του Heisenberg ( x)( p) 2. (16) Για ακριβές x = p [, + ] και για ακριβές p = x [, + ]. 6 / 15
7 Ελεύθερο Σωµατίδιο Ελεύθερο Σωµατίδιο σε µια διάσταση ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ της ψ ψ p(x) ψ p (x)dxdp = C 2 exp( ipx/ ) exp(ip x/ )dxdp ( ) = C 2 exp(i(p p)x/ )dx dp = C 2 (2π ) δ(p p)dp = C 2 (2π ) = 1. (17) 7 / 15
8 Ελεύθερο Σωµατίδιο Ελεύθερο Σωµατίδιο σε µια διάσταση Η ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ µε τη ΕΛΤΑ ΣΥΝΑΡΤΗΣΗ του DIRAC δ(p p) = 1 exp(i(p p)x/ )dx. (18) 2π δ(p p)dp = 1. (19) Εποµένως, C 2 (2π ) = 1, C = (2π ) 1/2. (20) Η ΕΛΤΑ ΣΥΝΑΡΤΗΣΗ του DIRAC µαθηµατικά ορίζεται ως ( ), z = 0 δ(z) = (21) 0, z 0 δ(z)dz = 1, f(z)δ(z)dz = f(0). (22) 8 / 15
9 Ελεύθερο Σωµατίδιο Κυµατοπακέτα Για διακριτές τιµές της ορµής p n αθροίζουµε και πέρνουµε το κυµατοπακέτο ψ(x) = n A n exp(ip nx/ ) (23) ή για συνεχείς τιµές της ορµής που δίνονται από την κατανοµή φ(p) η κυµατοσυνάρτηση ψ(x) εκφράζεται ως ψ(x) = φ(p) exp(ipx/ )dp (24) Οι παραπάνω εξισώσεις είναι παραδείγµατα αναπτυγµάτων (σειρών) Fourier. 9 / 15
10 Εξίσωση Schro dinger Εφαρµογές ΕΡΩΤΗΣΕΙΣ Ελεύθερο Σωµατίδιο Το ϕάσµα του ατόµου του υδρογόνου µε µονοφωτονικές και πολυφωτονικές διεγέρσεις στο συνεχές 10 / 15
11 Σωµατίδιο σε Απειρόβαθο Κουτί Σωµατίδιο σε Απειρόβαθο Κουτί Η ΧΡΟΝΟΑΝΕΞΑΡΤΗΤΗ εξίσωση Schrödinger ΛΥΣΕΙΣ Με ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ Ĥψ(x) = 2 2m d 2 ψ(x) = Eψ(x), (25) dx2 ψ(x) = A sin(kx) + B cos(kx), (26) ψ(0) = 0 = B = 0, (27) ψ(l) = 0 = k = nπ L, n = 1, 2,..., (28) όπου ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ της ψ ( ) E = k2 2m = n2 π 2 2 h = n 2 2 2mL 2 8mL 2 (29) Αρα L ψ 2 dx = A 2 sin 2 (x)dx = A 2 L 0 2 = 1 (30) A = (2/L), ψ(x) = 2 L sin ( nπ L x ) (31) 11 / 15
12 Σωµατίδιο σε Απειρόβαθο Κουτί ιεγέρσεις π ηλεκτρονίων µε το µοντέλο του απειρόβαθου κουτιού E = n 2 h 2 8mL 2 (32) E = (n2 f n 2 i )h 2 8mL 2 (33) λ = hc E (34) 12 / 15
13 Σωµατίδιο σε Απειρόβαθο Κουτί Βουταδιένιο µε το Μοντέλο του Απειρόβαθου Κουτιού (Ο Χηµικός εσµός, ΠΕΚ 1992, Σελ. 220)... Στην περίπτωση του ϐουταδιενίου (για παράδειγµα), το οποίο έχει τέσσερα ηλεκτρόνια π, το υψηλότερο κατειληµµένο τροχιακό είναι το ψ 2 και το χαµηλότερο µη κατειληµµένο τροχιακό είναι το ψ 3. Η ενεργειακή διαφορά ανάµεσα σε αυτά τα επίπεδα υπολογίζεται από την (10.10) µε s = 4d και είναι, E 3 E 2 = h2 ( ) 8m(4d) 2. (10.12) Θεωρώντας το d ίσο µε 1,4 Angs προβλέπουµε ότι η ταινία απορρόφησης είναι στα, η οποία είναι πολύ κοντά στην παρατηρούµενη τιµή των 2200 Angs.... λ = hc = 2068 Angs, (10.13) E 3 E 2 13 / 15
14 Σωµατίδιο σε Απειρόβαθο Κουτί ϐ-καροτένιο µε το Μοντέλο του Απειρόβαθου Κουτιού Στην περίπτωση του ϐ-καροτενίου, το οποίο έχει 22 ηλεκτρόνια π, το υψηλότερο κατειληµµένο τροχιακό είναι το ψ 11 και το χαµηλότερο µη κατειληµµένο είναι το ψ 12. Η ενεργειακή διαφορά ανάµεσα σε αυτά τα επίπεδα υπολογίζεται να είναι, και το µήκος κύµατος απορρόφησης E = E 12 E 11 = h2 ( ) 8mL 2 λ = hc = 840 nm, E το οποίο είναι µακριά από την παρατηρούµενη τιµή των 450 nm. = 2, J 14 / 15
15 ΕΡΩΤΗΣΕΙΣ 1 Να επαληθεύσετε ότι οι εξισώσεις είναι λύσεις της εξίσωσης Να επαληθεύσετε ότι η εξισώση 26 είναι λύση της εξίσωσης Γράψτε τις χρονοεξαρτηµένες ιδιοσυναρτήσεις Ψ(t, x) ενός σωµατιδίου σε απειρόβαθο κουτί. 4 Περιγράψτε τη συµπεριφορά του µήκους κύµατος απορρόφησης λ καθώς το µήκος ενός πολυενίου L, δηλ. ο αριθµός των διπλών δεσµών, αυξάνει. 15 / 15
Τι Πρέπει να Γνωρίζω
Τι Πρέπει να Γνωρίζω Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τµήµα Α Λαχανά) Φεβρουαρίου ΘΕΜΑ : Θεωρήστε τις δύο περιπτώσεις όπου η κυµατική συνάρτηση ψx) που περιγράφει µονοδιάστατη κίνηση σωµατιδίου σε απειρόβαθο πηγάδι δυναµικού µε τα τοιχώµατα
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο
Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να σκιαγραφηθεί
Κεφάλαιο 38 Κβαντική Μηχανική
Κεφάλαιο 38 Κβαντική Μηχανική Περιεχόμενα Κεφαλαίου 38 Κβαντική Μηχανική Μια καινούργια Θεωρία Η κυματοσυνάρτηση και η εξήγησή της. Το πείραμα της διπλής σχισμής. Η αρχή της αβεβαιότητας του Heisenberg.
Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)
Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του
Εφαρμογές κβαντικής θεωρίας
Εφαρμογές κβαντικής θεωρίας Στοιχειώδες μαθηματικό υπόβαθρο Σχέση Euler Χρησιμοποιώντας τη σχέση Euler, ένα αρμονικό κύμα της μορφής Acos(kx) (πραγματική συνάρτηση), μπορεί να γραφτεί ως Re[Ae ikx ] που
Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +)
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +) Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
Κβαντική Φυσική Ι. Ενότητα 8: Ολοκλήρωση μελέτης απειρόβαθου πηγαδιού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 8: Ολοκλήρωση μελέτης απειρόβαθου πηγαδιού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρωθεί η μελέτη που αφορά το
Ŝ y, για σπιν ½, όπου. και. 1/2 x 1/2,
ΣΕΤ 10 6/1/18 (1) (α) Βρείτε τα ιδιοδυανύσματα των Ŝ z, 1 Ŝ z 0 Ŝx και 0 0 1 0 i, Ŝ x, και Ŝ y 1 1 0 i 0 (β) Συνεπώς, εκφράστε τις καταστάσεις καταστάσεων 1/ z και 1/ z 1/ x, Ŝ y, για σπιν ½, όπου 1/ x,
x όπου Α και a θετικές σταθερές. cosh ax [Απ. Οι 1, 2, 5] Πρόβλημα 3. Ένα σωματίδιο μάζας m κινείται στο πεδίο δυναμικής ενέργειας ( x) exp
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ (Υποχρεωτικό 4 ου Εξαμήνου) Διδάσκων : Δ. Σκαρλάτος Προβλήματα Σειρά # 5 : Η εξίσωση Schrödinger και η επίλυσή της σε απλά κβαντικά συστήματα
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για
Η Αναπαράσταση της Θέσης (Position Representation)
Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης
και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)
Κβαντική Μηχανική ΙΙ. Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 1: Γενική διατύπωση της Κβαντικής Μηχανικής Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 2/ 39 Περιεχόµενα 1ης
Κβαντική Φυσική Ι. Ενότητα 27: Γενική μελέτη κβαντικών συστημάτων δύο και τριών διαστάσεων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 27: Γενική μελέτη κβαντικών συστημάτων δύο και τριών διαστάσεων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4
ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό
Ατομική Φυσική. Η Φυσική των ηλεκτρονίων και των ηλεκτρομαγνητικών δυνάμεων.
Ατομική Φυσική Η Φυσική των ηλεκτρονίων και των ηλεκτρομαγνητικών δυνάμεων. Μικρόκοσμος Κβαντική Φυσική Σωματιδιακή φύση του φωτός (γενικότερα της ακτινοβολίας) Κυματική φύση των ηλεκτρονίων (γενικότερα
( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου
PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που
ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που είναι ανάλογα με τη συχνότητα (f). PLANCK
PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που
ΑΤΟΜΙΚΗ ΦΥΣΙΚΗ PLANCK 1900 Προκειμένου να εξηγήσει την ακτινοβολία του μέλανος σώματος αναγκάστηκε να υποθέσει ότι η ακτινοβολία εκπέμπεται σε κβάντα ενέργειας που είναι ανάλογα με τη συχνότητα (f). PLANCK
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1
Κβαντομηχανική Ι Λύσεις προόδου Άσκηση 1 ψ(x) = A Sin (k x), < x < α) Sin (k x) = eikx e ikx i Mε πιθανές τιμές ορμής p = ± ħk, από τον τύπο του De Broglie. Kαθεμιά έχει πιθανότητα 50%. b) p = ψ p ψ =
ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα
Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις
Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.
x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί
Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία
Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση
Μια γενική έκφραση της κυματοσυνάρτησης στον χώρο των ορμών για μια δέσμια κατάσταση Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. spiroskonstantogiannis@gmail.com Δεκεμβρίου 07 //07 Coprigt Σπύρος Κωνσταντογιάννης,
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 12 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού
Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης
Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013
ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Κβαντομηχανική σε μία διάσταση
vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική
ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΚΕΦ. 4. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ ΤΟΥ DIRAC ΚΕΦ. 5. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΚΕΦ. 7.
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 01. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΜΕΡΟΣ Α: ΤΑ ΘΕΜΕΛΙΑ ΚΕΦ. 1. ΟΙ ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ Στέλιος Τζωρτζάκης ΚΕΦ. 2. ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ΚΕΦ.
ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ
ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ Ν. ΜΠΕΚΙΑΡΗΣ ΕΙΣΑΓΩΓΗ Στο ατομικό πρότυπο του Bohr ο κύριος κβαντικός αριθμός (n) εισάγεται αυθαίρετα, για τον καθορισμό
Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.
Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,
ΥΠΟΛΟΓΙΣΤΙΚΗ ΧΗΜΕΙΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΕ ΜΟΡΙΑ, ΥΛΙΚΑ, ΠΕΡΙΒΑΛΛΟΝ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΧΗΜΕΙΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΕ ΜΟΡΙΑ, ΥΛΙΚΑ, ΠΕΡΙΒΑΛΛΟΝ Ι ΑΣΚΟΝΤΕΣ: Μαρία Κανακίδου, Σταύρος Φαράντος, Γιώργος Φρουδάκης 1 / 32 ΕΝΟΤΗΤΑ ΠΡΩΤΗ Σύγχρονη Υπολογιστική Χηµεία: Επισκόπηση Μοριακές Θεωρίες
Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ Οι ασκήσεις που ακολουθούν είναι προς επίλυση από
ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
A.3 Ποια από τις παρακάτω ηλεκτρονιακές δομές παραβιάζει την αρχή του Pauli:
Θέμα Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ A.1 Να διατυπώσετε την 1 η συνθήκη του Bohr για το ατομικό μοντέλο (μηχανική συνθήκη). (5 μονάδες) A.2 Να διατυπώσετε την 2 η συνθήκη του Bohr για το
ΥΠΟΛΟΓΙΣΤΙΚΗ ΧΗΜΕΙΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΕ ΜΟΡΙΑ, ΥΛΙΚΑ, ΠΕΡΙΒΑΛΛΟΝ
ΥΠΟΛΟΓΙΣΤΙΚΗ ΧΗΜΕΙΑ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΕ ΜΟΡΙΑ, ΥΛΙΚΑ, ΠΕΡΙΒΑΛΛΟΝ Ι ΑΣΚΟΝΤΕΣ: Μαρία Κανακίδου, Σταύρος Φαράντος, Γιώργος Φρουδάκης 1 / 31 ΕΝΟΤΗΤΑ ΠΡΩΤΗ Σύγχρονη Υπολογιστική Χηµεία: Επισκόπηση Μοριακές Θεωρίες
ΕΑΠ ΦΥΕ 34. ( γ ) Βρείτε την ενέργεια σε ev του φωτονίου της σειράς Balmer, που έχει το
ΕΑΠ ΦΥΕ 4 Σύντοµες Απαντήσεις στην Εξέταση Ιουνίου 4 στο µάθηµα «Από την Κασική στην Σύγχρονη Φυσική» ) Η σειρά Balmer του γραµµικού φάσµατος του ατόµου του υδρογόνου αντιστοιχεί σε µεταβάσεις ηεκτρονίων
Κβαντομηχανική σε. τρεις διαστάσεις. Εξίσωση Schrödinger σε 3D. Τελεστές 2 )
vs of Io vs of Io D of Ms Scc & gg Couo Ms Scc ική Θεωλης ική Θεωλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 746 dok@cc.uo.g cs.s.uo.g/dok ομηχ ομηχ δ ά τρεις διαστ Εξίσωση Schödg σε D Σε μία διάσταση Σε τρείς
= k2 x Y = k 2 + kx 2 Y. = k2 y
1 Pìblhma 1 Εχουμε κατά τα γνωστά 2 + k 2 )ψ =0, όπου k 2 = 2mE Με την αντικατάσταση ψ = Xx)Y y), έχουμε ) 2 x 2 + 2 y 2 + k2 XY =0 X Y +XY +k 2 XY =0 X X + Y Y και εν συνεχεία = k2 X X = k2 Y Y = k2 x
Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:
Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται
Μάθημα 7ο. Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία
Μάθημα 7ο Υλοκύματα Και Η Σύγχρονη Ατομική Θεωρία h m U(x,y,z, t) ih t (x, y,z,t) (x, y,z)e iet / h H E Γενική & Ανόργανη Χημεία 06-7 Ewin Schöinge Η ανεξάρτητη από τον χρόνο εξίσωση Schöinge U m H E E
Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης
ΤΕΤΥ Σύγχρονη Φυσική Κεφ. 2-1 Κεφάλαιο 2. Ο κυματοσωματιδιακός δυισμός της ύλης Εδάφια: 2.a. Η σύσταση των ατόμων 2.b. Ατομικά φάσματα 2.c. Η Θεωρία του Bohr 2.d. Η κυματική συμπεριφορά των σωμάτων: Υλικά
Κβαντική Φυσική Ι. Ενότητα 21: Δέλτα πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 21: Δέλτα πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει το δέλτα πηγάδι δυναμικού, το οποίο αποτελεί
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Πτυχιακή εργασία ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΔΙΟΤΙΜΩΝ ΤΗΣ ΕΞΙΣΩΣΗΣ ΤΟΥ SCHRÖDINGER ΙΩΑΝΝΗΣ ΠΟΝΤΙΚΗΣ ΗΡΑΚΛΕΙΟ
Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο
Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο
Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία.
Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία. Η κβαντική θεωρία αναπτύχθηκε με τις ιδέες των ακόλουθων επιστημόνων: Κβάντωση της ενέργειας (Max Planck, 1900). Κυματική θεωρία της ύλης (De Broglie,
Κεφάλαιο 9: Συστήματα Πολλών σωματίων
Κεφάλαιο 9: Συστήματα Πολλών σωματίων Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό, είναι τα εξής (Βαγιονάκης, 1996 Μοδινός, 1994 Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών 7/4/014 Κβαντική μηχανική Κβαντική μηχανική Η θεωρία
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων
Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής
Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L
Χημεία Γ Λυκείου Θετικής Κατεύθυνσης
Χημεία Γ Λυκείου Θετικής Κατεύθυνσης Κεφάλαιο 1 Ηλεκτρονιακή δομή των ατόμων 1 Εισαγωγή Δομή του ατόμου Δημόκριτος Αριστοτέλης Dalton Thomson 400 π.χ. 350π.χ. 1808 1897 Απειροελάχιστα τεμάχια ύλης (τα
Συστήματα Πολλών Σωματίων
Συστήματα Πολλών Σωματίων Δομή Διάλεξης Βασικές γενικεύσεις: Κυματοσυνάρτηση-Ενέργεια συστήματος πολλών σωματίων Μη αλληλεπιδρώντα σωμάτια: Μέθοδος χωριζόμενων μεταβλητών Σύστημα δύο αλληλεπιδρώντων σωματίων:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΑΡΧΕΣ ΚΒΑΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ. Τα θεμέλια της κβαντομηχανικής
Τα θεμέλια της κβαντομηχανικής Η κυματοσυνάρτηση Κβάντωση της ενέργειας + Κυματοσωματιδιακός δυϊσμός του φωτός και της ύλης Η δυναμική του μικρόκοσμου Τα σωματίδια δεν έχουν καθορισμένες τροχιές και οποιαδήποτε
Από τι αποτελείται το Φως (1873)
Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός
Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού
Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 16-17 Κβαντομηχανική Ι 1o Σετ Ασκήσεων ) ψ(x) dx Άσκηση 1 ψ ο (x) = Α (α x ), < x < = A (α x ) dx = 1 (α x ) dx = (α 4 x + x 4 )dx = α 4 dx x dx = 5 45 3 A ( 5 45 + 5 3 5 + x 4 dx + 5
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 25 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.
ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση
ˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε.
Άσκηση. Η Hamiltoia ενός συστήματος έχει τη γενική μορφή ˆ pˆ H V ( xˆ ) m Δείξτε ότι d V ( xˆ ) pˆ F( xˆ) t dt x def. t Υπόδειξη: Ξεκινείστε από τον ορισμό της αναμενόμενης τιμής pˆ dx ( x, t) pˆ( x,
Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή
Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 5 Μεταφορική και Ταλαντωτική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 5 Μεταφορική και Ταλαντωτική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins,
ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2
Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A
Ηλεκτρονική δομή ημιαγωγών-περίληψη. Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα-
E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Ηλεκτρονική δομή ημιαγωγών-περίληψη Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα- Η κυματοσυνάρτηση ψ(r) του ελεύθερου e είναι λύση της Schrödinger:
Θεωρητική Επιστήμη Υλικών
Θεωρητική Επιστήμη Υλικών Διαγώνισμα Προόδου 6// Θέμα Κάποιο σωματιδιο βρισκεται στη θεμελιώδη σταθμη του, κοντά στο ελάχιστο της δυναμικής του ενέργειας. Μετράται ότι x= Å. Πόση ενέργεια πρέπει να του
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΑΡΑΡΤΗΜΑ Β. ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States
ΠΑΡΑΡΤΗΜΑ Β ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States Στατιστική Φυσική Διαφάνεια 1 DOS H DOS περιγράφει τον αριθμό των καταστάσεων που είναι προσιτές σε ένα σύστημα
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Τις προσεχείς ώρες θα συζητήσουμε τα πέντε πρώτα
Θεωρία Υλικών, 11/2/2011
Θεωρία Υλικών, // Θέμα (.5) Για τα στοιχειακό μέταλλο Al δίνεται ότι η πυκνότητα είναι ρ M =.7 g/cm 3 και το ατομικό του βάρος 6.98. Η ηλεκτρονική δομή του ατόμου του Al είναι [Ne]3s p. α) Να βρεθεί ο
Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 016-017 Κβαντομηχανική Ι 3o Σετ Ασκήσεων Άσκηση 1 Οι λύσεις του αρμονικού ταλαντωτή, με V = x είναι της μορφής ψ n (x) = ( mω π )1/4 1 n n! H n (x)e x /, n = 0,1, (1) Με Η n τα πολυώνυμα
Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).
Μάθηµα ο 0 Οκτωβρίου 008 (9:00-:00) ΑΣΚΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Άσκηση 9 Έστω ένα κβαντικό σύστηµα το οποίο περιγράφεται από τρεις ενεργειακές καταστάσεις (ιδιοτιµές ενέργειας
Κεφάλαιο Σ3. Κβαντική Μηχανική Τμήμα Μηχανικών Βιοϊατρικής / Πανεπιστήμιο Δυτικής Αττικής
Κεφάλαιο Σ3 Κβαντική Μηχανική Τμήμα Μηχανικών Βιοϊατρικής / Πανεπιστήμιο Δυτικής Αττικής Εικόνα τροχιακών Υδρογόνου μέσω Κβαντικού Μικροσκοπίου http://i.imgur.com/tgpfjrf.jpg Κβαντική μηχανική Η θεωρία
Κβαντική Φυσική Ι. Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει
Γενική Μεταπτυχιακή Εξέταση - ΕΜΠ & ΕΚΕΦΕ-" ηµόκριτος"
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & DEPARTMENT OF PHYSICS ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ZOGRAFOU CAMPUS ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 157 80 ATHENS -
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, Ph.D KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ &
3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.
ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 16 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ-ΠΡΟΤΥΠΟ BOHR ΟΜΑΔΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σωστές ή Λάθος και να αιτιολογήσετε αυτές που είναι λάθος : 1.
Κύριος κβαντικός αριθμός (n)
Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn
Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι
Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Disclaimer: Οι δυο ασκήσεις ζητούν τις κυματοσυναρτήσεις, τις ενέργειες, τις τιμές (x 1 x 2 ) 2 των διαφόρων καταστάσεων και τη διόρθωση από διαταραχή, για μποζόνια
Η Ψ = Ε Ψ. Ψ = f(x, y, z, t, λ)
Κυματική εξίσωση του Schrödinger (196) Η Ψ = Ε Ψ Η: τελεστής Hamilton (Hamiltonian operator) εκτέλεση μαθηματικών πράξεων επί της κυματοσυνάρτησης Ψ. Ε: ολική ενέργεια των ηλεκτρονίων δυναμική ενέργεια
Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής
Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d
Εισαγωγή στην κβαντική θεωρία
Εισαγωγή στην κβαντική θεωρία Οι νόμοι της κίνησης όπως διατυπώθηκαν από το Νεύτωνα μπορούσαν να εξηγήσουν με μεγάλη επιτυχία την κίνηση των σωμάτων της καθημερινής εμπειρίας και των πλανητών. Η κλασσική
Κβαντικές Καταστάσεις
Κβαντικές Καταστάσεις Δομή Διάλεξης Σύντομη ιστορική ανασκόπηση Ανασκόπηση Πιθανότητας Το Πλάτος Πιθανότητας Πείραμα διπλής οπής Κβαντικές καταστάσεις (ket) Ο δυίκός χώρος (bra) Σύνοψη Κβαντική Φυσική
Τα θεμέλια της κβαντομηχανικής. Τα θεμέλια της κβαντομηχανικής
Τα θεμέλια της κβαντομηχανικής 1 ΠΙΑΣ Η κυματοσυνάρτηση Κβάντωση της ενέργειας + Κυματοσωματιδιακός δυϊσμός του φωτός και της ύλης Η δυναμική του μικρόκοσμου Τα σωματίδια δεν έχουν καθορισμένες τροχιές
Κβαντική Φυσική Ι. Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει τις ιδιότητες
H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n
3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης