ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2
|
|
- Μωσῆς Αθανασίου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A 1 cosh(γ x) b / < x < b / A cos(kx) + B sin(kx) b / < x < a + b / A 3 e γ x x > a + b / όπου γ = m E και k = m(v E ) 0!! και εφαρµόζοντας τις συνθήκες συναρµογής για x = b / και x = a + b / και µετά την απαλοιφή των σταθερών A 1, A, A 3, B καταλήγουµε στην k cosh(bγ / )(γ cos(ka) k sin(ka)) + γ sinh(bγ / )(k cos(ka) + γ sin(ka)) = 0 ενώ για τις περιττές έχουµε (x) = A 3 e γ x A cos(kx) + B sin(kx) A 1 sinh(γ x) x < a b / a b / < x < b / b / < x < b / A cos(kx) + B sin(kx) b / < x < a + b / A 3 e γ x x > a + b / και γ cosh(bγ / )(k cos(ka) + γ sin(ka)) + k sinh(bγ / )(γ cos(ka) k sin(ka)) = 0 Στο όριο b 0 έχουµε την εξίσωση του πηγαδιού µε πλάτος a και µπορούµε να υπολογίσουµε γραφικά τις λύσεις, π.χ. για a mv 0 = 10 έχουµε z = 1 E = για! V 0
2 την θεµελιώδη και z = για την πρώτη διεγερµένη, ενώ για b οι εξισώσεις συµπίπτουν µε αυτές του πηγαδιού µε πλάτος a, και η λύση για την θεµελιώδη είναι z = Παρατητούµε λοιπόν ότι για την θεµελιώση η λύση στο όριο b 0 είναι µικρότερη από το όριο b, γεγονός που µε βάση την αρχή ελάχιστης ενέργειας οδηγεί σε ελκτικό δυναµικό Trith di g rm nh HoddL 0.5 Hodd+ê- oddl 0.0 D ut rh di g rm nh HevenL Prwth di g rm nh HoddL Q m liwdhv HevenL Heven+ê- evenl ΑΣΚΗΣΗ (α) F ολ = dv dx και άρα V = 1 mω x Fx! / m d Ψ dx + ( 1/ mω x Fx)Ψ = EΨ V = 1 mω x Fx = 1 mω (x f ) 1 mω f f = F mω x = x f! / m d Ψ dx + ( 1/ mω x 1/ mω f )Ψ = EΨ και άρα οι λύσεις είναι Ψ(x) = n (x ), όπου n ταλαντωτή και E n =!ω n mω f οι ιδιοσυναρτήσεις του αρµονικού (β) η κυµατοσυνάρτηση δεν είναι πλέον ιδιο-συνάρτηση και άρα θα δίνεται εν γένει από (x,t) = e ie n t /! c n n (x ) n
3 και χρησιµοποιώντας το γεγονός ότι για t = 0, (x,t = 0) = 0 (x), µπορούµε να υπολογίσουµε τα c n + c n = dx 0 (x) n (x f ) Θα ακολουθήσουµε όµως µια άλλη οδό µε την χρήση των τελεστών δηµιουργίαςκαταστροφής. a = mω! x + ip x m!ω, a = οπότε η αρχική hamiltonian γράφεται mω! x ip x m!ω H =!ω a a + 1 και οι ιδιο-συναρτήσεις n = 1 n! a η καινούργα hamiltonian είναι n 0 H =!ω a a + 1 Fx =!ω a a + 1 F! mω a + a και µε την αλαγή b = a g, g = F = f mω!mω 3! και H =!ω b b mω f µε ιδιοτιµές E =!ω n + 1 n 1 mω f και ιδιο-συναρτήσεις n = 1 n n! b 0 ενώ για τα c n, c n = n 0 και αντικαθιστώντας c n = 1 n! 0 bn 0 = 1 n! 0 a g = dx (x f ) (x) = e 1/ g και άρα 0 0 (t) = e 1/ g e ie 0 t /! n ( ge ) iωt n n n! ( n 0 = g ) n n! 0 0, όπου (γ) x = (t) x (t) =! mω (t) a + a (t) = ( ge ) iωt n! mω (t) b + b (t) + g b (t) = e 1/ g e ie 0 t /! b n b n n! = n n 1 n! mω
4 b (t) = e 1/ g e ie 0 t /! n=1 ( ge ) iωt n n! n n 1 n 1 ge = ( iωt ge iωt )e 1/ g e ie 0 t /! n=1 (n 1)! n 1 = ge iωt (t) και άρα (t) b (t) = ge iωt και (t) b (t) = ge iωt και κατά συνέπεια x = f 1 cosωt και αντίστοιχα για το p = (t) p (t) = i m! ω (t) a a (t) = ω f sinωt ΑΣΚΗΣΗ 3 1 q x a p y h p 1 1 p! / x a 1 q x ( a / ) p y 1 h p px + ( / a ) y h [q 1, p 1 ] 1 ( x + ( a /!) p y ),( p x (! / a ) y ) (α) 1 + ( / ) = i! = 1 [x, p x ] [ p y, y] και οµίως [q, p ] = i! ενώ [q 1,q ] = [ p 1, p ] = 0 (β) q 1 q = 1 x + a! p y και οµοίως p 1 p 1 p x! a y x a! p y p x +! a y και άρα L z = xp y yp x =! q a 1 q (γ) όπου H 1 = a! p 1 +! a q 1 ω = και οµοίως για H. και 1 (δ) και άρα οι ιδιοτιµές του L z = H 1 H θα είναι y = a! xp y =! a yp x + a = H 1 H! p p 1 m=h / a και αντσιστοιχεί σε αρµονικό ταλαντωτή µε µάζα!ω(n / )!ω(n + 1 / ) = ω =1!(n 1 n ) =!n όπου n! ΑΣΚΗΣΗ 4
5 ( x,0) = 1 ( (x) + (x) + i (x) 1 3 ) = 1 E = 1 E 1 + E + 4E 3 x = x = 1 * (x,t)x (x,t)dx = ( 1 (x)e +3it/ + (x)e +5it/ + i 3 (x)e +it/ )x( 1 (x)e 3it/ + (x)e 5it/ i 3 (x)e it/ )dx 1 (x)x (x)dx x = e+it + e it + (i) ( e +it e it ) 1 (x)x 3 (x)dx + (i) ( e +it e it ) (x)x 3 (x)dx για λόγους συµµετρίας. και άρα όπου για n x n = 0 n = 1,,3 Οµοίως 1 x 3 = 0 x = cost 1 (x)x (x)dx 4 sint (x)x 3 (x)dx n (x) = π ( 1/ 4 n n! ) 1/ e x / H n (x) H n+1 (x) x H n (x) + n H n 1 (x) = 0 xh n (x) = 1 H n+1 (x) + nh n 1 (x) x n (x) = π ( 1/ 4 n n! ) 1/ e x / xh n (x) = π ( 1/ 4 n n! ) 1/ e x / 1 = 1 (x) n n! n+1 n+1 (n + 1)! 1/ n n! + n n 1 (x) n 1 (n 1)! 1/ H + nh n+1 n 1 = n + 1 n+1 + n n 1 x (x) = x = cost 1 (x)x (x)dx 4 sint (x)x 3 (x)dx = cost 4 3sint και για την ορµή p = i! d dx µε βάση την αναδροµική σχέση d dx H n(x) = nh n 1 (x) d (x) n καταλήγουµε στο dx και άρα = n n 1(x) n + 1 n+1(x)
6 p = i! ( 1 (x)e +3it/ + (x)e +5it/ + i 3 (x)e ) +it/ d 1 (x) e 3it/ + dx d (x) dx e 5it/ i d 3(x) dx e it/ dx p = i e it 1 (x) (x)dx + i e it (x) 1 (x)dx e it (x) 3 (x)dx + eit 3 (x) (x)dx για λόγους συµµετρίας. όπου για n n = 0 n = 1,, 3 Οµοίως 1 3 dx = 3 1 dx = 0 και άρα (x) = p = i ( e it e it ) 1 (x) 1 (x)dx 3 e it + e it p = sint 4 3 cost 3 (x) 3 (x)dx (β) Από το θεώρηµα Ehrenfest d dt x = 1 i! [x, H ] = p d dt p = 1 i! [ p, H ] = x οι οποίες ικανοποιούνται απί τις λύσεις του (α).
7 Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 5 Η κυµατοσυνάρτηση του 3 H στην θεµελιώδη του κατάσταση είναι (Ζ=1) H 100 3/ 1 1 r a = e π a0 Κατά την µετάβαση αυτή παραµένει η ίδια αλλά στο νέο σύστηµα 3 He + δεν είναι πλέον ιδιοκατάσταση και δίνεται από την ανάπτυξη = H He c 100 nlm nlm / 0 Η θεµελιώδης του 3 He + (Ζ=) και άρα ο συντελεστής c 100 = 100 He H 100 He 100 = dr4πr 3/ 1 r a = e π a0 1 π a 0 3/ / 0 e r / a π a 0 3/ e r / a 0 = 16 και η πιθανότητα P100 = c Για την περίπτωση (n,l,m)=(3,0,0) He = π a 0 3/ 36 r + 8 r a 0 a 0 e r /3a 0 c 300 = 300 He H 100 = dr4πr π a 0 3/ 36 r + 8 r a 0 a 0 e r /3a π a 0 3/ e r / a 0 = και η πιθανότητα P 300 = c 300 = ΑΣΚΗΣΗ 6 Ψ( r!,0) = c( ( 1+ i) 11 ( r! ) + 3 ( r! ) i 31 1 ( r! )) 1= c ( 1+ i i ) c = 1
8 Ψ( r!,t) = 1 ( 1+ i ) 11 ( r! )e ie t/" + 3 ( r! )e ie 3 t/" i 31 1 ( r! )e ie 3 t/" όπου E n = n ev και η µέση τιµή της ενέργειας είναι E = 1 E + 1 E = ev= 13.6 ev=.455ev ενώ L z L z =! 1 (1) ( ) ( 1) =! =! (1) ( ) ( 1) =! 4 ΔL z = L z L z ==! =! L =! (1)(1+1) ()( +1) (1)(1+1) =! 3 ( L ) 1 =! 4 (1) (1+1) () ( +1) (1) (1+1) =!4 1 ΔL = ( L ) L ==! 1 9 =! 3 ΑΣΚΗΣΗ Η εξίσωση γράφεται µε την κυµατοσυνάρτηση να δίνεται από την σχέση h 1 L r V() r E + = m r r r h r (, r θ, ϕ) = R () r Y (, θ ϕ) Elm El lm El El () r = u () r r Για την κατάσταση µε l = 0 το πρόβληµα ανάγεται (δες βοηθητικό υλικό webcast) σε ένα µονοδιάστατο πηγάδι δυναµικού R V (r) = r < a 0 a < r < b b < r
9 ! m d dr +V r u r E0 = Eu E0 ( r) Το πρόβληµα είναι ταυτόσηµο µε απειρόβαθο πηγάδι δυναµικού και άρα οι λύσεις δίνονται από Elm (r,θ,ϕ) = u (r) E0 Y r 00 (θ,ϕ) = 1 4π b a και Elm (r,θ,ϕ) = 0 στο υπόλοιπο διάστηµα µε E = sin( nπ(r a) / (b a) ) r για a < r < b! π m(b a) n, n = 1,,... ΑΣΚΗΣΗ 8 Ψ(x, y,z) = C(xy + y )e a r Γράφοντας x= rcosϕsinθ y rsinϕsinθ = έχουµε Ψ(x, y, z) = Cr ( sin ϕ sin θ + cosϕ sinϕ sin θ)e a r = Cr e a r f (θ,ϕ) f (θ,ϕ) = sin θ i e iϕ i eiϕ Κατά συνέπεια την συνάρτηση αυτή µπορούµε να την εκφράσουµε ως συνάρτηση των σφαιρικών αρµονικών και συγκεκριµένα των Y 00 1 = Y 0 = 4π 5 ( 16π 3cos θ 1) Y = Y + = 15 3π sin θ e iϕ 15 3π sin θ e iϕ και και έχουµε Ψ(x, y,z) = Cr e a ( r Y 00 + c 0 Y 0 + c Y + c + Y + ) c lm = π 0 dθ sinθ π 0 dϕ Y * lm (θ,ϕ) f (θ,ϕ)
10 c π 3 c 00 = 0 π /5 = c 3 = ( 1+ i) π 15 c = ( 1 i) π + 15 και άρα η πιθανότητα να l = 0 είναι P(l = 0) = + c0 + c + c+ = 5 1 P(l = ) = 1 P(l = 0) = 16 1 και P(m = 0) = + c0 + c0 + c + c+ = P(m = ) = c + c0 + c + c+ = 5 14 και P(m = +) = c + + c0 + c + c+ = 5 14
Κβαντομηχανική Ι 3o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 016-017 Κβαντομηχανική Ι 3o Σετ Ασκήσεων Άσκηση 1 Οι λύσεις του αρμονικού ταλαντωτή, με V = x είναι της μορφής ψ n (x) = ( mω π )1/4 1 n n! H n (x)e x /, n = 0,1, (1) Με Η n τα πολυώνυμα
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τµήµα Α Λαχανά) Φεβρουαρίου ΘΕΜΑ : Θεωρήστε τις δύο περιπτώσεις όπου η κυµατική συνάρτηση ψx) που περιγράφει µονοδιάστατη κίνηση σωµατιδίου σε απειρόβαθο πηγάδι δυναµικού µε τα τοιχώµατα
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.
ΘΕΜΑ [5575] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Αυγούστου ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης,5 ώρες (α) Να αποδειχθεί ότι για οποιοδήποτε µη εξαρτώµενο από τον χρόνο τελεστή Α, ισχύει d A / dt = A,
Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1
Κβαντομηχανική Ι Λύσεις προόδου Άσκηση 1 ψ(x) = A Sin (k x), < x < α) Sin (k x) = eikx e ikx i Mε πιθανές τιμές ορμής p = ± ħk, από τον τύπο του De Broglie. Kαθεμιά έχει πιθανότητα 50%. b) p = ψ p ψ =
Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 16-17 Κβαντομηχανική Ι 1o Σετ Ασκήσεων ) ψ(x) dx Άσκηση 1 ψ ο (x) = Α (α x ), < x < = A (α x ) dx = 1 (α x ) dx = (α 4 x + x 4 )dx = α 4 dx x dx = 5 45 3 A ( 5 45 + 5 3 5 + x 4 dx + 5
Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή
Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει
Άσκηση 1. h 2 B = 1 + A = Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroedinger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού V(x) = 0:
Άσκηση 1 Για τις περιοχές A : x < 0, B : x > 0 η εξίσωση Schroediger θα έχει τη μορφή της ελεύθερης εξίσωσης, αφού Vx = 0: Ψ A + κ Ψ A = 0 Ψ B + κ Ψ B = 0 Για το σημείο x = 0 η εξίσωση Schroediger θα είναι:
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
Θεωρία Υλικών, 11/2/2011
Θεωρία Υλικών, // Θέμα (.5) Για τα στοιχειακό μέταλλο Al δίνεται ότι η πυκνότητα είναι ρ M =.7 g/cm 3 και το ατομικό του βάρος 6.98. Η ηλεκτρονική δομή του ατόμου του Al είναι [Ne]3s p. α) Να βρεθεί ο
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων
ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.
ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.
x L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί
και χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
fysikoblog.blogspot.com
fysikobog.bogspot.co Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙΙ: Σφαιρικές Αρμονικές Στις σημειώσεις αυτές δίνομε την αναπαράσταση των ιδιοανυσμάτων της
( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
Ŝ y, για σπιν ½, όπου. και. 1/2 x 1/2,
ΣΕΤ 10 6/1/18 (1) (α) Βρείτε τα ιδιοδυανύσματα των Ŝ z, 1 Ŝ z 0 Ŝx και 0 0 1 0 i, Ŝ x, και Ŝ y 1 1 0 i 0 (β) Συνεπώς, εκφράστε τις καταστάσεις καταστάσεων 1/ z και 1/ z 1/ x, Ŝ y, για σπιν ½, όπου 1/ x,
Μάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).
Μάθηµα ο 0 Οκτωβρίου 008 (9:00-:00) ΑΣΚΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Άσκηση 9 Έστω ένα κβαντικό σύστηµα το οποίο περιγράφεται από τρεις ενεργειακές καταστάσεις (ιδιοτιµές ενέργειας
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
P m (x)p n (x)dx = 2 2n + 1 δn m. P 1 (x) = x. P 2 (x) = 1 2 (3x2 1) P 3 (x) = 1 2 (5x3 3x) P 4 (x) = 1 8 (35x4 30x 2 + 3)
ΠΟΛΥΩΝΥΜΑ LEGENDRE Τα πολυώνυμα Legendre P n (x είναι ορθογώνια πολυώνυμα στο διάστημα [ 1, +1], με συνάρτηση βάρους την w(x = 1, άρα ισχύει: +1 1 P m (xp n (xdx = 2 2n + 1 δn m Τα επτά πρώτα πολυώνυμα
Αρμονικός ταλαντωτής Ασκήσεις
Αρμονικός ταλαντωτής Ασκήσεις 4. Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ˆ i e, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ο τελεστής της ορμής, και η κλίμακα μήκους του
H = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n
3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος
. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
Â. Θέλουμε να βρούμε τη μέση τιμή
ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου
Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη
Θεωρητική Επιστήμη Υλικών
Θεωρητική Επιστήμη Υλικών Διαγώνισμα Προόδου 6// Θέμα Κάποιο σωματιδιο βρισκεται στη θεμελιώδη σταθμη του, κοντά στο ελάχιστο της δυναμικής του ενέργειας. Μετράται ότι x= Å. Πόση ενέργεια πρέπει να του
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 2004-2005 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 4-5 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ Ανδρέας Φ. Τερζής Πάτρα Γενάρης 5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΕΛΕΣΤΩΝ ΜΕ ΜΗΤΡΕΣ [ΠΙΝΑΚΕΣ]
Η Αναπαράσταση της Θέσης (Position Representation)
Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης
Κβαντική Φυσική Ι. Ενότητα 29: Το άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 29: Το άτομο του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να δώσει μια πλήρη μαθηματική- κβαντομηχανική μελέτη
Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της
E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
Κβαντική Φυσική Ι. Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει τις ιδιότητες
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 9-1 5 η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης 4/5/1 //1 Άσκηση 1 Οι µετρήσεις πρέπει να υπακούουν την εξίσωση του φωτοηλεκτρικού φαινοµένου hc 14( ev. nm) Ve = φ φ( ev) λ = λ(
Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά
Κίνηση σε Μονοδιάστατα Τετραγωνικά Δυναμικά Δομή Διάλεξης Τετραγωνικό Πηγάδι Δυναμικού: Δέσμιες καταστάσεις - ιδιοτιμές Οριακές Περιπτώσεις: δ δυναμικό, άπειρο βάθος Σκέδαση σε μια διάσταση: Σκαλοπάτι
Μετασχηματισμοί Καταστάσεων και Τελεστών
Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity
KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
ˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
Τι Πρέπει να Γνωρίζω
Τι Πρέπει να Γνωρίζω Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.
ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 5 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 6/5/08
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 7-8 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 5 ης ΕΡΓΑΣΙΑΣ Προθεσµία παράδοσης 6/5/8 5//8 Άσκηση Α) Από τον νόµο µετατόπισης του Wien (σχέση (.6) σελ. 5 του βιβλίου των Serwy-Moses-Moyer) έχουµε
Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να σκιαγραφηθεί
(φορτισμένος αρμονικός 2 ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΥΠΟΛΟΓΙΣΜΟΣ ΜΕΣΩΝ ΤΙΜΩΝ ΜΕ ΧΡΗΣΗ ΤΩΝ ΤΕΛΕΣΤΩΝ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ Για μια τυχαία ιδιοκατάσταση της ενέργειας,, υπολογίζουμε
Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης του
Τίτλος: Κυµατοσυνάρτηση-Φράγµα δυναµικού Χρόνος: min. Σωµάτιο προσπίπτει απο αριστερά στο παρακάτω φράγµα δυναµικού. Ποια απο τις παρακάτω είναι η σωστή µορφή του πραγµατικού µέρους της κυµατοσυνάρτησης
, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή
Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη
Θεωρητική Επιστήμη Υλικών
Θεωρητική Επιστήμη Υλικών 1ο διαγώνισμα, 6/10/015. Find the eigenvalues and the eigenvectors of the matrix: 1 0 i 0 1 1 i 1 0 Make sure that eigenvectors are normalized i.e ψ ψ = 1. Bonus: check if eigenvectors
μαγνητικό πεδίο παράλληλο στον άξονα x
Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς
Κεφάλαιο 1 Περιλήψεις Κβαντικής Μηχανικής ΙΙ 1.1 Συµβολισµός Dirac Ακολουθώντας τον συµβολισµό του Dirac ϑα περιγράφουµε τις ϕυσικές καταστάσεις ενός Κβαντοµηχανικού συστήµατος από ένα ανυσµα Ψ(t) που
Αρμονικός Ταλαντωτής
Αρμονικός Ταλαντωτής Δομή Διάλεξης Η χρησιμότητα του προβλήματος του αρμονικού ταλαντωτή Η Hamiltonian και οι τελεστές δημιουργίας και καταστροφής Το φάσμα ιδιοτιμών της Hamiltonian Οι ιδιοκαταστάσεις
Διάλεξη 1: Κβαντομηχανική σε τρεις διαστάσεις
Διάλεξη : Κβαντομηχανική σε τρεις διαστάσεις Βασικές Αρχές της Κβαντομηχανικής H κατάσταση ενός φυσικού συστήματος περιγράφεται από την κυματοσυνάρτησή του και αποτελεί το πλάτος πιθανότητας να βρεθεί
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας
Το Ελεύθερο Σωμάτιο Ρεύμα Πιθανότητας Δομή Διάλεξης Χρονική εξέλιξη Gaussian κυματοσυνάρτησης σε μηδενικό δυναμικό (ελέυθερο σωμάτιο): Μετατόπιση και Διασπορά Πείραμα διπλής οπής: Κροσσοί συμβολής για
Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)
Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του
Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34
Σύγχρονη Φυσική ΦΥΕ 6/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ Ιούλιος 8 Θέµα ο (Μονάδες:.5) ΣΥΓΧΡΟΝΗ ιάρκεια: λεπτά Για x η κυµατοσυνάρτηση
ΦΥΕ14-5 η Εργασία Παράδοση
ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο
Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα
Άσκηση. (Βοήθημα θεωρίας) Εάν ένα κλασικό άνυσμα r μετατοπισθεί κατά a, θα προκύψει το άνυσμα r = r + a. a Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα r
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή 1. Κίνηση σε τρεις διαστάσεις Αποδεικνύεται (με τον ίδιο τρόπο όπως και
Πανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.
Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 38 +)
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 38 +) Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
Περιλήψεις Κβαντικής Μηχανικής ΙΙ Α. Λαχανάς
Κεφάλαιο 1 Περιλήψεις Κβαντικής Μηχανικής ΙΙ 1.1 Συµβολισµός Dirac Ακολουθώντας τον συµβολισµό του Dirac ϑα περιγράφουµε τις ϕυσικές καταστάσεις ενός Κβαντοµηχανικού συστήµατος από ένα ανυσµα Ψ(t) που
Κβαντική Μηχανική ΙΙ. Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Μηχανική ΙΙ Ενότητα 8: Ερωτήσεις και Ασκήσεις (Ασκήσεις προς Λύση) Αθανάσιος Λαχανάς Σχολή Θετικών Επιστημών Τμήμα Φυσικής ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ Οι ασκήσεις που ακολουθούν είναι προς επίλυση από
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά
Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού
Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις. Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. 8 Δεκεμβρίου 2017
Η κυματοσυνάρτηση στην αναπαράσταση ορμής Ασκήσεις Σπύρος Κωνσταντογιάννης Φυσικός, M.Sc. siroskonstantogiannis@gmail.com 8 Δεκεμβρίου 7 8//7 Coyrigt Σπύρος Κωνσταντογιάννης, 7. Με επιφύλαξη παντός δικαιώματος.
Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,
υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger
4 υναµικό Coulomb - Λύση της εξίσωσης του Schrödinger 4.1 Κλασσική µηχανική - το πρόβληµα των δύο σωµάτων Θεωρούµε την αλληλεπίδραση ενός ηλεκτρονίου µε µάζα m e και ϕορτίο q e = e µε έναν πυρήνα µε ϕορτίο
1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Λύσεις στο επαναληπτικό διαγώνισμα 3
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή
= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.
Άσκηση 4 Θεωρείστε και πάλι το σύστημα της άσκησης Τη χρονική στιγμή το σύστημα βρίσκεται στην κατάσταση a (η οποία δεν είναι ιδιοκατάσταση της amilonian) Ποιά είναι η πιθανότητα, μετά από χρόνο, να βρεθεί
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 3: Πολυπολική ανάπτυξη Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει την πολυπολική ανάπτυξη του δυναμικού
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ
ΕΝΔΕΙΞΕΙΣ ΣΥΛΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΣΕ ΠΥΡΗΝΕΣ Πολλά πυρηνικά φαινόµενα δεν µπορούν να εξηγηθούν µε το µοντέλο της υγρής σταγόνας, ούτε το µοντέλο των ανεξαρτήτων σωµατίων. Η εξήγησή τους απαιτεί την συλλογική
= k2 x Y = k 2 + kx 2 Y. = k2 y
1 Pìblhma 1 Εχουμε κατά τα γνωστά 2 + k 2 )ψ =0, όπου k 2 = 2mE Με την αντικατάσταση ψ = Xx)Y y), έχουμε ) 2 x 2 + 2 y 2 + k2 XY =0 X Y +XY +k 2 XY =0 X X + Y Y και εν συνεχεία = k2 X X = k2 Y Y = k2 x
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Κεφάλαιο 9: Συστήματα Πολλών σωματίων
Κεφάλαιο 9: Συστήματα Πολλών σωματίων Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό, είναι τα εξής (Βαγιονάκης, 1996 Μοδινός, 1994 Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013
21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση
Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι
Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Disclaimer: Οι δυο ασκήσεις ζητούν τις κυματοσυναρτήσεις, τις ενέργειες, τις τιμές (x 1 x 2 ) 2 των διαφόρων καταστάσεων και τη διόρθωση από διαταραχή, για μποζόνια
S ˆz. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α. 2αβ
Άσκηση 4. Έστω σωμάτιο με spin /. Να προσδιορίσετε την κατάστασή του αν είναι γνωστές οι S ˆ, S ˆ και μόνο το πρόσημο της S ˆ. Απ. : Αυτό που πρέπει να βρούμε είναι οι συντελεστές στο ανάπτυγμα α ψ = α
Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση
Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης
Κβαντική Φυσική Ι. Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 10: Ερμιτιανοί τελεστές και εισαγωγή στους μεταθέτες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναδείξει την ερμιτιανότητα
Κεφάλαιο 17: Θεωρία Χρονοεξαρτώμενων Διαταραχών
Κεφάλαιο 17: Θεωρία Χρονοεξαρτώμενων Διαταραχών Περιεχόμενα Κεφαλαίου Στο κεφάλαιο αυτό θα εισαχθεί μία γενική μέθοδος μελέτης συστημάτων με χρονοεξαρτώμενη Hailtonian. Θα παρουσιαστεί η μέθοδος εύρεσης
F = dv dx = kx. V (x) = V (0) + V (0)x + 1 2 V (0)x 2 +.
κ ε φ ά λ α ι ο 5 Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Εισαγωγή Θα δείξουµε τώρα ότι ο µαθηµατικός φορµαλισµός που αναπτύξαµε στο προηγού- µενο κεφάλαιο και ο οποίος δίνει έµφαση στην αφηρηµένη αλγεβρική δοµή της κβαντικής
Κβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 6-7 Κβαντομηχανική Ι 6o Σετ Ασκήσεων Άσκηση a) Τρόπος α : Λύνουμε όλους (ή έστω μερικούς από) τους συνδυασμούς [l i, r j ]: [l x, x] = [l y, y] = [l z, x] = i ħ y Κ.ο.κ., και συμπεραίνουμε
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +)
ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ (ΚΕΦΑΛΑΙΟ 39 +) Σταύρος Κ. Φαράντος Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html
ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
Θεωρία Χρονοεξαρτώμενων Διαταραχών
Θεωρία Χρονοεξαρτώμενων Διαταραχών Δομή Διάλεξης Γενική μέθοδος μελέτης συστημάτων με χρονοεξαρτώμενο μέρος Χαμιλτονιανής. Εύρεση πιθανότητας μετάβασης Απλό παράδειγμα με ακριβή λύση: Σύστημα δύο καταστάσεων
Κβαντική Φυσική Ι. Ενότητα 9: Χρονοεξαρτώμενη εξίσωση Schro dinger. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 9: Χρονοεξαρτώμενη εξίσωση Schro dinger Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να δοθεί η γενική λύση της χρονοεξαρτώμενης
Το θεώρηµα Hellmann- Feynman
Παράρτηµα Αποδείξεις Βασικών Θεωρηµάτων της Κβαντικής Μηχανικής Το θεώρηµα Hellma- Feyma Έστω ένα κβαντικό σύστηµα που περιγράφεται από τη Χαµιλτωνιανή Ĥ. Έστω ότι η Ĥ εξαρτάται από Hˆ Hˆ λ. Από την ίδια
Κβαντική Φυσική Ι. Ενότητα 12: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 12: Ασκήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Άσκηση 12.1 Να υπολογιστεί η μέση ενέργεια σωματιδίου που περιγράφεται από την κυματοσυνάρτηση ψ x = 1 3 ψ 1
ΑΡΧΕΣ ΚΒΑΝΤΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ. Τα θεμέλια της κβαντομηχανικής
Τα θεμέλια της κβαντομηχανικής Η κυματοσυνάρτηση Κβάντωση της ενέργειας + Κυματοσωματιδιακός δυϊσμός του φωτός και της ύλης Η δυναμική του μικρόκοσμου Τα σωματίδια δεν έχουν καθορισμένες τροχιές και οποιαδήποτε
Δομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής
Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L
lim f n(x) = f(x) 1 ǫ < n ln ǫ N (ǫ, x) = ln ( )
ΟΜΟΙΟΜΟΡΦΗ ΣΥΓΚΛΙΣΗ Εστω {f n x), n N} µια ακολουθία συναρτήσεων ορισµένων στο διάστηµα I = [, b] ή, b] ή [, b) ή, b) ) ΟΡΙΣΜΟΣ Η ακολουθία συναστήσεων συγκλίνει σηµειακά point wise convergence) στην συνάρτηση
Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005
ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού