Ηλεκτρονική δομή ημιαγωγών-περίληψη. Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα-
|
|
- Ēᾍιδης Παπαγεωργίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Ηλεκτρονική δομή ημιαγωγών-περίληψη Σχέση διασποράς για ελεύθερα ηλεκτρόνια στα μέταλλα- Η κυματοσυνάρτηση ψ(r) του ελεύθερου e είναι λύση της Schrödinger: H ψ ( r ) h n + V ( r ) ψ n( r ) Enψ n( r m n όπου Ε n ιδιοτιμές του ηλεκτρονίου. ) Για ελεύθερο ηλεκτρόνιο : V (r) 0 h ψn(r) Enψn(r) m Υποθέτουμε λύση της μορφής επίπεδου κύματος: ψ ( r) ψ ir o e Αντικαθιστούμε την ψ (r) στην Schrödinger E n h m p m συνεχής κατανομή ενεργειών δεν προβλέπεται η ύπαρξη χασμάτων. Στο μοντέλο του ελεύθερου ηλεκτρονίου η σχέση Ε- είναι παραβολική. Σελίδα 1 από 9
2 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Απλοποίηση : Το πρόβλημα σε 1D: το ηλεκτρόνιο περιορίζεται σε μεταλλικό σύρμα μήκους L το φράγμα δυναμικού είναι ix Υποθέτουμε λύση : x) ψ e ψ ( cos x isin x) ψn ( o ο x + x Οριακές συνθήκες: ψ n (0)ψ n (L)0 ψ ( x) sin xx n ψ o Επειδή ψ(l)0 x nπ όπου n1,,3 L nπx ψn (x) ψο sin στάσιμο κύμα L E n nπ h η ενέργεια είναι κβαντισμένη m L H συνεχής γραμμή ελεύθερο Μεταβολή της Ε συναρτήσει της ορμής p, όπου α (L) είναι το εύρος του πηγαδιού. ηλεκτρόνιο και τα σημεία ηλεκτρόνιο περιορισμένο στην 1 διάσταση (σημεία). Αυξανομένου του εύρους α του πηγαδιού δυναμικού τα σημεία πλησιάζουν μεταξύ τους και προς την αρχή των αξόνων. Σελίδα από 9
3 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Για να τακτοποιηθούν τα Ν ηλεκτρόνια χρειαζόμαστε n F το πλήθος στάθμες εκ των οποίων η κάθε μία δέχεται ηλεκτρόνια n F N. Η ενέργεια της Fermi είναι: E F h m nfπ L h m Nπ L Το ηλεκτρόνιο σε στερεό σώμα. Ενεργειακές ταινίες στα στερεάεπίδραση της συμμετρίας-θεώρημα Bloch Όταν ένα ηλεκτρόνιο βρίσκεται σε στερεό, το δυναμικό V (r) στην εξίσωση Schrödinger περιλαμβάνει την αλληλεπίδραση του ηλεκτρονίου τόσο με τα ιόντα όσο και με τα άλλα ηλεκτρόνια. h m + V(r) ψ(r) Eψ(r) Το περιοδικό δυναμικό του κρυστάλλου που βλέπει το e Περιοδικότητα του δυναμικού V (r + R) V(r) όπου R είναι διάνυσμα του πλέγματος. Θεώρημα Bloch: συνδέει την τιμή της κυματοσυνάρτησης σε κάποια μοναδιαία κυψελίδα με αυτή σε ισοδύναμο σημείο κάποιας άλλης κυψελίδας. Σελίδα 3 από 9
4 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Θεώρημα Bloch η λύση της Schrοdinger για περιοδικό δυναμικό είναι ir ψ ( r) e u(r) δηλ. οδεύον κύμα με πλάτος που διαμορφώνεται από τη συνάρτηση u (r) που έχει την ίδια συμμετρία με το πλέγμα Επειδή το ηλεκτρόνιο συμπεριφέρεται ως κύμα με π κυματοδιάνυσμα έχει μήκος κύματος λ και ορμή p h Η συνάρτηση Bloch είναι μη-εντοπισμένη το ηλεκτρόνιο ανήκει σε ολόκληρο τον κρύσταλλο. Ενεργειακές ταινίες ποιο είναι το φάσμα των ενεργειών που προκύπτουν από την επίλυση της Schrödinger? Αν αντικαταστήσουμε στην Schrödinger τη συνάρτηση Bloch, προκύπτει η εξίσωση ιδιοτιμών h m ( + i) + V(r ) u (r) E u (r) Που έχει πολλές λύσεις για κάθε πολλές διακριτές ενέργειες Ε 1, Ε κλπ που μεταβάλλονται συνεχώς με το ΤΑΙΝΙΕΣ Σελίδα 4 από 9
5 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Οι ταινίες είναι άπειρες αλλά μόνον οι χαμηλότερες είναι κατηλειμμένες. Εμφανίζονται χάσματα και λόγω του διανυσματικού χαρακτήρα του η μορφή των ταινιών αλλάζει κατά τις x, y, z. Ιδιότητες συμμετρίας των ταινιών E-: Ε n (+G)E n () όπου G διάνυσμα του αντιστρόφου πλέγματος η Ε n () έχει την ίδια περιοδικότητα με το αντίστροφο πλέγμα. E n (-)E n () : έχουν συμμετρία αντιστροφής ως προς 0. H E n () έχει την ίδια συμμετρία περιστροφής με το ευθύ πλέγμα. Βήμα 1: Αποτέλεσμα των ιδιοτήτων συμμετρίας Περιορίζουν την περιοχή τιμών του όπου πρέπει να υπολογίσουμε την ενέργεια, π.χ λόγω συμμετρίας αντιστροφής υπολογίζουμε την Ε() μόνον στην μισή ΖΒ. Βήμα : Εισάγουμε το δυναμικό Το μοντέλο του σχεδόν ελεύθερου e. Yποθέτουμε ότι το δυναμικό του κρυστάλλου είναι τόσο ασθενικό ώστε το e να συμπεριφέρεται σαν ελεύθερο και η επίδραση του πλέγματος εισάγεται σαν διαταραχή. Σελίδα 5 από 9
6 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Ειδικότερα η επίδραση του δυναμικού του κρυστάλλου είναι: Αμελητέα για τα e που έχουν λ >> ενδοατομικής απόστασης α. Σε αυτή την περίπτωση η ενέργεια των e προσεγγίζεται ικανοποιητικά από την παραβολική προσέγγιση. Σημαντική για τα e με υψηλή E in ή ισοδύναμα μεγάλο ή ισοδύναμα μικρό λ. Στην μονοδιάστατη αλυσίδα για την οριακή περίπτωση που λ α ικανοποιείται η συνθήκη του Bragg τα κύματα ανακλώνται και δημιουργούνται στάσιμα κύματα. Η σχέση διασποράς για ελεύθερο και σχεδόν ελεύθερο ηλεκτρόνιο σε 1D σύστημα. Η συνθήκη για ανάκλαση Bragg ικανοποιείται όταν ±nπ/α, όπου α η πλεγματική σταθερά. Επίδραση του δυναμικού του κρυστάλλου: εισάγονται χάσματα στα σημεία όπου τέμνονται οι ζώνες, δηλ. στα σημεία όπου η επίδραση του πλέγματος είναι ισχυρή. Γιατί εμφανίζονται τα χάσματα? Λόγω των ανακλάσεων Bragg για ±nπ/α Σελίδα 6 από 9
7 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Στα σημεία όπου συμβαίνει ανάκλαση κατά Bragg oι κυματοσυναρτήσεις είναι στάσιμα κύματα : ψ( + ) eiπ x / α + e iπx / α cos( πx / α) ψ( ) eiπ x / α e iπx / α i sin( πx / α) Αυτά τα στάσιμα κύματα συσσωρεύουν φορτίο σε διαφορετικές περιοχές έχουν διαφορετικές τιμές δυναμικής ενέργειας χάσματα. Πυκνότητα καταστάσεων g(e) Ορισμός ο αριθμός ενεργειακών καταστάσεων ανά μονάδα όγκου στην ενεργειακή περιοχή (E,E+dE) ή αριθμός e ή τροχιακών ανά μονάδα ενέργειας g (E) dn de g(e)de * 3 1 m π h 1 E Η g(e) είναι καθοριστική για τη συγκέντρωση φορέων είναι ιδιαίτερα σημαντική για τις ιδιότητες μεταφοράς. Σελίδα 7 από 9
8 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc Το πλήθος των e που καταλαμβάνουν τις διαθέσιμες καταστάσεις στην περιοχή ενεργειών (Ε,Ε+dE) είναι: dn(e)g(e)f(e)de όπου f(e) η πιθανότητα κατάληψης, δηλ. η κατανομή Fermi-Dirac. H g(e) εξαρτάται από τη μορφή των ταινιών και οι αποκλίσεις τους από τον παραβολικό χαρακτήρα επηρεάζουν και την πυκνότητα καταστάσεων. Στην παραβολική περιοχή των ταινιών Η g(e) E 1/ παραβολικό σχήμα Η g(e) m *3/ η g(e) με την m * Αυξανομένης της Ε παύει να ισχύει ο παραβολικός χαρακτήρας των ταινιών και στα όρια της ζώνης και μέσα στο χάσμα g(e)0. H g(e) αυξάνεται όταν αρχίζει η επόμενη ταινία. Η δυναμική ενεργός μάζα. m * h de d Δηλαδή το e-bloch συμπεριφέρεται σαν ελεύθερο e με mm *. Σελίδα 8 από 9
9 E. K. Παλούρα Οπτοηλεκτρονική_semis_summary.doc H m* είναι αντιστρόφως ανάλογη της καμπυλότητας των ταινιών. K 0 m* σταθερή. όταν και η m*. Για > C σημείο καμπής η m*<0. Γιατί?? για ±π/α το e υφίσταται επιβράδυνση από το πλέγμα. Σελίδα 9 από 9
Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς
Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται
Πυκνότητα καταστάσεων g(e)
Ε. Κ. Παλούρα NF model_µέρος Πυκνότητα καταστάσεων g() Ορισµός ο αριθµός ενεργειακών καταστάσεων ανά µονάδα όγκου στην ενεργειακή περιοχή (,+d) ή αριθµός e ή τροχιακών ανά µονάδα ενέργειας g () = dn d
Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς (μέρος 2)
Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς (μέρος 2) Το μοντέλο του «άδειου πλέγματος» Βήμα 1: Στο μοντέλο του «άδειου πλέγματος» θεωρούμε ότι το ηλεκτρόνιο είναι ελεύθερο αλλά οι λύσεις της Schrödinger
Κεφάλαιο 7. Ηλεκτρονική δομή τω ων στερεών
Κεφ 7: Ηλεκτρονική δομή των στερεών με άλλα λόγια: το ηλεκτρόνιο στο στερεό Στόχος: Θα υπολογίσουμε τη συνάρτηση Ε(k) & την πυκνότητα καταστάσεων για τα στερεά Θα χρησιμοποιήσουμε την περιοδικότητα του
ΠΑΡΑΡΤΗΜΑ Β. ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States
ΠΑΡΑΡΤΗΜΑ Β ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ - ΠΥΚΝΟΤΗΤΑ ΚΑΤΑΣΤΑΣΕΩΝ D.O. S Density Of States Στατιστική Φυσική Διαφάνεια 1 DOS H DOS περιγράφει τον αριθμό των καταστάσεων που είναι προσιτές σε ένα σύστημα
Κεφάλαιο 7: Η Ηλεκτρονική Δομή των Στερεών ( με άλλα λόγια: το ηλεκτρόνιο στο στερεό)
Κεφάλαιο 7: Η Ηλεκτρονική Δομή των Στερεών ( με άλλα λόγια: το ηλεκτρόνιο στο στερεό) Η προσέγγιση του ενός ηλεκτρονίου σε τετραγωνικό πηγάδι δυναμικού είναι υπεραπλουστευμένη και δεν μπορεί να ερμηνεύσει
ΠΑΡΑΡΤΗΜΑ Β. υποθέτουμε ότι ένα σωματίδιο είναι μέσα σε ένα μεγάλο (ενεργειακή κβαντοποίηση) αλλά πεπερασμένο κουτί (φρεάτιο δυναμικού):
ΠΑΡΑΡΤΗΜΑ Β H DOS περιγράφει ΚΑΤΑΜΕΤΡΗΣΗ ΚΑΝΟΝΙΚΩΝ ΤΡΟΠΩΝ προσιτές σε προσδιορίσουμε ένα τον αριθμό σύστημα και των καταστάσεων είναι αρκετές ιδιότητες ενός συστήματος όπωs: σημαντική DOS που για είναι
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
Ελεύθερα Ηλεκτρόνια στα Στερεά
Ελεύθερα Ηλεκτρόνια στα Στερεά (Κεφάλαιο 6 στοβιβλίοτωνibach των & Luth) Σχέση διασποράς Ε k για ελεύθερο ηλεκτρόνιο Σχέση διασποράς Ε k για ηλεκτρόνιο σε μονοδιάστατο πηγάδι δυναμικού εύρους a. 1 Ύλη
KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο
Περιεχόμενο της άσκησης. Προτεινόμενη βιβλιογραφία. Π.Βαρώτσος, Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης»
Προαπαιτούμενες γνώσεις Ενεργειακές ζώνες Πρότυπο Kroning- Penney Προτεινόμενη βιβλιογραφία Π.Βαρώτσος, Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» Περιεχόμενο της άσκησης Όταν N άτομα έλθουν κοντά το ένα
1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί
1. Εισαγωγή 1.1 Ηλεκτρονικές ιδιότητες των στερεών. Μονωτές και αγωγοί Από την Ατομική Φυσική είναι γνωστό ότι οι επιτρεπόμενες ενεργειακές τιμές των ηλεκτρονίων είναι κβαντισμένες, όπως στο σχήμα 1. Σε
Κεφάλαιο 6. Ελεύθερα α Ηλεκτρόνια στα Στερεά
Ελεύθερα Ηλεκτρόνια στα Στερεά (Κεφάλαιο 6 στο βιβλίο των Ibach & Luth) Στόχος του μαθήματος είναι η κατανόηση των ηλεκτρικών, οπτικών, δονητικών καιθερμικώνιδιοτήτωντωνυλικών ιδιοτήτων των υλικών. Ο απλούστερος
Φυσική Στερεάς Κατάστασης η ομάδα ασκήσεων Διδάσκουσα Ε. Κ. Παλούρα
Φυσική Στερεάς Κατάστασης -05 η ομάδα ασκήσεων. Έστω ημιαγωγός με συγκέντρωση προσμείξεων Ν>> i. Όλες οι προσμείξεις είναι ιονισμένες και ισχύει =, p= i /. Η πρόσμειξη είναι τύπου p ή? : Όλες οι προσμείξεις
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική
Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία.
Σύγχρονες αντιλήψεις γύρω από το άτομο. Κβαντική θεωρία. Η κβαντική θεωρία αναπτύχθηκε με τις ιδέες των ακόλουθων επιστημόνων: Κβάντωση της ενέργειας (Max Planck, 1900). Κυματική θεωρία της ύλης (De Broglie,
Ε. Κ. ΠΑΛΟΎΡΑ Ημιαγωγοί 1. Ημιαγωγοί. Το 1931 ο Pauli δήλωσε: "One shouldn't work on. semiconductors, that is a filthy mess; who knows if they really
Ημιαγωγοί Ανακαλύφθηκαν το 190 Το 191 ο Pauli δήλωσε: "Oe should't work o semicoductors, that is a filthy mess; who kows if they really exist!" Πιο ήταν το πρόβλημα? Οι ανεπιθύμητες προσμείξεις Το 1947
ETY-202 ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ ETY-202 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 03. ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΟΙ ΓΕΝΙΚΕΣ ΣΥΝΕΠΕΙΕΣ ΤΩΝ ΘΕΜΕΛΙΩΔΩΝ ΑΡΧΩΝ Στέλιος Τζωρτζάκης 1 3 4 Ο νόμος της χρονικής μεταβολής των μέσων τιμών και το
Κεφάλαιο 5. Ηλεκτρόνια δεσμού και περιοδικό δυναμικό
Κεφάλαιο 5 Ηλεκτρόνια δεσμού και περιοδικό δυναμικό Στο κεφάλαιο αυτό, θα μελετήσουμε την κατάσταση στην οποία η κυματοσυνάρτηση λύνεται με την παρουσία περιοδικού δυναμικού. Το αποτέλεσμα είναι μια ποιοτική
Ελεύθερο ηλεκτρόνιο: η E k 2. Η κυματοσυνάρτηση ψ(r) του ελεύθερου e είναι λύση της Schrödinger:
Κεφάλαιο 6. Ελεύθερα Ηλεκτρόνια στα Στερεά. Η περιγραφή των ηλεκτρονίων στα στερεά (κεφάλαια 6 και 7 του βιβλίου των Ibach-Luth) θα γίνει με τα παρακάτω 3 μοντέλα: 1. πρότυπο των Sommerfeld και Bethe (1933)
Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις
Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί
Εφαρμογές κβαντικής θεωρίας
Εφαρμογές κβαντικής θεωρίας Στοιχειώδες μαθηματικό υπόβαθρο Σχέση Euler Χρησιμοποιώντας τη σχέση Euler, ένα αρμονικό κύμα της μορφής Acos(kx) (πραγματική συνάρτηση), μπορεί να γραφτεί ως Re[Ae ikx ] που
John Bardeen, William Schockley, Walter Bratain, Bell Labs τρανζίστορ σημειακής επαφής Γερμανίου, Bell Labs
Ψηφιακή τεχνολογία Ε. Λοιδωρίκης Δ. Παπαγεωργίου Η εφεύρεση του τρανζίστορ Το πρώτο τρανζίστορ John rn, Willi Schocl Wltr rtin, ll Ls 948 τρανζίστορ σημειακής επαφής Γερμανίου, ll Ls 4 Τεχνολογία πυριτίου
Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ. Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
Κυματική φύση της ύλης: ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης: Κινούμενα ηλεκτρόνια συμπεριφέρονται σαν κύματα (κύματα de Broglie)
Κεφάλαια (από το βιβλίο Serway-Jewett) και αναρτημένες παρουσιάσεις
Ύλη μαθήματος «Σύγχρονη Φυσική» Κεφάλαια (από το βιβλίο Serway-Jewett) και αναρτημένες παρουσιάσεις Σ2-Σελίδες: 673-705, (όλο το κεφάλαιο από το βιβλίο) και η παρουσίαση Σ2 που έχει αναρτηθεί στο e-class
Εφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής
Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d
Κεφάλαιο 38 Κβαντική Μηχανική
Κεφάλαιο 38 Κβαντική Μηχανική Περιεχόμενα Κεφαλαίου 38 Κβαντική Μηχανική Μια καινούργια Θεωρία Η κυματοσυνάρτηση και η εξήγησή της. Το πείραμα της διπλής σχισμής. Η αρχή της αβεβαιότητας του Heisenberg.
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
ΘΕΩΡΙΑ ΕΝΕΡΓΕΙΑΚΩΝ ΤΑΙΝΙΩΝ (Ε.Τ.) ΣΤΑ ΣΤΕΡΕΑ ΥΛΙΚΑ. Σχηματισμός και μορφή ενεργειακών ταινιών στα στερεά υλικά:
ΘΕΩΡΙΑ ΕΝΕΡΓΕΙΑΚΩΝ ΤΑΙΝΙΩΝ (Ε.Τ.) ΣΤΑ ΣΤΕΡΕΑ ΥΛΙΚΑ Σχηματισμός και μορφή ενεργειακών ταινιών στα στερεά υλικά: 1. Προσέγγιση της ισχυρής σύζευξης. Μοντέλο σχεδόν ελεύθερου ηλεκτρονίου - Οι συνέπειες του
Μοντέρνα Φυσική. Κβαντική Θεωρία. Ατομική Φυσική. Μοριακή Φυσική. Πυρηνική Φυσική. Φασματοσκοπία
Μοντέρνα Φυσική Κβαντική Θεωρία Ατομική Φυσική Μοριακή Φυσική Πυρηνική Φυσική Φασματοσκοπία ΚΒΑΝΤΙΚΗ ΘΕΩΡΙΑ Φωτόνια: ενέργεια E = hf = hc/λ (όπου h = σταθερά Planck) Κυματική φύση των σωματιδίων της ύλης:
Κεφάλαιο 9: Κίνηση των Ηλεκτρονίων και Φαινόμενα Μεταφοράς
Κεφάλαιο 9: Κίνηση των Ηλεκτρονίων και Φαινόμενα Μεταφοράς Στα στερεά η ηλεκτρική και η θερμική αγωγιμότητα βασίζονται στη κίνηση των ηλεκτρονίων που περιγράφεται από την χρονοεξαρτημένη εξίσωση του Schrödinger.
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού
Πειραµατική Θεµελείωση της Φυσικής
Πειραµατική Θεµελείωση της Φυσικής Στοιχειωδών Σωματιδίων (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 23 Μαρτίου 2017
ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ
ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Εισαγωγή Στο προηγούμενο κεφάλαιο προσεγγίσαμε τους ημιαγωγούς
ΚΕΦΑΛΑΙΟ 7 ΕΠΙΦΑΝΕΙΕΣ
ΚΕΦΑΛΑΙΟ 7 ΕΠΙΦΑΝΕΙΕΣ 1. οµή των επιφανειών Για να περιγράψουµε µια επιφάνεια πρέπει να ξέρουµε σε ποιο κρυσταλλογραφικό επίπεδο (hkl) αναφέρεται. Τότε φανταζόµαστε τον κρύσταλλο ως σειρά επιπέδων από
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 19 Μαρτίου 2015 Σκέδαση, ενεργός διατομή
Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης
Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση
Δομή ενεργειακών ζωνών
Ατομικό πρότυπο του Bohr Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Βασικές αρχές του προτύπου Bohr Θετικά φορτισμένος
1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί
1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί Ο Lewis πρότεινε το μοντέλο του κοινού ηλεκτρονιακού ζεύγους των δεσμών το 1916, σχεδόνμιαδεκαετίαπριναπότηθεωρίατουde Broglie τηςδυαδικότηταςκύματος-σωματιδίου.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΣΤΕΡΕΩΝ
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΣΤΕΡΕΩΝ Η κλασσική μηχανική είναι σε θέση να περιγράψει με σχετική ακρίβεια τις κινήσεις σωμάτων όπως πλανήτες, δορυφόροι και γενικά σώματα μεγάλου μεγέθους. Στην περίπτωση όμως
1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί
1.12 Ηλεκτρονιακά κύματα και χημικοί δεσμοί Ο Lewis πρότεινε το μοντέλο του κοινού ηλεκτρονιακού ζεύγους των δεσμών το 1916, σχεδόνμιαδεκαετίαπριναπότηθεωρίατουde Broglie τηςδυαδικότηταςκύματος-σωματιδίου.
Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων
Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων Περιεχόμενα Κεφαλαίου 39 Τα άτομα από την σκοπιά της κβαντικής μηχανικής Το άτομο του Υδρογόνου: Η εξίσωση του Schrödinger και οι κβαντικοί αριθμοί ΟΙ κυματοσυναρτήσεις
μαγνητικό πεδίο παράλληλο στον άξονα x
Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,
και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
Κβαντικοί αριθμοί τρεις κβαντικοί αριθμοί
Κβαντικοί αριθμοί Στην κβαντομηχανική εισάγονται τρεις κβαντικοί αριθμοί για τον καθορισμό της κατανομής του ηλεκτρονιακού νέφους (ατομικού τροχιακού). Οι κβαντικοί αυτοί αριθμοί προκύπτουν από την επίλυση
Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:
Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται
16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια
και Φαινόμενα Μεταφοράς εισαγωγή
Κεφ. 9. Κίνηση των Ηλεκτρονίων και Φαινόμενα Μεταφοράς 1 εισαγωγή Στα στερεά η ηλεκτρική και η θερμική αγωγιμότητα βασίζονται στη κίνηση των ηλεκτρονίων η οποία περιγράφεται από την χρονικώς εξαρτώμενη
ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ
ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Ενεργειακές Ζώνες και Στατιστική Φορέων Φορτίου Required Text: Microelectronic Devices, Keith Leaver (2 nd Chapter) Εισαγωγή Στο προηγούμενο κεφάλαιο προσεγγίσαμε τους ημιαγωγούς
ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ
ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ 1 ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ Πλέγμα στο χώρο Πλέγμα Bravais Διάταξη σημείων στο χώρο έτσι ώστε κάθε σημείο να έχει ταύτοσημο περιβάλλον Αυτό προσδιορίζει δύο ιδιότητες των πλεγμάτων Στον
ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ ΔΙΔΑΣΚΩΝ: Δ. ΣΚΑΡΛΑΤΟΣ, ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ
ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ ΕΝΟΤΗΤΑ 5 Επίλυση της εξίσωσης Schrödinger σε απλά κβαντικά συστήματα Ι. ΕΙΣΑΓΩΓΗ Κάθε φυσικά πραγματοποιήσιμη φυσική κατάσταση ενός (μονοσωματιδιακού) κβαντικού συστήματος περιγράφεται
Δομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου
Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή
ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ
ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ 1 Ιδιότητες εξαρτώμενες από το μέγεθος Στην νανοκλίμακα, οι ιδιότητες εξαρτώνται δραματικά από το μέγεθος Για παράδειγμα, ΙΔΙΟΤΗΤΕΣ ΝΑΝΟΥΛΙΚΩΝ (1) Θερμικές ιδιότητες θερμοκρασία
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγρονη Φυσική II Κβαντομηχανική σε τρεις διαστάσεις Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
3. Το πρότυπο του Bohr εξήγησε το ότι το φάσμα της ακτινοβολίας που εκπέμπει το αέριο υδρογόνο, είναι γραμμικό.
ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 16 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ-ΠΡΟΤΥΠΟ BOHR ΟΜΑΔΑ Α Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σωστές ή Λάθος και να αιτιολογήσετε αυτές που είναι λάθος : 1.
Κεφάλαιο 4 ΔΥΝΑΜΙΚΗ ΤΟΥ ΚΡΥΣΤΑΛΛΙΚΟΥ ΠΛΕΓΜΑΤΟΣ - ΦΩΝΟΝΙΑ
Κεφάλαιο 4 ΔΥΝΑΜΙΚΗ ΤΟΥ ΚΡΥΣΤΑΛΛΙΚΟΥ ΠΛΕΓΜΑΤΟΣ - ΦΩΝΟΝΙΑ Προαπαιτούμενη γνώση Συστήματα γραμμικών ταλαντωτών, δυναμική πλέγματος, κβαντικός αρμονικός ταλαντωτής, φωνόνια, ευθύ και ανάστροφο πλέγμα, ζώνες
ΘΕΡΜΟΚΡΑΣΙΑ Κ ΚΑΙ Η ΗΛΕΚΡΙΚΗ ΕΙΔΙΚΗ ΑΝΤΙΣΤΑΣΗ ΣΕ ΚΑΛΟ ΜΟΝΩΤΗ ΕIΝΑΙ ΤΗΣ ΤΑΞΗΣ
ΕΝΕΡΓΕΙΑΚΕΣ ΖΩΝΕΣ ΕΝΕΡΓΕΙΑΚΕΣ ΖΩΝΕΣ ΤΟ ΠΡΟΤΥΠΟ ΤΩΝ ΕΛΕΥΘΕΡΩΝ ΗΛΕΚΤΡΟΝΙΩΝ ΟΔΗΓΕΙ ΣΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΩΝ ΦΥΣΙΚΩΝ ΙΔΙΟΤΗΤΩΝ ΤΩΝ ΜΕΤΑΛΛΩΝ OΠΩΣ ΤΗ ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ, ΜΑΓΝΗΤΙΚΗ ΕΠΙΔΕΚΤΙΚΟΤΗΤΑ ΚΑΙ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΕΣ
Η Αναπαράσταση της Θέσης (Position Representation)
Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης
Βιβλιογραφία C. Kittel: Εισαγωγή στη ΦΣΚ (5 η εκδ. 8η) Ashcroft, Mermin: ΦΣΚ Ε.Ν. Οικονόμου, ΦΣΚ, Π.Ε.Κ. Κρήτης
Διδάσκων Γ. Φλούδας Γραφείο: Φ3-209 (ώρες για ερωτήσεις: Τρίτη και Παρασκευή 11-13) Εργαστήριο: Φ3-208 Τηλ.: 26510-08564 Ε-mail: gfloudas@uoi.gr Δικτυακός τόπος μαθήματος: ecourse@uoi.gr Βιβλιογραφία C.
1.1 ΗΜΙΑΓΩΓΟΙ. σ = 1/ρ (1.1) J = σ. ξ (νόμος του Ohm) (1.2)
1.1 ΗΜΙΑΓΩΓΟΙ 1.1.1 Ειδική ηλεκτρική αγωγιμότητα Ορισμός Κατάταξη των υλικών Η ηλεκτρική αγωγιμότητα (G) είναι μια ιδιότητα μεταφοράς όπως η θερμική αγωγιμότητα και το ιξώδες των σωμάτων. Συγκεκριμένα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διάλεξη 3: Το άτομο του Υδρογόνου. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για το κεντρικό δυναμικό
Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöding για το κεντρικό δυναμικό Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 3 k V ) Αποδεικνύεται ότι οι λύσεις της ακτινικής εξίσωσης
Π. Φωτόπουλος Νανοηλεκτρονικές Διατάξεις ΠΑΔΑ
Διαλέξεις 1 και 2. Το φωτοηλεκτρικό φαινόμενο. Ενεργειακές καταστάσεις σε μέταλλα και ημιαγωγούς. Πώς μετριέται η πυκνότητα καταστάσεων. Πώς γεμίζουν οι ενεργειακές καταστάσεις. 1. Το φωτοηλεκτρικό φαινόμενο.
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για
Κεφάλαιο 4. Ηλεκτρόνια αγωγιμότητας στα υλικά - Κβαντικές διορθώσεις
Κεφάλαιο 4 Ηλεκτρόνια αγωγιμότητας στα υλικά - Κβαντικές διορθώσεις Στο κεφάλαιο αυτό, θα μελετήσουμε ένα άλλο μοντέλο «ελεύθερων» ηλεκτρονίων, στο οποίο τα ηλεκτρόνια περιγράφονται με κυματοσυναρτήσεις
Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή ) εξίσωση Helmholtz σε D χωρικές διαστάσεις :
Η Εξίσωση Helmholtz Στο κεφάλαιο που ακολουθεί θα ασχοληθούμε με την ( μη ομογενή εξίσωση Helmholtz σε χωρικές διαστάσεις : ( + k Ψ ( r f( r ( k (6 Η εξίσωση αυτή συνοδεύεται (συνήθως από συνοριακές συνθήκες
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας
Τι γνώριζαν για τους κρυστάλλους: ΚΡΥΣΤΑΛΛΙΚΑ ΣΤΕΡΕΑ - ΚΡΥΣΤΑΛΛΟΙ Πρώτοι παρατηρητές: Κανονικότητα της εξωτερικής μορφής των κρυστάλλων οι κρύσταλλοι σχηματίζονται από την κανονική επανάληψη ταυτόσημων
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
Περιεχόμενο της άσκησης
Προαπαιτούμενες γνώσεις Ημιαγωγοί Θεωρία ζωνών Ενδογενής αγωγιμότητα Ζώνη σθένους Ζώνη αγωγιμότητας Προτεινόμενη βιβλιογραφία 1) Π.Βαρώτσος Κ.Αλεξόπουλος «Φυσική Στερεάς Κατάστασης» 2) C.Kittl, «Εισαγωγή
Ημιαγωγοί. Ημιαγωγοί. Ενδογενείς εξωγενείς ημιαγωγοί. Ενδογενείς ημιαγωγοί Πυρίτιο. Δομή ενεργειακών ζωνών
Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Δομή ενεργειακών ζωνών Δεν υπάρχουν διαθέσιμες θέσεις Κενή ζώνη αγωγιμότητας
Αγωγιμότητα στα μέταλλα
Η κίνηση των ατόμων σε κρυσταλλικό στερεό Θερμοκρασία 0 Θερμοκρασία 0 Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo
Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της
Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήριο Εφαρμοσμένης Φυσικής Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Περιεχόμενα
( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Σύγχρονη Φυσική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών 7/4/014 Κβαντική μηχανική Κβαντική μηχανική Η θεωρία
Κβαντομηχανική εικόνα του ατομικού μοντέλου
Κβαντομηχανική εικόνα του ατομικού μοντέλου 1. Ερώτηση: Τι είναι η κβαντομηχανική; H κβαντομηχανική, είναι η σύγχρονη αντίληψη μιας νέας μηχανικής που μπορεί να εφαρμοστεί στο μικρόκοσμο του ατόμου. Σήμερα
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: O Carlos Santana εκμεταλλεύεται τα στάσιμα κύματα στις χορδές του. Αλλάζει νότα στην κιθάρα του πιέζοντας τις χορδές σε διαφορετικά σημεία, μεγαλώνοντας ή μικραίνοντας το
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
ΕΙΣΑΓΩΓΗ ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ
ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ Η ΔΟΜΗ ΤΟΥ ΑΤΟΜΟΥ IV. ΟΙ ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΤΑ ΤΡΟΧΙΑΚΑ Ν. ΜΠΕΚΙΑΡΗΣ ΕΙΣΑΓΩΓΗ Στο ατομικό πρότυπο του Bohr ο κύριος κβαντικός αριθμός (n) εισάγεται αυθαίρετα, για τον καθορισμό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Επί κυμάτων και παλμών ερωτήσεις 2ου Θέματος- απαντήσεις
Επί κυμάτων και παλμών ερωτήσεις 2ου Θέματος- απαντήσεις Ερώτηση 1 Πρέπει η απομάκρυνση από τη θέση ισορροπίας να είναι A y 0,5m 2 +Α Έτσι με βάση τον κύκλο αναφοράς της ταλάντωσης που φαίνεται στο σχήμα
max 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά
. Να αποδείξετε ότι σε ένα ταλαντούμενο σύστημα ενός βαθμού ελευθερίας, μάζας και σταθεράς ελατηρίου s με πολύ ασθενή απόσβεση (γω, όπου γ r/, r η σταθερά αντίστασης και s/ ) το πλήρες εύρος στο μισό του
ΤΕΧΝΟΛΟΓΙΑ ΥΛΙΚΩΝ ΜΑΘΗΜΑ 1 Ο ΙΔΙΟΤΗΤΕΣ ΥΛΙΚΩΝ. Δρ. M.Χανιάς Αν.Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ, ΤΕΙ Ανατολικής Μακεδονίας και Θράκης
ΤΕΧΝΟΛΟΓΙΑ ΥΛΙΚΩΝ ΜΑΘΗΜΑ 1 Ο ΙΔΙΟΤΗΤΕΣ ΥΛΙΚΩΝ Δρ. M.Χανιάς Αν.Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ, ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΚΑΒΑΛΑ 018 1 1. ΕΙΣΑΓΩΓΗ ΣΤΑ ΥΛΙΚΑ. ΑΓΩΓΙΜΑ ΥΛΙΚΑ 3. ΗΜΙΑΓΩΓΟΙ
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 38 +)
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 38 +) Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ ΙΙ ΓΙΩΡΓΟΣ ΤΣΙΓΑΡΙΔΑΣ
ΝΑΝΟΗΛΕΚΤΡΟΝΙΚΗ ΙΙ ΓΙΩΡΓΟΣ ΤΣΙΓΑΡΙΔΑΣ ΑΡΙΘΜΟΣ ΤΡΑΝΖΙΣΤΟΡ / ΤΣΙΠ ΕΞΕΛΙΞΗ ΔΙΑΣΤΑΣΕΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΕΞΕΛΙΞΗ ΤΩΝ ΑΠΩΛΕΙΩΝ ΘΕΡΜΟΤΗΤΑΣ ΕΠΙΠΕΔΟ ΚΥΜΑ ΤΟ ΠΕΙΡΑΜΑ ΤΩΝ ΔΥΟ ΣΧΙΣΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ (Ι)
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Φυσική Συμπυκνωμένης Ύλης (Ενότητα: Ημιαγωγοί) Ασκήσεις Ι. Ράπτης
Q ολικό () ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 016-17 Φυσική Συμπυκνωμένης Ύλης (Ενότητα: Ημιαγωγοί) Ασκήσεις Ι. Ράπτης 1. Κρύσταλλος πυριτίου ( g 1.17 1170 ) νοθεύεται με προσμίξεις αρσενικού ( 40
Τµήµα Επιστήµης και Τεχνολογίας Υλικών Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/10/2006
Τµήµα Επιστήµης και Τεχνολογίας Υλικών Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/10/006 Άσκηση 1 Υπολογίστε τον όγκο ανά ιόν (σε Å ), την απόσταση πρώτων γειτόνων d (σε Å), τη συγκέντρωση
Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (15 Μονάδες) Πόσα γραμμάρια καθαρού κρυσταλλικού
ETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Ν. Τράκας, Ι. Ράπτης 2/4/2018
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) 7-8 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Ν. Τράκας Ι. Ράπτης /4/8 Παράδοση των 3 4 5 μέχρι /4/8 [Σε χειρόγραφη μορφή στο μάθημα ή σε μορφή ενιαίου αρχείου PDF στις
Κβαντομηχανική σε μία διάσταση
vrsy of Io Dr of Mrls Scc & grg Couol Mrls Scc κή Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π 76 ldor@cc.uo.gr csl.rls.uo.gr/ldor σταση Μία ιάσ ανική σε Μ κή Θεωρ ρία της Ύλης: Κβα αντομηχα Κβαντομηχανική
b proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.